crypto/scheduler: add multicore scheduling mode
Multi-core scheduling mode is a mode where scheduler distributes crypto operations in a round-robin base, between several core assigned as workers. Signed-off-by: Kirill Rybalchenko <kirill.rybalchenko@intel.com> Acked-by: Fan Zhang <roy.fan.zhang@intel.com>
This commit is contained in:
parent
a3277ad47f
commit
4c07e0552f
@ -170,3 +170,28 @@ operation:
|
||||
crypto operation burst to the primary slave. When one or more crypto
|
||||
operations fail to be enqueued, then they will be enqueued to the secondary
|
||||
slave.
|
||||
|
||||
* **CDEV_SCHED_MODE_MULTICORE:**
|
||||
|
||||
*Initialization mode parameter*: **multi-core**
|
||||
|
||||
Multi-core mode, which distributes the workload with several (up to eight)
|
||||
worker cores. The enqueued bursts are distributed among the worker cores in a
|
||||
round-robin manner. If scheduler cannot enqueue entire burst to the same worker,
|
||||
it will enqueue the remaining operations to the next available worker.
|
||||
For pure small packet size (64 bytes) traffic however the multi-core mode is not
|
||||
an optimal solution, as it doesn't give significant per-core performance improvement.
|
||||
For mixed traffic (IMIX) the optimal number of worker cores is around 2-3.
|
||||
For large packets (1.5 Kbytes) scheduler shows linear scaling in performance
|
||||
up to eight cores.
|
||||
Each worker uses its own slave cryptodev. Only software cryptodevs
|
||||
are supported. Only the same type of cryptodevs should be used concurrently.
|
||||
|
||||
The multi-core mode uses one extra parameter:
|
||||
|
||||
* corelist: Semicolon-separated list of logical cores to be used as workers.
|
||||
The number of worker cores should be equal to the number of slave cryptodevs.
|
||||
|
||||
Example:
|
||||
... --vdev "crypto_aesni_mb1,name=aesni_mb_1" --vdev "crypto_aesni_mb_pmd2,name=aesni_mb_2" \
|
||||
--vdev "crypto_scheduler,slave=aesni_mb_1,slave=aesni_mb_2,mode=multi-core,corelist=23;24" ...
|
||||
|
@ -133,6 +133,11 @@ New Features
|
||||
|
||||
* 192-bit key.
|
||||
|
||||
* **Updated the Cryptodev Scheduler PMD.**
|
||||
|
||||
Added a multicore based distribution mode, which distributes the enqueued
|
||||
crypto operations among several slaves, running on different logical cores.
|
||||
|
||||
|
||||
Resolved Issues
|
||||
---------------
|
||||
|
@ -56,5 +56,6 @@ SRCS-$(CONFIG_RTE_LIBRTE_PMD_CRYPTO_SCHEDULER) += rte_cryptodev_scheduler.c
|
||||
SRCS-$(CONFIG_RTE_LIBRTE_PMD_CRYPTO_SCHEDULER) += scheduler_roundrobin.c
|
||||
SRCS-$(CONFIG_RTE_LIBRTE_PMD_CRYPTO_SCHEDULER) += scheduler_pkt_size_distr.c
|
||||
SRCS-$(CONFIG_RTE_LIBRTE_PMD_CRYPTO_SCHEDULER) += scheduler_failover.c
|
||||
SRCS-$(CONFIG_RTE_LIBRTE_PMD_CRYPTO_SCHEDULER) += scheduler_multicore.c
|
||||
|
||||
include $(RTE_SDK)/mk/rte.lib.mk
