raw/dpaa2_qdma: support RBP mode

Add support for route by port mode. The route by port
feature in HW helps in translating the PCI address
of connected device.

Signed-off-by: Minghuan Lian <minghuan.lian@nxp.com>
Signed-off-by: Sachin Saxena <sachin.saxena@nxp.com>
Signed-off-by: Hemant Agrawal <hemant.agrawal@nxp.com>
This commit is contained in:
Hemant Agrawal 2019-04-04 11:50:25 +00:00 committed by Thomas Monjalon
parent 44889767af
commit 4d9a3f2a01
4 changed files with 390 additions and 154 deletions

View File

@ -25,7 +25,7 @@ LDLIBS += -lrte_common_dpaax
EXPORT_MAP := rte_pmd_dpaa2_qdma_version.map
LIBABIVER := 2
LIBABIVER := 3
#
# all source are stored in SRCS-y

View File

@ -19,13 +19,16 @@
#include <portal/dpaa2_hw_pvt.h>
#include <portal/dpaa2_hw_dpio.h>
#include "rte_pmd_dpaa2_qdma.h"
#include "dpaa2_qdma.h"
#include "dpaa2_qdma_logs.h"
#include "rte_pmd_dpaa2_qdma.h"
/* Dynamic log type identifier */
int dpaa2_qdma_logtype;
uint32_t dpaa2_coherent_no_alloc_cache;
uint32_t dpaa2_coherent_alloc_cache;
/* QDMA device */
static struct qdma_device qdma_dev;
@ -345,14 +348,29 @@ rte_qdma_vq_create(uint32_t lcore_id, uint32_t flags)
qdma_vqs[i].in_use = 1;
qdma_vqs[i].lcore_id = lcore_id;
memset(&qdma_vqs[i].rbp, 0, sizeof(struct rte_qdma_rbp));
rte_spinlock_unlock(&qdma_dev.lock);
return i;
}
/*create vq for route-by-port*/
int
rte_qdma_vq_create_rbp(uint32_t lcore_id, uint32_t flags,
struct rte_qdma_rbp *rbp)
{
int i;
i = rte_qdma_vq_create(lcore_id, flags);
memcpy(&qdma_vqs[i].rbp, rbp, sizeof(struct rte_qdma_rbp));
return i;
}
static void
dpaa2_qdma_populate_fle(struct qbman_fle *fle,
struct rte_qdma_rbp *rbp,
uint64_t src, uint64_t dest,
size_t len, uint32_t flags)
{
@ -368,10 +386,36 @@ dpaa2_qdma_populate_fle(struct qbman_fle *fle,
DPAA2_SET_FLE_LEN(fle, (2 * (sizeof(struct qdma_sdd))));
/* source and destination descriptor */
DPAA2_SET_SDD_RD_COHERENT(sdd); /* source descriptor CMD */
sdd++;
DPAA2_SET_SDD_WR_COHERENT(sdd); /* dest descriptor CMD */
if (rbp && rbp->enable) {
/* source */
sdd->read_cmd.portid = rbp->sportid;
sdd->rbpcmd_simple.pfid = rbp->spfid;
sdd->rbpcmd_simple.vfid = rbp->svfid;
if (rbp->srbp) {
sdd->read_cmd.rbp = rbp->srbp;
sdd->read_cmd.rdtype = DPAA2_RBP_MEM_RW;
} else {
sdd->read_cmd.rdtype = dpaa2_coherent_no_alloc_cache;
}
sdd++;
/* destination */
sdd->write_cmd.portid = rbp->dportid;
sdd->rbpcmd_simple.pfid = rbp->dpfid;
sdd->rbpcmd_simple.vfid = rbp->dvfid;
if (rbp->drbp) {
sdd->write_cmd.rbp = rbp->drbp;
sdd->write_cmd.wrttype = DPAA2_RBP_MEM_RW;
} else {
sdd->write_cmd.wrttype = dpaa2_coherent_alloc_cache;
}
} else {
sdd->read_cmd.rdtype = dpaa2_coherent_no_alloc_cache;
