net/iavf: support flexible Rx descriptor in AVX path
Support flexible Rx descriptor format in AVX path of iAVF PMD. Signed-off-by: Leyi Rong <leyi.rong@intel.com> Reviewed-by: Qi Zhang <qi.z.zhang@intel.com>
This commit is contained in:
parent
b8b4c54ef9
commit
5b6e885908
@ -2087,16 +2087,28 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
|
||||
"Using %sVector Scattered Rx (port %d).",
|
||||
use_avx2 ? "avx2 " : "",
|
||||
dev->data->port_id);
|
||||
dev->rx_pkt_burst = use_avx2 ?
|
||||
iavf_recv_scattered_pkts_vec_avx2 :
|
||||
iavf_recv_scattered_pkts_vec;
|
||||
if (vf->vf_res->vf_cap_flags &
|
||||
VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
|
||||
dev->rx_pkt_burst = use_avx2 ?
|
||||
iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
|
||||
iavf_recv_scattered_pkts_vec;
|
||||
else
|
||||
dev->rx_pkt_burst = use_avx2 ?
|
||||
iavf_recv_scattered_pkts_vec_avx2 :
|
||||
iavf_recv_scattered_pkts_vec;
|
||||
} else {
|
||||
PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
|
||||
use_avx2 ? "avx2 " : "",
|
||||
dev->data->port_id);
|
||||
dev->rx_pkt_burst = use_avx2 ?
|
||||
iavf_recv_pkts_vec_avx2 :
|
||||
iavf_recv_pkts_vec;
|
||||
if (vf->vf_res->vf_cap_flags &
|
||||
VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
|
||||
dev->rx_pkt_burst = use_avx2 ?
|
||||
iavf_recv_pkts_vec_avx2_flex_rxd :
|
||||
iavf_recv_pkts_vec;
|
||||
else
|
||||
dev->rx_pkt_burst = use_avx2 ?
|
||||
iavf_recv_pkts_vec_avx2 :
|
||||
iavf_recv_pkts_vec;
|
||||
}
|
||||
|
||||
return;
|
||||
|
@ -414,9 +414,15 @@ uint16_t iavf_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
|
||||
uint16_t nb_pkts);
|
||||
uint16_t iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts);
|
||||
uint16_t iavf_recv_pkts_vec_avx2_flex_rxd(void *rx_queue,
|
||||
struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts);
|
||||
uint16_t iavf_recv_scattered_pkts_vec_avx2(void *rx_queue,
|
||||
struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts);
|
||||
uint16_t iavf_recv_scattered_pkts_vec_avx2_flex_rxd(void *rx_queue,
|
||||
struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts);
|
||||
uint16_t iavf_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
|
||||
uint16_t nb_pkts);
|
||||
uint16_t iavf_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
|
||||
|
@ -614,6 +614,464 @@ _iavf_recv_raw_pkts_vec_avx2(struct iavf_rx_queue *rxq,
|
||||
return received;
|
||||
}
|
||||
|
||||
static inline uint16_t
|
||||
_iavf_recv_raw_pkts_vec_avx2_flex_rxd(struct iavf_rx_queue *rxq,
|
||||
struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts, uint8_t *split_packet)
|
||||
{
|
||||
#define IAVF_DESCS_PER_LOOP_AVX 8
|
||||
|
||||
const uint32_t *type_table = rxq->vsi->adapter->ptype_tbl;
|
||||
|
||||
const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
|
||||
0, rxq->mbuf_initializer);
|
||||
struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail];
|
||||
volatile union iavf_rx_flex_desc *rxdp =
|
||||
(union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail;
|
||||
|
||||
rte_prefetch0(rxdp);
|
||||
|
||||
/* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */
|
||||
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX);
|
||||
|
||||
/* See if we need to rearm the RX queue - gives the prefetch a bit
|
||||
* of time to act
|
||||
*/
|
||||
if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH)
|
||||
iavf_rxq_rearm(rxq);
|
||||
|
||||
/* Before we start moving massive data around, check to see if
|
||||
* there is actually a packet available
|
||||
*/
|
||||
if (!(rxdp->wb.status_error0 &
|
||||
rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S)))
|
||||
return 0;
|
||||
|
||||
/* constants used in processing loop */
|
||||
const __m256i crc_adjust =
|
||||
_mm256_set_epi16
|
||||
(/* first descriptor */
|
||||
0, 0, 0, /* ignore non-length fields */
|
||||
-rxq->crc_len, /* sub crc on data_len */
|
||||
0, /* ignore high-16bits of pkt_len */
|