|
||||
|
@ -351,6 +351,13 @@ rte_cryptodev_scheduler_mode_set(uint8_t scheduler_id,
|
||||
return -1;
|
||||
}
|
||||
break;
|
||||
case CDEV_SCHED_MODE_MULTICORE:
|
||||
if (rte_cryptodev_scheduler_load_user_scheduler(scheduler_id,
|
||||
multicore_scheduler) < 0) {
|
||||
CS_LOG_ERR("Failed to load scheduler");
|
||||
return -1;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
CS_LOG_ERR("Not yet supported");
|
||||
return -ENOTSUP;
|
||||
|
@ -58,12 +58,17 @@ extern "C" {
|
||||
#define RTE_CRYPTODEV_SCHEDULER_MAX_NB_SLAVES (8)
|
||||
#endif
|
||||
|
||||
/** Maximum number of multi-core worker cores */
|
||||
#define RTE_CRYPTODEV_SCHEDULER_MAX_NB_WORKER_CORES (64)
|
||||
|
||||
/** Round-robin scheduling mode string */
|
||||
#define SCHEDULER_MODE_NAME_ROUND_ROBIN round-robin
|
||||
/** Packet-size based distribution scheduling mode string */
|
||||
#define SCHEDULER_MODE_NAME_PKT_SIZE_DISTR packet-size-distr
|
||||
/** Fail-over scheduling mode string */
|
||||
#define SCHEDULER_MODE_NAME_FAIL_OVER fail-over
|
||||
/** multi-core scheduling mode string */
|
||||
#define SCHEDULER_MODE_NAME_MULTI_CORE multi-core
|
||||
|
||||
/**
|
||||
* Crypto scheduler PMD operation modes
|
||||
@ -78,6 +83,8 @@ enum rte_cryptodev_scheduler_mode {
|
||||
CDEV_SCHED_MODE_PKT_SIZE_DISTR,
|
||||
/** Fail-over mode */
|
||||
CDEV_SCHED_MODE_FAILOVER,
|
||||
/** multi-core mode */
|
||||
CDEV_SCHED_MODE_MULTICORE,
|
||||
|
||||
CDEV_SCHED_MODE_COUNT /**< number of modes */
|
||||
};
|
||||
@ -295,6 +302,8 @@ extern struct rte_cryptodev_scheduler *roundrobin_scheduler;
|
||||
extern struct rte_cryptodev_scheduler *pkt_size_based_distr_scheduler;
|
||||
/** Fail-over mode scheduler */
|
||||
extern struct rte_cryptodev_scheduler *failover_scheduler;
|
||||
/** multi-core mode scheduler */
|
||||
extern struct rte_cryptodev_scheduler *multicore_scheduler;
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
412
drivers/crypto/scheduler/scheduler_multicore.c
Normal file
412
drivers/crypto/scheduler/scheduler_multicore.c
Normal file
@ -0,0 +1,412 @@
|
||||
/*-
|
||||
* BSD LICENSE
|
||||
*
|
||||
* Copyright(c) 2017 Intel Corporation. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* * Neither the name of Intel Corporation nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
#include <unistd.h>
|
||||
|
||||
#include <rte_cryptodev.h>
|
||||
#include <rte_malloc.h>
|
||||
|
||||
#include "rte_cryptodev_scheduler_operations.h"
|
||||
#include "scheduler_pmd_private.h"
|
||||
|
||||
#define MC_SCHED_ENQ_RING_NAME_PREFIX "MCS_ENQR_"
|
||||
#define MC_SCHED_DEQ_RING_NAME_PREFIX "MCS_DEQR_"
|
||||
|
||||
#define MC_SCHED_BUFFER_SIZE 32
|
||||
|
||||
/** multi-core scheduler context */
|
||||
struct mc_scheduler_ctx {
|
||||
uint32_t num_workers; /**< Number of workers polling */
|
||||
