net/mlx4: mitigate Tx send entry size calculations
The previuse code took a send queue entry size for stamping from the send queue entry pointed by completion queue entry; This 2 reads were done per packet in completion stage. The completion burst packets number is managed by fixed size stored in Tx queue, so we can infer that each valid completion entry actually frees the next fixed number packets. The descriptors ring holds the send queue entry, so we just can infer all the completion burst packet entries size by simple calculation and prevent calculations per packet. Adjust completion functions to free full completion bursts packets by one time and prevent per packet work queue entry reads and calculations. Save only start of completion burst or Tx burst send queue entry pointers in the appropriate descriptor element. Signed-off-by: Matan Azrad <matan@mellanox.com> Acked-by: Adrien Mazarguil <adrien.mazarguil@6wind.com>
This commit is contained in:
parent
78e81a9844
commit
533871524a
@ -258,56 +258,48 @@ uint32_t mlx4_ptype_table[0x100] __rte_cache_aligned = {
|
||||
};
|
||||
|
||||
/**
|
||||
* Stamp a WQE so it won't be reused by the HW.
|
||||
* Stamp TXBB burst so it won't be reused by the HW.
|
||||
*
|
||||
* Routine is used when freeing WQE used by the chip or when failing
|
||||
* building an WQ entry has failed leaving partial information on the queue.
|
||||
*
|
||||
* @param sq
|
||||
* Pointer to the SQ structure.
|
||||
* @param[in, out] wqe
|
||||
* Pointer of WQE address to stamp. This value is modified on return to
|
||||
* store the address of the next WQE.
|
||||
* @param start
|
||||
* Pointer to the first TXBB to stamp.
|
||||
* @param end
|
||||
* Pointer to the followed end TXBB to stamp.
|
||||
*
|
||||
* @return
|
||||
* WQE size.
|
||||
* Stamping burst size in byte units.
|
||||
*/
|
||||
static uint32_t
|
||||
mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, volatile uint32_t **wqe)
|
||||
mlx4_txq_stamp_freed_wqe(struct mlx4_sq *sq, volatile uint32_t *start,
|
||||
volatile uint32_t *end)
|
||||
{
|
||||
uint32_t stamp = sq->stamp;
|
||||
volatile uint32_t *next_txbb = *wqe;
|
||||
/* Extract the size from the control segment of the WQE. */
|
||||
uint32_t size = RTE_ALIGN((uint32_t)
|
||||
((((volatile struct mlx4_wqe_ctrl_seg *)
|
||||
next_txbb)->fence_size & 0x3f) << 4),
|
||||
MLX4_TXBB_SIZE);
|
||||
uint32_t size_cd = size;
|
||||
int32_t size = (intptr_t)end - (intptr_t)start;
|
||||
|
||||
/* Optimize the common case when there is no wrap-around. */
|
||||
if ((uintptr_t)next_txbb + size < (uintptr_t)sq->eob) {
|
||||
/* Stamp the freed descriptor. */
|
||||
assert(start != end);
|
||||
/* Hold SQ ring wrap around. */
|
||||
if (size < 0) {
|
||||
size = (int32_t)sq->size + size;
|
||||
do {
|
||||
*next_txbb = stamp;
|
||||
next_txbb += MLX4_SQ_STAMP_DWORDS;
|
||||
size_cd -= MLX4_TXBB_SIZE;
|
||||
} while (size_cd);
|
||||
} else {
|
||||
/* Stamp the freed descriptor. */
|
||||
do {
|
||||
*next_txbb = stamp;
|
||||
next_txbb += MLX4_SQ_STAMP_DWORDS;
|
||||
if ((volatile uint8_t *)next_txbb >= sq->eob) {
|
||||
next_txbb = (volatile uint32_t *)sq->buf;
|
||||
/* Flip invalid stamping ownership. */
|
||||
stamp ^= RTE_BE32(0x1 << MLX4_SQ_OWNER_BIT);
|
||||
sq->stamp = stamp;
|
||||
}
|
||||
size_cd -= MLX4_TXBB_SIZE;
|
||||
} while (size_cd);
|
||||
*start = stamp;
|
||||
start += MLX4_SQ_STAMP_DWORDS;
|
||||
} while (start != (volatile uint32_t *)sq->eob);
|
||||
start = (volatile uint32_t *)sq->buf;
|
||||
/* Flip invalid stamping ownership. */
|
||||
stamp ^= RTE_BE32(0x1 << MLX4_SQ_OWNER_BIT);
|
||||
sq->stamp = stamp;
|
||||
if (start == end)
|
||||
return size;
|
||||
}
|
||||
*wqe = next_txbb;
|
||||
return size;
|
||||
do {
|
||||
*start = stamp;
|
||||
start += MLX4_SQ_STAMP_DWORDS;
|
||||
} while (start != end);
|
||||
return (uint32_t)size;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -328,14 +320,10 @@ mlx4_txq_complete(struct txq *txq, const unsigned int elts_n,
|
||||
unsigned int elts_tail = txq->elts_tail;
|
||||
struct mlx4_cq *cq = &txq->mcq;
|
||||
volatile struct mlx4_cqe *cqe;
|
||||
uint32_t completed;
|
||||
uint32_t cons_index = cq->cons_index;
|
||||
volatile uint32_t *first_wqe;
|
||||
volatile uint32_t *next_wqe = (volatile uint32_t *)
|
||||
((&(*txq->elts)[elts_tail])->wqe);
|
||||
volatile uint32_t *last_wqe;
|
||||
uint16_t mask = (((uintptr_t)sq->eob - (uintptr_t)sq->buf) >>
|
||||
MLX4_TXBB_SHIFT) - 1;
|
||||
uint32_t pkts = 0;
|
||||
volatile uint32_t *first_txbb;
|
||||
|
||||
/*
|
||||
* Traverse over all CQ entries reported and handle each WQ entry
|
||||
* reported by them.