||||
-rxq->crc_len, /* sub crc on pkt_len */
|
||||
0, 0, /* ignore pkt_type field */
|
||||
/* second descriptor */
|
||||
0, 0, 0, /* ignore non-length fields */
|
||||
-rxq->crc_len, /* sub crc on data_len */
|
||||
0, /* ignore high-16bits of pkt_len */
|
||||
-rxq->crc_len, /* sub crc on pkt_len */
|
||||
0, 0 /* ignore pkt_type field */
|
||||
);
|
||||
|
||||
/* 8 packets DD mask, LSB in each 32-bit value */
|
||||
const __m256i dd_check = _mm256_set1_epi32(1);
|
||||
|
||||
/* 8 packets EOP mask, second-LSB in each 32-bit value */
|
||||
const __m256i eop_check = _mm256_slli_epi32(dd_check,
|
||||
IAVF_RX_FLEX_DESC_STATUS0_EOF_S);
|
||||
|
||||
/* mask to shuffle from desc. to mbuf (2 descriptors)*/
|
||||
const __m256i shuf_msk =
|
||||
_mm256_set_epi8
|
||||
(/* first descriptor */
|
||||
15, 14,
|
||||
13, 12, /* octet 12~15, 32 bits rss */
|
||||
11, 10, /* octet 10~11, 16 bits vlan_macip */
|
||||
5, 4, /* octet 4~5, 16 bits data_len */
|
||||
0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */
|
||||
5, 4, /* octet 4~5, 16 bits pkt_len */
|
||||
0xFF, 0xFF, /* pkt_type set as unknown */
|
||||
0xFF, 0xFF, /*pkt_type set as unknown */
|
||||
/* second descriptor */
|
||||
15, 14,
|
||||
13, 12, /* octet 12~15, 32 bits rss */
|
||||
11, 10, /* octet 10~11, 16 bits vlan_macip */
|
||||
5, 4, /* octet 4~5, 16 bits data_len */
|
||||
0xFF, 0xFF, /* skip hi 16 bits pkt_len, zero out */
|
||||
5, 4, /* octet 4~5, 16 bits pkt_len */
|
||||
0xFF, 0xFF, /* pkt_type set as unknown */
|
||||
0xFF, 0xFF /*pkt_type set as unknown */
|
||||
);
|
||||
/**
|
||||
* compile-time check the above crc and shuffle layout is correct.
|
||||
* NOTE: the first field (lowest address) is given last in set_epi
|
||||
* calls above.
|
||||
*/
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
|
||||
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
|
||||
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
|
||||
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
|
||||
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
|
||||
|
||||
/* Status/Error flag masks */
|
||||
/**
|
||||
* mask everything except Checksum Reports, RSS indication
|
||||
* and VLAN indication.
|
||||
* bit6:4 for IP/L4 checksum errors.
|
||||
* bit12 is for RSS indication.
|
||||
* bit13 is for VLAN indication.
|
||||
*/
|
||||
const __m256i flags_mask =
|
||||
_mm256_set1_epi32((7 << 4) | (1 << 12) | (1 << 13));
|
||||
/**
|
||||
* data to be shuffled by the result of the flags mask shifted by 4
|
||||
* bits. This gives use the l3_l4 flags.
|
||||
*/
|
||||
const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
|
||||
/* shift right 1 bit to make sure it not exceed 255 */
|
||||
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
|
||||
PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
|
||||
PKT_RX_IP_CKSUM_GOOD) >> 1,
|
||||
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
|
||||
PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
|
||||
PKT_RX_IP_CKSUM_GOOD) >> 1,
|
||||
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
|
||||
(PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
|
||||
/* second 128-bits */
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
|
||||
PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
|
||||
PKT_RX_IP_CKSUM_GOOD) >> 1,
|
||||
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
|
||||
PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
|
||||
PKT_RX_IP_CKSUM_GOOD) >> 1,
|
||||
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
|
||||
(PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
|
||||
const __m256i cksum_mask =
|
||||
_mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
|
||||
PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
|
||||
PKT_RX_EIP_CKSUM_BAD);
|
||||
/**
|
||||
* data to be shuffled by result of flag mask, shifted down 12.
|
||||
* If RSS(bit12)/VLAN(bit13) are set,
|
||||
* shuffle moves appropriate flags in place.