uint32_t stop_signal;
|
||||
|
||||
struct rte_ring *sched_enq_ring[RTE_CRYPTODEV_SCHEDULER_MAX_NB_WORKER_CORES];
|
||||
struct rte_ring *sched_deq_ring[RTE_CRYPTODEV_SCHEDULER_MAX_NB_WORKER_CORES];
|
||||
};
|
||||
|
||||
struct mc_scheduler_qp_ctx {
|
||||
struct scheduler_slave slaves[RTE_CRYPTODEV_SCHEDULER_MAX_NB_SLAVES];
|
||||
uint32_t nb_slaves;
|
||||
|
||||
uint32_t last_enq_worker_idx;
|
||||
uint32_t last_deq_worker_idx;
|
||||
|
||||
struct mc_scheduler_ctx *mc_private_ctx;
|
||||
};
|
||||
|
||||
static uint16_t
|
||||
schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
|
||||
{
|
||||
struct mc_scheduler_qp_ctx *mc_qp_ctx =
|
||||
((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
|
||||
struct mc_scheduler_ctx *mc_ctx = mc_qp_ctx->mc_private_ctx;
|
||||
uint32_t worker_idx = mc_qp_ctx->last_enq_worker_idx;
|
||||
uint16_t i, processed_ops = 0;
|
||||
|
||||
if (unlikely(nb_ops == 0))
|
||||
return 0;
|
||||
|
||||
for (i = 0; i < mc_ctx->num_workers && nb_ops != 0; i++) {
|
||||
struct rte_ring *enq_ring = mc_ctx->sched_enq_ring[worker_idx];
|
||||
uint16_t nb_queue_ops = rte_ring_enqueue_burst(enq_ring,
|
||||
(void *)(&ops[processed_ops]), nb_ops, NULL);
|
||||
|
||||
nb_ops -= nb_queue_ops;
|
||||
processed_ops += nb_queue_ops;
|
||||
|
||||
if (++worker_idx == mc_ctx->num_workers)
|
||||
worker_idx = 0;
|
||||
}
|
||||
mc_qp_ctx->last_enq_worker_idx = worker_idx;
|
||||
|
||||
return processed_ops;
|
||||
}
|
||||
|
||||
static uint16_t
|
||||
schedule_enqueue_ordering(void *qp, struct rte_crypto_op **ops,
|
||||
uint16_t nb_ops)
|
||||
{
|
||||
struct rte_ring *order_ring =
|
||||
((struct scheduler_qp_ctx *)qp)->order_ring;
|
||||
uint16_t nb_ops_to_enq = get_max_enqueue_order_count(order_ring,
|
||||
nb_ops);
|
||||
uint16_t nb_ops_enqd = schedule_enqueue(qp, ops,
|
||||
nb_ops_to_enq);
|
||||
|
||||
scheduler_order_insert(order_ring, ops, nb_ops_enqd);
|
||||
|
||||
return nb_ops_enqd;
|
||||
}
|
||||
|
||||
|
||||
static uint16_t
|
||||
schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
|
||||
{
|
||||
struct mc_scheduler_qp_ctx *mc_qp_ctx =
|
||||
((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
|
||||
struct mc_scheduler_ctx *mc_ctx = mc_qp_ctx->mc_private_ctx;
|
||||
uint32_t worker_idx = mc_qp_ctx->last_deq_worker_idx;
|
||||
uint16_t i, processed_ops = 0;
|
||||
|
||||
for (i = 0; i < mc_ctx->num_workers && nb_ops != 0; i++) {
|
||||
struct rte_ring *deq_ring = mc_ctx->sched_deq_ring[worker_idx];
|
||||
uint16_t nb_deq_ops = rte_ring_dequeue_burst(deq_ring,
|
||||
(void *)(&ops[processed_ops]), nb_ops, NULL);
|
||||
|
||||
nb_ops -= nb_deq_ops;
|
||||
processed_ops += nb_deq_ops;
|
||||
if (++worker_idx == mc_ctx->num_workers)
|
||||
worker_idx = 0;
|
||||
}
|
||||
|
||||
mc_qp_ctx->last_deq_worker_idx = worker_idx;
|
||||
|
||||