sdd++;
sdd->write_cmd.wrttype = dpaa2_coherent_alloc_cache;
}
fle++;
/* source frame list to source buffer */
if (flags & RTE_QDMA_JOB_SRC_PHY) {
@ -396,31 +440,57 @@ dpaa2_qdma_populate_fle(struct qbman_fle *fle,
DPAA2_SET_FLE_FIN(fle);
}
int
rte_qdma_vq_enqueue_multi(uint16_t vq_id,
struct rte_qdma_job **job,
uint16_t nb_jobs)
static inline uint16_t dpdmai_dev_set_fd(struct qbman_fd *fd,
struct rte_qdma_job *job,
struct rte_qdma_rbp *rbp,
uint16_t vq_id)
{
struct qdma_virt_queue *qdma_vq = &qdma_vqs[vq_id];
struct qdma_hw_queue *qdma_pq = qdma_vq->hw_queue;
struct dpaa2_dpdmai_dev *dpdmai_dev = qdma_pq->dpdmai_dev;
struct qdma_io_meta *io_meta;
struct qbman_fd fd_arr[MAX_TX_RING_SLOTS];
struct dpaa2_queue *txq;
struct qbman_fle *fle;
int ret = 0;
/*
* Get an FLE/SDD from FLE pool.
* Note: IO metadata is before the FLE and SDD memory.
*/
ret = rte_mempool_get(qdma_dev.fle_pool, (void **)(&io_meta));
if (ret) {
DPAA2_QDMA_DP_DEBUG("Memory alloc failed for FLE");
return ret;
}
/* Set the metadata */
io_meta->cnxt = (size_t)job;
io_meta->id = vq_id;
fle = (struct qbman_fle *)(io_meta + 1);
DPAA2_SET_FD_ADDR(fd, DPAA2_VADDR_TO_IOVA(fle));
DPAA2_SET_FD_COMPOUND_FMT(fd);
DPAA2_SET_FD_FRC(fd, QDMA_SER_CTX);
/* Populate FLE */
memset(fle, 0, QDMA_FLE_POOL_SIZE);
dpaa2_qdma_populate_fle(fle, rbp, job->src, job->dest,
job->len, job->flags);
return 0;
}
static int
dpdmai_dev_enqueue_multi(struct dpaa2_dpdmai_dev *dpdmai_dev,
uint16_t txq_id,
uint16_t vq_id,
struct rte_qdma_rbp *rbp,
struct rte_qdma_job **job,
uint16_t nb_jobs)
{
struct qbman_fd fd[RTE_QDMA_BURST_NB_MAX];
struct dpaa2_queue *txq;
struct qbman_eq_desc eqdesc;
struct qbman_swp *swp;
int ret;
uint32_t num_to_send = 0;
uint16_t num_tx = 0;
uint16_t num_txed = 0;
/* Return error in case of wrong lcore_id */
if (rte_lcore_id() != qdma_vq->lcore_id) {
DPAA2_QDMA_ERR("QDMA enqueue for vqid %d on wrong core",
vq_id);
return -1;
}
if (unlikely(!DPAA2_PER_LCORE_DPIO)) {
ret = dpaa2_affine_qbman_swp();
@ -431,7 +501,7 @@ rte_qdma_vq_enqueue_multi(uint16_t vq_id,
}
swp = DPAA2_PER_LCORE_PORTAL;
txq = &(dpdmai_dev->tx_queue[qdma_pq->queue_id]);
txq = &(dpdmai_dev->tx_queue[txq_id]);
/* Prepare enqueue descriptor */
qbman_eq_desc_clear(&eqdesc);
@ -439,6 +509,8 @@ rte_qdma_vq_enqueue_multi(uint16_t vq_id,
qbman_eq_desc_set_no_orp(&eqdesc, 0);
qbman_eq_desc_set_response(&eqdesc, 0, 0);
memset(fd, 0, RTE_QDMA_BURST_NB_MAX * sizeof(struct qbman_fd));
while (nb_jobs > 0) {
uint32_t loop;
@ -446,73 +518,100 @@ rte_qdma_vq_enqueue_multi(uint16_t vq_id,
dpaa2_eqcr_size : nb_jobs;
for (loop = 0; loop < num_to_send; loop++) {
/*
* Get an FLE/SDD from FLE pool.