|
||||
@ -361,28 +349,23 @@ mlx4_txq_complete(struct txq *txq, const unsigned int elts_n,
|
||||
break;
|
||||
}
|
||||
#endif /* NDEBUG */
|
||||
/* Get WQE address buy index from the CQE. */
|
||||
last_wqe = (volatile uint32_t *)((uintptr_t)sq->buf +
|
||||
((rte_be_to_cpu_16(cqe->wqe_index) & mask) <<
|
||||
MLX4_TXBB_SHIFT));
|
||||
do {
|
||||
/* Free next descriptor. */
|
||||
first_wqe = next_wqe;
|
||||
sq->remain_size +=
|
||||
mlx4_txq_stamp_freed_wqe(sq, &next_wqe);
|
||||
pkts++;
|
||||
} while (first_wqe != last_wqe);
|
||||
cons_index++;
|
||||
} while (1);
|
||||
if (unlikely(pkts == 0))
|
||||
completed = (cons_index - cq->cons_index) * txq->elts_comp_cd_init;
|
||||
if (unlikely(!completed))
|
||||
return;
|
||||
/* First stamping address is the end of the last one. */
|
||||
first_txbb = (&(*txq->elts)[elts_tail])->eocb;
|
||||
elts_tail += completed;
|
||||
if (elts_tail >= elts_n)
|
||||
elts_tail -= elts_n;
|
||||
/* The new tail element holds the end address. */
|
||||
sq->remain_size += mlx4_txq_stamp_freed_wqe(sq, first_txbb,
|
||||
(&(*txq->elts)[elts_tail])->eocb);
|
||||
/* Update CQ consumer index. */
|
||||
cq->cons_index = cons_index;
|
||||
*cq->set_ci_db = rte_cpu_to_be_32(cons_index & MLX4_CQ_DB_CI_MASK);
|
||||
txq->elts_comp -= pkts;
|
||||
elts_tail += pkts;
|
||||
if (elts_tail >= elts_n)
|
||||
elts_tail -= elts_n;
|
||||
txq->elts_comp -= completed;
|
||||
txq->elts_tail = elts_tail;
|
||||
}
|
||||
|
||||
@ -617,7 +600,7 @@ mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
|
||||
if (max > pkts_n)
|
||||
max = pkts_n;
|
||||
elt = &(*txq->elts)[elts_head];
|
||||
/* Each element saves its appropriate work queue. */
|
||||
/* First Tx burst element saves the next WQE control segment. */
|
||||
ctrl = elt->wqe;
|
||||
for (i = 0; (i != max); ++i) {
|
||||
struct rte_mbuf *buf = pkts[i];
|
||||
@ -692,6 +675,8 @@ mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
|
||||
* that no ICRC should be calculated.
|
||||
*/
|
||||
if (--txq->elts_comp_cd == 0) {
|
||||
/* Save the completion burst end address. */
|
||||
elt_next->eocb = (volatile uint32_t *)ctrl_next;
|
||||
txq->elts_comp_cd = txq->elts_comp_cd_init;
|
||||
srcrb.flags = RTE_BE32(MLX4_WQE_CTRL_SOLICIT |
|
||||
MLX4_WQE_CTRL_CQ_UPDATE);
|
||||
@ -741,13 +726,14 @@ mlx4_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts, uint16_t pkts_n)
|
||||
elt->buf = buf;
|
||||
bytes_sent += buf->pkt_len;
|
||||
elts_head = elts_head_next;
|
||||
elt_next->wqe = ctrl_next;
|
||||
ctrl = ctrl_next;
|
||||
elt = elt_next;
|
||||
}
|
||||
/* Take a shortcut if nothing must be sent. */
|
||||
if (unlikely(i == 0))
|
||||
return 0;
|
||||
/* Save WQE address of the next Tx burst element. */
|
||||
elt->wqe = ctrl;
|
||||
/* Increment send statistics counters. */
|
||||
txq->stats.opackets += i;
|
||||
txq->stats.obytes += bytes_sent;
|
||||
|
@ -105,7 +105,10 @@ struct mlx4_rss {
|
||||
/** Tx element. */
|
||||
struct txq_elt {
|
||||
struct rte_mbuf *buf; /**< Buffer. */
|
||||
volatile struct mlx4_wqe_ctrl_seg *wqe; /**< SQ WQE. */
|
||||
union {
|
||||
volatile struct mlx4_wqe_ctrl_seg *wqe; /**< SQ WQE. */
|
||||
volatile uint32_t *eocb; /**< End of completion burst. */
|
||||
};
|
||||
};
|
||||
|
||||
/** Rx queue counters. */
|
||||
|
Loading…
x
Reference in New Issue
Block a user