return processed_ops;
|
||||
|
||||
}
|
||||
|
||||
static uint16_t
|
||||
schedule_dequeue_ordering(void *qp, struct rte_crypto_op **ops,
|
||||
uint16_t nb_ops)
|
||||
{
|
||||
struct rte_ring *order_ring =
|
||||
((struct scheduler_qp_ctx *)qp)->order_ring;
|
||||
|
||||
return scheduler_order_drain(order_ring, ops, nb_ops);
|
||||
}
|
||||
|
||||
static int
|
||||
slave_attach(__rte_unused struct rte_cryptodev *dev,
|
||||
__rte_unused uint8_t slave_id)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
slave_detach(__rte_unused struct rte_cryptodev *dev,
|
||||
__rte_unused uint8_t slave_id)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
mc_scheduler_worker(struct rte_cryptodev *dev)
|
||||
{
|
||||
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
|
||||
struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
|
||||
struct rte_ring *enq_ring;
|
||||
struct rte_ring *deq_ring;
|
||||
uint32_t core_id = rte_lcore_id();
|
||||
int i, worker_idx = -1;
|
||||
struct scheduler_slave *slave;
|
||||
struct rte_crypto_op *enq_ops[MC_SCHED_BUFFER_SIZE];
|
||||
struct rte_crypto_op *deq_ops[MC_SCHED_BUFFER_SIZE];
|
||||
struct scheduler_session *sess0, *sess1, *sess2, *sess3;
|
||||
uint16_t processed_ops;
|
||||
uint16_t left_op = 0;
|
||||
uint16_t left_op_idx = 0;
|
||||
uint16_t inflight_ops = 0;
|
||||
|
||||
for (i = 0; i < (int)sched_ctx->nb_wc; i++) {
|
||||
if (sched_ctx->wc_pool[i] == core_id) {
|
||||
worker_idx = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (worker_idx == -1) {
|
||||
CS_LOG_ERR("worker on core %u:cannot find worker index!\n", core_id);
|
||||
return -1;
|
||||
}
|
||||
|
||||
slave = &sched_ctx->slaves[worker_idx];
|
||||
enq_ring = mc_ctx->sched_enq_ring[worker_idx];
|
||||
deq_ring = mc_ctx->sched_deq_ring[worker_idx];
|
||||
|
||||
while (!mc_ctx->stop_signal) {
|
||||
if (left_op) {
|
||||
processed_ops =
|
||||
rte_cryptodev_enqueue_burst(slave->dev_id,
|
||||
slave->qp_id,
|
||||
&enq_ops[left_op_idx], left_op);
|
||||
|
||||
left_op -= processed_ops;
|
||||
left_op_idx += processed_ops;
|
||||
} else {
|
||||
uint16_t nb_deq_ops = rte_ring_dequeue_burst(enq_ring,
|
||||
(void *)enq_ops, MC_SCHED_BUFFER_SIZE, NULL);
|
||||
if (nb_deq_ops) {
|
||||
uint16_t i;
|
||||
|
||||
for (i = 0; i < nb_deq_ops && i < 4; i++)
|
||||
rte_prefetch0(enq_ops[i]->sym->session);
|
||||
|
||||
for (i = 0; (i < (nb_deq_ops - 8))
|
||||
&& (nb_deq_ops > 8); i += 4) {
|
||||
sess0 = (struct scheduler_session *)
|
||||
enq_ops[i]->sym->session->_private;
|
||||
sess1 = (struct scheduler_session *)
|
||||
enq_ops[i+1]->sym->session->_private;
|
||||
sess2 = (struct scheduler_session *)
|
||||
enq_ops[i+2]->sym->session->_private;
|
||||
sess3 = (struct scheduler_session *)
|
||||
enq_ops[i+3]->sym->session->_private;
|
||||
|
||||
enq_ops[i]->sym->session =
|
||||