* Note: IO metadata is before the FLE and SDD memory.
*/
ret = rte_mempool_get(qdma_dev.fle_pool,
(void **)(&io_meta));
if (ret) {
DPAA2_QDMA_DP_WARN("Me alloc failed for FLE");
return ret;
ret = dpdmai_dev_set_fd(&fd[loop],
job[num_tx], rbp, vq_id);
if (ret < 0) {
/* Set nb_jobs to loop, so outer while loop
* breaks out.
*/
nb_jobs = loop;
break;
}
/* Set the metadata */
io_meta->cnxt = (size_t)job[num_tx];
io_meta->id = vq_id;
fle = (struct qbman_fle *)(io_meta + 1);
/* populate Frame descriptor */
memset(&fd_arr[loop], 0, sizeof(struct qbman_fd));
DPAA2_SET_FD_ADDR(&fd_arr[loop],
DPAA2_VADDR_TO_IOVA(fle));
DPAA2_SET_FD_COMPOUND_FMT(&fd_arr[loop]);
DPAA2_SET_FD_FRC(&fd_arr[loop], QDMA_SER_CTX);
/* Populate FLE */
memset(fle, 0, QDMA_FLE_POOL_SIZE);
dpaa2_qdma_populate_fle(fle, job[num_tx]->src,
job[num_tx]->dest,
job[num_tx]->len,
job[num_tx]->flags);
num_tx++;
}
/* Enqueue the packet to the QBMAN */
uint32_t enqueue_loop = 0;
while (enqueue_loop < num_to_send) {
while (enqueue_loop < loop) {
enqueue_loop += qbman_swp_enqueue_multiple(swp,
&eqdesc,
&fd_arr[enqueue_loop],
&fd[enqueue_loop],
NULL,
num_to_send - enqueue_loop);
loop - enqueue_loop);
}
num_txed += num_to_send;
nb_jobs -= num_to_send;
nb_jobs -= loop;
}
qdma_vq->num_enqueues += num_txed;
return num_txed;
return num_tx;
}
int
rte_qdma_vq_enqueue_multi(uint16_t vq_id,
struct rte_qdma_job **job,
uint16_t nb_jobs)
{
struct qdma_virt_queue *qdma_vq = &qdma_vqs[vq_id];
struct qdma_hw_queue *qdma_pq = qdma_vq->hw_queue;
struct dpaa2_dpdmai_dev *dpdmai_dev = qdma_pq->dpdmai_dev;
int ret;
DPAA2_QDMA_FUNC_TRACE();
/* Return error in case of wrong lcore_id */
if (rte_lcore_id() != qdma_vq->lcore_id) {
DPAA2_QDMA_ERR("QDMA enqueue for vqid %d on wrong core",
vq_id);
return -EINVAL;
}
ret = dpdmai_dev_enqueue_multi(dpdmai_dev,
qdma_pq->queue_id,
vq_id,
&qdma_vq->rbp,
job,
nb_jobs);
if (ret < 0) {
DPAA2_QDMA_ERR("DPDMAI device enqueue failed: %d", ret);
return ret;
}
qdma_vq->num_enqueues += ret;
return ret;
}
int
rte_qdma_vq_enqueue(uint16_t vq_id,
struct rte_qdma_job *job)
{
int ret;
ret = rte_qdma_vq_enqueue_multi(vq_id, &job, 1);
if (ret < 0) {
DPAA2_QDMA_ERR("DPDMAI device enqueue failed: %d", ret);
return ret;
}
return 1;
return rte_qdma_vq_enqueue_multi(vq_id, &job, 1);
}
static inline uint16_t dpdmai_dev_get_job(const struct qbman_fd *fd,
struct rte_qdma_job **job)
{
struct qbman_fle *fle;
struct qdma_io_meta *io_meta;
uint16_t vqid;
/*
* Fetch metadata from FLE. job and vq_id were set
* in metadata in the enqueue operation.