sess0->sessions[worker_idx];
|
||||
enq_ops[i + 1]->sym->session =
|
||||
sess1->sessions[worker_idx];
|
||||
enq_ops[i + 2]->sym->session =
|
||||
sess2->sessions[worker_idx];
|
||||
enq_ops[i + 3]->sym->session =
|
||||
sess3->sessions[worker_idx];
|
||||
|
||||
rte_prefetch0(enq_ops[i + 4]->sym->session);
|
||||
rte_prefetch0(enq_ops[i + 5]->sym->session);
|
||||
rte_prefetch0(enq_ops[i + 6]->sym->session);
|
||||
rte_prefetch0(enq_ops[i + 7]->sym->session);
|
||||
}
|
||||
|
||||
for (; i < nb_deq_ops; i++) {
|
||||
sess0 = (struct scheduler_session *)
|
||||
enq_ops[i]->sym->session->_private;
|
||||
enq_ops[i]->sym->session =
|
||||
sess0->sessions[worker_idx];
|
||||
}
|
||||
|
||||
processed_ops = rte_cryptodev_enqueue_burst(slave->dev_id,
|
||||
slave->qp_id, enq_ops, nb_deq_ops);
|
||||
|
||||
if (unlikely(processed_ops < nb_deq_ops)) {
|
||||
left_op = nb_deq_ops - processed_ops;
|
||||
left_op_idx = processed_ops;
|
||||
}
|
||||
|
||||
inflight_ops += processed_ops;
|
||||
}
|
||||
}
|
||||
|
||||
if (inflight_ops > 0) {
|
||||
processed_ops = rte_cryptodev_dequeue_burst(slave->dev_id,
|
||||
slave->qp_id, deq_ops, MC_SCHED_BUFFER_SIZE);
|
||||
if (processed_ops) {
|
||||
uint16_t nb_enq_ops = rte_ring_enqueue_burst(deq_ring,
|
||||
(void *)deq_ops, processed_ops, NULL);
|
||||
inflight_ops -= nb_enq_ops;
|
||||
}
|
||||
}
|
||||
|
||||
rte_pause();
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
scheduler_start(struct rte_cryptodev *dev)
|
||||
{
|
||||
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
|
||||
struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
|
||||
uint16_t i;
|
||||
|
||||
mc_ctx->stop_signal = 0;
|
||||
|
||||
for (i = 0; i < sched_ctx->nb_wc; i++)
|
||||
rte_eal_remote_launch(
|
||||
(lcore_function_t *)mc_scheduler_worker, dev,
|
||||
sched_ctx->wc_pool[i]);
|
||||
|
||||
if (sched_ctx->reordering_enabled) {
|
||||
dev->enqueue_burst = &schedule_enqueue_ordering;
|
||||
dev->dequeue_burst = &schedule_dequeue_ordering;
|
||||
} else {
|
||||
dev->enqueue_burst = &schedule_enqueue;
|
||||
dev->dequeue_burst = &schedule_dequeue;
|
||||
}
|
||||
|
||||
for (i = 0; i < dev->data->nb_queue_pairs; i++) {
|
||||
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[i];
|
||||
struct mc_scheduler_qp_ctx *mc_qp_ctx =
|
||||
qp_ctx->private_qp_ctx;
|
||||
uint32_t j;
|
||||
|
||||
memset(mc_qp_ctx->slaves, 0,
|
||||
RTE_CRYPTODEV_SCHEDULER_MAX_NB_SLAVES *
|
||||
sizeof(struct scheduler_slave));
|
||||
for (j = 0; j < sched_ctx->nb_slaves; j++) {
|
||||
mc_qp_ctx->slaves[j].dev_id =
|
||||
sched_ctx->slaves[j].dev_id;
|
||||
mc_qp_ctx->slaves[j].qp_id = i;
|
||||
}
|
||||
|
||||
mc_qp_ctx->nb_slaves = sched_ctx->nb_slaves;
|
||||
|
||||
mc_qp_ctx->last_enq_worker_idx = 0;
|
||||
mc_qp_ctx->last_deq_worker_idx = 0;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
scheduler_stop(struct rte_cryptodev *dev)
|
||||
{
|
||||
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
|
||||
struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
|
||||
|
||||
mc_ctx->stop_signal = 1;
|
||||
|
||||
for (uint16_t i = 0; i < sched_ctx->nb_wc; i++)
|
||||
rte_eal_wait_lcore(sched_ctx->wc_pool[i]);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
scheduler_config_qp(struct rte_cryptodev *dev, uint16_t qp_id)
|
||||
{
|
||||
struct scheduler_qp_ctx *qp_ctx = dev->data->queue_pairs[qp_id];
|
||||
struct mc_scheduler_qp_ctx *mc_qp_ctx;
|
||||
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
|
||||
struct mc_scheduler_ctx *mc_ctx = sched_ctx->private_ctx;
|
||||
|
||||
mc_qp_ctx = rte_zmalloc_socket(NULL, sizeof(*mc_qp_ctx), 0,
|
||||
rte_socket_id());
|
||||
if (!mc_qp_ctx) {
|
||||
CS_LOG_ERR("failed allocate memory for private queue pair");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
mc_qp_ctx->mc_private_ctx = mc_ctx;
|
||||
qp_ctx->private_qp_ctx = (void *)mc_qp_ctx;
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
scheduler_create_private_ctx(struct rte_cryptodev *dev)
|
||||
{
|
||||
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
|
||||
struct mc_scheduler_ctx *mc_ctx;
|
||||
|
||||
if (sched_ctx->private_ctx)
|
||||
rte_free(sched_ctx->private_ctx);
|
||||
|
||||
mc_ctx = rte_zmalloc_socket(NULL, sizeof(struct mc_scheduler_ctx), 0,
|
||||
rte_socket_id());
|
||||
if (!mc_ctx) {
|
||||
CS_LOG_ERR("failed allocate memory");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
mc_ctx->num_workers = sched_ctx->nb_wc;
|
||||
for (uint16_t i = 0; i < sched_ctx->nb_wc; i++) {
|
||||
char r_name[16];
|
||||
|
||||
snprintf(r_name, sizeof(r_name), MC_SCHED_ENQ_RING_NAME_PREFIX "%u", i);
|
||||
mc_ctx->sched_enq_ring[i] = rte_ring_create(r_name, PER_SLAVE_BUFF_SIZE,
|
||||
rte_socket_id(), RING_F_SC_DEQ | RING_F_SP_ENQ);
|
||||
if (!mc_ctx->sched_enq_ring[i]) {
|
||||
CS_LOG_ERR("Cannot create ring for worker %u", i);
|
||||
return -1;
|
||||
}
|
||||
snprintf(r_name, sizeof(r_name), MC_SCHED_DEQ_RING_NAME_PREFIX "%u", i);
|
||||
mc_ctx->sched_deq_ring[i] = rte_ring_create(r_name, PER_SLAVE_BUFF_SIZE,
|
||||
rte_socket_id(), RING_F_SC_DEQ | RING_F_SP_ENQ);
|
||||
if (!mc_ctx->sched_deq_ring[i]) {
|
||||
CS_LOG_ERR("Cannot create ring for worker %u", i);
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
sched_ctx->private_ctx = (void *)mc_ctx;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
struct rte_cryptodev_scheduler_ops scheduler_mc_ops = {
|
||||
slave_attach,
|
||||
slave_detach,
|
||||
scheduler_start,
|
||||
scheduler_stop,
|
||||
scheduler_config_qp,
|
||||
scheduler_create_private_ctx,
|
||||
NULL, /* option_set */
|
||||
NULL /* option_get */
|
||||
};
|
||||
|
||||
struct rte_cryptodev_scheduler mc_scheduler = {