*/
fle = (struct qbman_fle *)DPAA2_IOVA_TO_VADDR(DPAA2_GET_FD_ADDR(fd));
io_meta = (struct qdma_io_meta *)(fle) - 1;
*job = (struct rte_qdma_job *)(size_t)io_meta->cnxt;
(*job)->status = (DPAA2_GET_FD_ERR(fd) << 8) |
(DPAA2_GET_FD_FRC(fd) & 0xFF);
vqid = io_meta->id;
/* Free FLE to the pool */
rte_mempool_put(qdma_dev.fle_pool, io_meta);
return vqid;
}
/* Function to receive a QDMA job for a given device and queue*/
static int
dpdmai_dev_dequeue_multijob(struct dpaa2_dpdmai_dev *dpdmai_dev,
uint16_t rxq_id,
@ -520,16 +619,18 @@ dpdmai_dev_dequeue_multijob(struct dpaa2_dpdmai_dev *dpdmai_dev,
struct rte_qdma_job **job,
uint16_t nb_jobs)
{
struct qdma_io_meta *io_meta;
struct dpaa2_queue *rxq;
struct qbman_result *dq_storage;
struct qbman_pull_desc pulldesc;
const struct qbman_fd *fd;
struct qbman_swp *swp;
struct qbman_fle *fle;
uint32_t fqid;
uint8_t status;
int ret;
uint8_t status, pending;
uint8_t num_rx = 0;
const struct qbman_fd *fd;
uint16_t vqid;
int ret, next_pull = nb_jobs, num_pulled = 0;
DPAA2_QDMA_FUNC_TRACE();
if (unlikely(!DPAA2_PER_LCORE_DPIO)) {
ret = dpaa2_affine_qbman_swp();
@ -539,77 +640,75 @@ dpdmai_dev_dequeue_multijob(struct dpaa2_dpdmai_dev *dpdmai_dev,
}
}
swp = DPAA2_PER_LCORE_PORTAL;
rxq = &(dpdmai_dev->rx_queue[rxq_id]);
dq_storage = rxq->q_storage->dq_storage[0];
fqid = rxq->fqid;
/* Prepare dequeue descriptor */
qbman_pull_desc_clear(&pulldesc);
qbman_pull_desc_set_fq(&pulldesc, fqid);
qbman_pull_desc_set_storage(&pulldesc, dq_storage,
(uint64_t)(DPAA2_VADDR_TO_IOVA(dq_storage)), 1);
if (nb_jobs > dpaa2_dqrr_size)
qbman_pull_desc_set_numframes(&pulldesc, dpaa2_dqrr_size);
else
qbman_pull_desc_set_numframes(&pulldesc, nb_jobs);
while (1) {
if (qbman_swp_pull(swp, &pulldesc)) {
DPAA2_QDMA_DP_WARN("VDQ command not issued. QBMAN busy");
continue;
}
break;
}
rte_prefetch0((void *)((size_t)(dq_storage + 1)));
/* Check if the previous issued command is completed. */
while (!qbman_check_command_complete(dq_storage))
;
int num_pulled = 0;
int pending = 1;
do {
/* Loop until the dq_storage is updated with
* new token by QBMAN
*/
while (!qbman_check_new_result(dq_storage))
dq_storage = rxq->q_storage->dq_storage[0];
/* Prepare dequeue descriptor */
qbman_pull_desc_clear(&pulldesc);
qbman_pull_desc_set_fq(&pulldesc, fqid);
qbman_pull_desc_set_storage(&pulldesc, dq_storage,
(uint64_t)(DPAA2_VADDR_TO_IOVA(dq_storage)), 1);
if (next_pull > dpaa2_dqrr_size) {