|
||||
.name = "multicore-scheduler",
|
||||
.description = "scheduler which will run burst across multiple cpu cores",
|
||||
.mode = CDEV_SCHED_MODE_MULTICORE,
|
||||
.ops = &scheduler_mc_ops
|
||||
};
|
||||
|
||||
struct rte_cryptodev_scheduler *multicore_scheduler = &mc_scheduler;
|
@ -49,6 +49,7 @@ struct scheduler_init_params {
|
||||
uint32_t nb_slaves;
|
||||
enum rte_cryptodev_scheduler_mode mode;
|
||||
uint32_t enable_ordering;
|
||||
uint64_t wcmask;
|
||||
char slave_names[RTE_CRYPTODEV_SCHEDULER_MAX_NB_SLAVES]
|
||||
[RTE_CRYPTODEV_SCHEDULER_NAME_MAX_LEN];
|
||||
};
|
||||
@ -60,6 +61,8 @@ struct scheduler_init_params {
|
||||
#define RTE_CRYPTODEV_VDEV_MAX_NB_QP_ARG ("max_nb_queue_pairs")
|
||||
#define RTE_CRYPTODEV_VDEV_MAX_NB_SESS_ARG ("max_nb_sessions")
|
||||
#define RTE_CRYPTODEV_VDEV_SOCKET_ID ("socket_id")
|
||||
#define RTE_CRYPTODEV_VDEV_COREMASK ("coremask")
|
||||
#define RTE_CRYPTODEV_VDEV_CORELIST ("corelist")
|
||||
|
||||
const char *scheduler_valid_params[] = {
|
||||
RTE_CRYPTODEV_VDEV_NAME,
|
||||
@ -68,7 +71,9 @@ const char *scheduler_valid_params[] = {
|
||||
RTE_CRYPTODEV_VDEV_ORDERING,
|
||||
RTE_CRYPTODEV_VDEV_MAX_NB_QP_ARG,
|
||||
RTE_CRYPTODEV_VDEV_MAX_NB_SESS_ARG,
|
||||
RTE_CRYPTODEV_VDEV_SOCKET_ID
|
||||
RTE_CRYPTODEV_VDEV_SOCKET_ID,
|
||||
RTE_CRYPTODEV_VDEV_COREMASK,
|
||||
RTE_CRYPTODEV_VDEV_CORELIST
|
||||
};
|
||||
|
||||
struct scheduler_parse_map {
|
||||
@ -82,7 +87,9 @@ const struct scheduler_parse_map scheduler_mode_map[] = {
|
||||
{RTE_STR(SCHEDULER_MODE_NAME_PKT_SIZE_DISTR),
|
||||
CDEV_SCHED_MODE_PKT_SIZE_DISTR},
|
||||
{RTE_STR(SCHEDULER_MODE_NAME_FAIL_OVER),
|
||||
CDEV_SCHED_MODE_FAILOVER}
|
||||
CDEV_SCHED_MODE_FAILOVER},
|
||||
{RTE_STR(SCHEDULER_MODE_NAME_MULTI_CORE),
|
||||
CDEV_SCHED_MODE_MULTICORE}
|
||||
};
|
||||
|
||||
const struct scheduler_parse_map scheduler_ordering_map[] = {
|
||||
@ -122,6 +129,21 @@ cryptodev_scheduler_create(const char *name,
|
||||
sched_ctx->max_nb_queue_pairs =
|
||||
init_params->def_p.max_nb_queue_pairs;
|
||||
|
||||
if (init_params->mode == CDEV_SCHED_MODE_MULTICORE) {
|
||||
uint16_t i;
|
||||
|
||||
sched_ctx->nb_wc = 0;
|
||||
|
||||
for (i = 0; i < RTE_CRYPTODEV_SCHEDULER_MAX_NB_WORKER_CORES; i++) {
|
||||
if (init_params->wcmask & (1ULL << i)) {
|
||||
sched_ctx->wc_pool[sched_ctx->nb_wc++] = i;
|
||||
RTE_LOG(INFO, PMD,
|
||||
" Worker core[%u]=%u added\n",
|
||||
sched_ctx->nb_wc-1, i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (init_params->mode > CDEV_SCHED_MODE_USERDEFINED &&
|
||||
init_params->mode < CDEV_SCHED_MODE_COUNT) {
|
||||
ret = rte_cryptodev_scheduler_mode_set(dev->data->dev_id,
|
||||
@ -240,6 +262,43 @@ parse_integer_arg(const char *key __rte_unused,
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Parse integer from hexadecimal integer argument */
|
||||
static int
|
||||
parse_coremask_arg(const char *key __rte_unused,
|
||||
const char *value, void *extra_args)
|
||||
{
|
||||
struct scheduler_init_params *params = extra_args;
|
||||
|
||||
params->wcmask = strtoull(value, NULL, 16);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Parse integer from list of integers argument */
|
||||
static int
|
||||
parse_corelist_arg(const char *key __rte_unused,
|
||||
const char *value, void *extra_args)
|
||||
{
|
||||
struct scheduler_init_params *params = extra_args;
|
||||
|
||||
params->wcmask = 0ULL;
|
||||
|
||||
const char *token = value;
|
||||
|
||||
while (isdigit(token[0])) {
|
||||
char *rval;
|
||||
unsigned int core = strtoul(token, &rval, 10);
|
||||
|
||||
params->wcmask |= 1ULL << core;
|
||||
token = (const char *)rval;
|
||||
if (token[0] == '\0')
|
||||
break;
|
||||
token++;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Parse name */
|
||||
static int
|
||||
parse_name_arg(const char *key __rte_unused,
|
||||
@ -359,6 +418,18 @@ scheduler_parse_init_params(struct scheduler_init_params *params,
|
||||
if (ret < 0)
|
||||
goto free_kvlist;
|
||||
|
||||
ret = rte_kvargs_process(kvlist, RTE_CRYPTODEV_VDEV_COREMASK,
|
||||
&parse_coremask_arg,
|
||||
params);
|
||||
if (ret < 0)
|
||||
goto free_kvlist;
|
||||
|
||||
ret = rte_kvargs_process(kvlist, RTE_CRYPTODEV_VDEV_CORELIST,
|
||||
&parse_corelist_arg,
|
||||
params);
|
||||
if (ret < 0)
|
||||
goto free_kvlist;
|
||||
|
||||
ret = rte_kvargs_process(kvlist, RTE_CRYPTODEV_VDEV_NAME,
|
||||
&parse_name_arg,
|
||||
¶ms->def_p);
|
||||
@ -420,6 +491,9 @@ cryptodev_scheduler_probe(struct rte_vdev_device *vdev)
|
||||
if (init_params.def_p.name[0] != '\0')
|
||||
RTE_LOG(INFO, PMD, " User defined name = %s\n",
|
||||
init_params.def_p.name);
|
||||
if (init_params.wcmask != 0)
|
||||
RTE_LOG(INFO, PMD, " workers core mask = %"PRIx64"\n",
|
||||
init_params.wcmask);
|
||||
|
||||
return cryptodev_scheduler_create(name,
|
||||
vdev,
|
||||
|
@ -89,6 +89,8 @@ struct scheduler_ctx {
|
||||
|
||||
char name[RTE_CRYPTODEV_SCHEDULER_NAME_MAX_LEN];
|
||||
char description[RTE_CRYPTODEV_SCHEDULER_DESC_MAX_LEN];
|
||||
uint16_t wc_pool[RTE_CRYPTODEV_SCHEDULER_MAX_NB_WORKER_CORES];
|
||||
uint16_t nb_wc;
|
||||
|
||||
char *init_slave_names[RTE_CRYPTODEV_SCHEDULER_MAX_NB_SLAVES];
|
||||
int nb_init_slaves;
|
||||
@ -144,7 +146,8 @@ scheduler_order_drain(struct rte_ring *order_ring,
|
||||
|
||||
while (nb_ops_to_deq < nb_objs) {
|
||||
SCHEDULER_GET_RING_OBJ(order_ring, nb_ops_to_deq, op);
|
||||
if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
|
||||
if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED ||
|
||||
op->status == RTE_CRYPTO_OP_STATUS_ENQUEUED)
|
||||
break;
|
||||
nb_ops_to_deq++;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user