qbman_pull_desc_set_numframes(&pulldesc,
dpaa2_dqrr_size);
next_pull -= dpaa2_dqrr_size;
} else {
qbman_pull_desc_set_numframes(&pulldesc, next_pull);
next_pull = 0;
}
while (1) {
if (qbman_swp_pull(swp, &pulldesc)) {
DPAA2_QDMA_DP_WARN("VDQ command not issued. QBMAN busy");
/* Portal was busy, try again */
continue;
}
break;
}
rte_prefetch0((void *)((size_t)(dq_storage + 1)));
/* Check if the previous issued command is completed. */
while (!qbman_check_command_complete(dq_storage))
;
rte_prefetch0((void *)((size_t)(dq_storage + 2)));
/* Check whether Last Pull command is Expired and
* setting Condition for Loop termination
*/
if (qbman_result_DQ_is_pull_complete(dq_storage)) {
pending = 0;
/* Check for valid frame. */
status = qbman_result_DQ_flags(dq_storage);
if (unlikely((status &
QBMAN_DQ_STAT_VALIDFRAME) == 0))
continue;
}
fd = qbman_result_DQ_fd(dq_storage);
num_pulled = 0;
pending = 1;
/*
* Fetch metadata from FLE. job and vq_id were set
* in metadata in the enqueue operation.
*/
fle = (struct qbman_fle *)
DPAA2_IOVA_TO_VADDR(DPAA2_GET_FD_ADDR(fd));
io_meta = (struct qdma_io_meta *)(fle) - 1;
if (vq_id)
vq_id[num_pulled] = io_meta->id;
do {
/* Loop until dq_storage is updated
* with new token by QBMAN
*/
while (!qbman_check_new_result(dq_storage))
;
rte_prefetch0((void *)((size_t)(dq_storage + 2)));
job[num_pulled] = (struct rte_qdma_job *)(size_t)io_meta->cnxt;
job[num_pulled]->status = DPAA2_GET_FD_ERR(fd);
if (qbman_result_DQ_is_pull_complete(dq_storage)) {
pending = 0;
/* Check for valid frame. */
status = qbman_result_DQ_flags(dq_storage);
if (unlikely((status &
QBMAN_DQ_STAT_VALIDFRAME) == 0))
continue;
}
fd = qbman_result_DQ_fd(dq_storage);
/* Free FLE to the pool */
rte_mempool_put(qdma_dev.fle_pool, io_meta);
vqid = dpdmai_dev_get_job(fd, &job[num_rx]);
if (vq_id)
vq_id[num_rx] = vqid;
dq_storage++;
num_pulled++;
} while (pending && (num_pulled <= dpaa2_dqrr_size));
dq_storage++;
num_rx++;
num_pulled++;
return num_pulled;
} while (pending);
/* Last VDQ provided all packets and more packets are requested */
} while (next_pull && num_pulled == dpaa2_dqrr_size);
return num_rx;
}
int
@ -664,9 +763,9 @@ rte_qdma_vq_dequeue_multi(uint16_t vq_id,
temp_qdma_vq = &qdma_vqs[temp_vq_id[i]];
rte_ring_enqueue(temp_qdma_vq->status_ring,
(void *)(job[i]));
ring_count = rte_ring_count(
qdma_vq->status_ring);
}
ring_count = rte_ring_count(
qdma_vq->status_ring);
}
if (ring_count) {
@ -743,6 +842,35 @@ rte_qdma_vq_destroy(uint16_t vq_id)
return 0;
}
int
rte_qdma_vq_destroy_rbp(uint16_t vq_id)
{
struct qdma_virt_queue *qdma_vq = &qdma_vqs[vq_id];
DPAA2_QDMA_FUNC_TRACE();
/* In case there are pending jobs on any VQ, return -EBUSY */
if (qdma_vq->num_enqueues != qdma_vq->num_dequeues)
return -EBUSY;
rte_spinlock_lock(&qdma_dev.lock);
if (qdma_vq->exclusive_hw_queue) {
free_hw_queue(qdma_vq->hw_queue);
} else {
if (qdma_vqs->status_ring)
rte_ring_free(qdma_vqs->status_ring);
put_hw_queue(qdma_vq->hw_queue);
}
memset(qdma_vq, 0, sizeof(struct qdma_virt_queue));
rte_spinlock_lock(&qdma_dev.lock);
return 0;
}
void
rte_qdma_stop(void)
{
@ -939,6 +1067,21 @@ dpaa2_dpdmai_dev_init(struct rte_rawdev *rawdev, int dpdmai_id)
DPAA2_QDMA_ERR("Adding H/W queue to list failed");
goto init_err;
}
if (!dpaa2_coherent_no_alloc_cache) {
if (dpaa2_svr_family == SVR_LX2160A) {
dpaa2_coherent_no_alloc_cache =
DPAA2_LX2_COHERENT_NO_ALLOCATE_CACHE;
dpaa2_coherent_alloc_cache =
DPAA2_LX2_COHERENT_ALLOCATE_CACHE;
} else {
dpaa2_coherent_no_alloc_cache =
DPAA2_COHERENT_NO_ALLOCATE_CACHE;
dpaa2_coherent_alloc_cache =
DPAA2_COHERENT_ALLOCATE_CACHE;
}
}
DPAA2_QDMA_DEBUG("Initialized dpdmai object successfully");
return 0;

View File

@ -22,28 +22,24 @@ struct qdma_io_meta;
/** Notification by FQD_CTX[fqid] */
#define QDMA_SER_CTX (1 << 8)
#define DPAA2_RBP_MEM_RW 0x0
/**
* Source descriptor command read transaction type for RBP=0:
* coherent copy of cacheable memory
*/
#define DPAA2_SET_SDD_RD_COHERENT(sdd) ((sdd)->cmd = (0xb << 28))
#define DPAA2_COHERENT_NO_ALLOCATE_CACHE 0xb
#define DPAA2_LX2_COHERENT_NO_ALLOCATE_CACHE 0x7
/**
* Destination descriptor command write transaction type for RBP=0:
* coherent copy of cacheable memory
*/
#define DPAA2_SET_SDD_WR_COHERENT(sdd) ((sdd)->cmd = (0x6 << 28))
#define DPAA2_COHERENT_ALLOCATE_CACHE 0x6
#define DPAA2_LX2_COHERENT_ALLOCATE_CACHE 0xb
/** Maximum possible H/W Queues on each core */
#define MAX_HW_QUEUE_PER_CORE 64
/**
* In case of Virtual Queue mode, this specifies the number of
* dequeue the 'qdma_vq_dequeue/multi' API does from the H/W Queue
* in case there is no job present on the Virtual Queue ring.
*/
#define QDMA_DEQUEUE_BUDGET 64
#define QDMA_RBP_UPPER_ADDRESS_MASK (0xfff0000000000)
/**
* Represents a QDMA device.
* A single QDMA device exists which is combination of multiple DPDMAI rawdev's.
@ -90,6 +86,8 @@ struct qdma_virt_queue {
struct rte_ring *status_ring;
/** Associated hw queue */
struct qdma_hw_queue *hw_queue;
/** Route by port */
struct rte_qdma_rbp rbp;
/** Associated lcore id */
uint32_t lcore_id;
/** States if this vq is in use or not */
@ -118,7 +116,7 @@ struct qdma_io_meta {
*/
uint64_t cnxt;
/** VQ ID is stored as a part of metadata of the enqueue command */
uint64_t id;
uint64_t id;
};
/** Source/Destination Descriptor */
@ -127,9 +125,48 @@ struct qdma_sdd {
/** Stride configuration */
uint32_t stride;
/** Route-by-port command */
uint32_t rbpcmd;
uint32_t cmd;
} __attribute__((__packed__));
union {
uint32_t rbpcmd;
struct rbpcmd_st {
uint32_t vfid:6;
uint32_t rsv4:2;
uint32_t pfid:1;
uint32_t rsv3:7;
uint32_t attr:3;
uint32_t rsv2:1;
uint32_t at:2;
uint32_t vfa:1;
uint32_t ca:1;
uint32_t tc:3;
uint32_t rsv1:5;
} rbpcmd_simple;
};
union {
uint32_t cmd;
struct rcmd_simple {
uint32_t portid:4;
uint32_t rsv1:14;
uint32_t rbp:1;
uint32_t ssen:1;
uint32_t rthrotl:4;
uint32_t sqos:3;
uint32_t ns:1;
uint32_t rdtype:4;
} read_cmd;
struct wcmd_simple {
uint32_t portid:4;
uint32_t rsv3:10;
uint32_t rsv2:2;
uint32_t lwc:2;
uint32_t rbp:1;
uint32_t dsen:1;
uint32_t rsv1:4;
uint32_t dqos:3;
uint32_t ns:1;
uint32_t wrttype:4;
} write_cmd;
};
} __attribute__ ((__packed__));
/** Represents a DPDMAI raw device */
struct dpaa2_dpdmai_dev {

View File

@ -13,7 +13,7 @@
*/
/** Maximum qdma burst size */
#define RTE_QDMA_BURST_NB_MAX 32
#define RTE_QDMA_BURST_NB_MAX 256
/** Determines the mode of operation */
enum {
@ -73,6 +73,40 @@ struct rte_qdma_config {
int fle_pool_count;
};
struct rte_qdma_rbp {
uint32_t use_ultrashort:1;
uint32_t enable:1;
/**
* dportid:
* 0000 PCI-Express 1
* 0001 PCI-Express 2
* 0010 PCI-Express 3
* 0011 PCI-Express 4
* 0100 PCI-Express 5
* 0101 PCI-Express 6
*/
uint32_t dportid:4;
uint32_t dpfid:2;
uint32_t dvfid:6;
/*using route by port for destination */
uint32_t drbp:1;
/**
* sportid:
* 0000 PCI-Express 1
* 0001 PCI-Express 2
* 0010 PCI-Express 3
* 0011 PCI-Express 4
* 0100 PCI-Express 5
* 0101 PCI-Express 6
*/
uint32_t sportid:4;
uint32_t spfid:2;
uint32_t svfid:6;
/* using route by port for source */
uint32_t srbp:1;
uint32_t rsv:4;
};
/** Provides QDMA device statistics */
struct rte_qdma_vq_stats {
/** States if this vq has exclusively associated hw queue */
@ -105,8 +139,10 @@ struct rte_qdma_job {
/**
* Status of the transaction.
* This is filled in the dequeue operation by the driver.
* upper 8bits acc_err for route by port.
* lower 8bits fd error
*/
uint8_t status;
uint16_t status;
};
/**
@ -177,6 +213,11 @@ rte_qdma_start(void);
int
rte_qdma_vq_create(uint32_t lcore_id, uint32_t flags);
/*create vq for route-by-port*/
int
rte_qdma_vq_create_rbp(uint32_t lcore_id, uint32_t flags,
struct rte_qdma_rbp *rbp);
/**
* Enqueue multiple jobs to a Virtual Queue.
* If the enqueue is successful, the H/W will perform DMA operations
@ -275,6 +316,21 @@ rte_qdma_vq_stats(uint16_t vq_id,
int
rte_qdma_vq_destroy(uint16_t vq_id);
/**
* Destroy the RBP specific Virtual Queue specified by vq_id.
* This API can be called from any thread/core. User can create/destroy
* VQ's at runtime.
*
* @param vq_id
* RBP based Virtual Queue ID which needs to be deinialized.
*
* @returns
* - 0: Success.
* - <0: Error code.
*/
int __rte_experimental
rte_qdma_vq_destroy_rbp(uint16_t vq_id);
/**
* Stop QDMA device.
*/