|
||||
*/
|
||||
const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
|
||||
0, 0, 0, 0,
|
||||
0, 0, 0, 0,
|
||||
PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
|
||||
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
|
||||
PKT_RX_RSS_HASH, 0,
|
||||
/* end up 128-bits */
|
||||
0, 0, 0, 0,
|
||||
0, 0, 0, 0,
|
||||
0, 0, 0, 0,
|
||||
PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
|
||||
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
|
||||
PKT_RX_RSS_HASH, 0);
|
||||
|
||||
uint16_t i, received;
|
||||
|
||||
for (i = 0, received = 0; i < nb_pkts;
|
||||
i += IAVF_DESCS_PER_LOOP_AVX,
|
||||
rxdp += IAVF_DESCS_PER_LOOP_AVX) {
|
||||
/* step 1, copy over 8 mbuf pointers to rx_pkts array */
|
||||
_mm256_storeu_si256((void *)&rx_pkts[i],
|
||||
_mm256_loadu_si256((void *)&sw_ring[i]));
|
||||
#ifdef RTE_ARCH_X86_64
|
||||
_mm256_storeu_si256
|
||||
((void *)&rx_pkts[i + 4],
|
||||
_mm256_loadu_si256((void *)&sw_ring[i + 4]));
|
||||
#endif
|
||||
|
||||
__m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
|
||||
|
||||
const __m128i raw_desc7 =
|
||||
_mm_load_si128((void *)(rxdp + 7));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc6 =
|
||||
_mm_load_si128((void *)(rxdp + 6));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc5 =
|
||||
_mm_load_si128((void *)(rxdp + 5));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc4 =
|
||||
_mm_load_si128((void *)(rxdp + 4));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc3 =
|
||||
_mm_load_si128((void *)(rxdp + 3));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc2 =
|
||||
_mm_load_si128((void *)(rxdp + 2));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc1 =
|
||||
_mm_load_si128((void *)(rxdp + 1));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc0 =
|
||||
_mm_load_si128((void *)(rxdp + 0));
|
||||
|
||||
raw_desc6_7 =
|
||||
_mm256_inserti128_si256
|
||||
(_mm256_castsi128_si256(raw_desc6),
|
||||
raw_desc7, 1);
|
||||
raw_desc4_5 =
|
||||
_mm256_inserti128_si256
|
||||
(_mm256_castsi128_si256(raw_desc4),
|
||||
raw_desc5, 1);
|
||||
raw_desc2_3 =
|
||||
_mm256_inserti128_si256
|
||||
(_mm256_castsi128_si256(raw_desc2),
|
||||
raw_desc3, 1);
|
||||
raw_desc0_1 =
|
||||
_mm256_inserti128_si256
|
||||
(_mm256_castsi128_si256(raw_desc0),
|
||||
raw_desc1, 1);
|
||||
|
||||
if (split_packet) {
|
||||
int j;
|
||||
|
||||
for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++)
|
||||
rte_mbuf_prefetch_part2(rx_pkts[i + j]);
|
||||
}
|
||||
|
||||
/**
|
||||
* convert descriptors 4-7 into mbufs, re-arrange fields.
|
||||
* Then write into the mbuf.
|
||||
*/
|
||||
__m256i mb6_7 = _mm256_shuffle_epi8(raw_desc6_7, shuf_msk);
|
||||
__m256i mb4_5 = _mm256_shuffle_epi8(raw_desc4_5, shuf_msk);
|
||||
|
||||
mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
|
||||
mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
|
||||
/**
|
||||
* to get packet types, ptype is located in bit16-25
|
||||
* of each 128bits
|
||||
*/
|
||||
const __m256i ptype_mask =
|
||||
_mm256_set1_epi16(IAVF_RX_FLEX_DESC_PTYPE_M);
|
||||
const __m256i ptypes6_7 =
|
||||
_mm256_and_si256(raw_desc6_7, ptype_mask);
|
||||
const __m256i ptypes4_5 =
|
||||
_mm256_and_si256(raw_desc4_5, ptype_mask);
|
||||
const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
|
||||
const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
|
||||
const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
|
||||
const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
|
||||
|
||||
mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype7], 4);
|
||||
mb6_7 = _mm256_insert_epi32(mb6_7, type_table[ptype6], 0);
|
||||
mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype5], 4);
|
||||
mb4_5 = _mm256_insert_epi32(mb4_5, type_table[ptype4], 0);
|
||||
/* merge the status bits into one register */
|
||||
const __m256i status4_7 = _mm256_unpackhi_epi32(raw_desc6_7,
|
||||
raw_desc4_5);
|
||||
|
||||
/**
|
||||
* convert descriptors 0-3 into mbufs, re-arrange fields.
|
||||
* Then write into the mbuf.
|
||||
*/
|
||||
__m256i mb2_3 = _mm256_shuffle_epi8(raw_desc2_3, shuf_msk);
|
||||
__m256i mb0_1 = _mm256_shuffle_epi8(raw_desc0_1, shuf_msk);
|
||||
|
||||
mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
|
||||
mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
|
||||
/**
|
||||
* to get packet types, ptype is located in bit16-25
|
||||
* of each 128bits
|
||||
*/
|
||||
const __m256i ptypes2_3 =
|
||||
_mm256_and_si256(raw_desc2_3, ptype_mask);
|
||||
const __m256i ptypes0_1 =
|
||||
_mm256_and_si256(raw_desc0_1, ptype_mask);
|
||||
const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
|
||||
const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
|
||||
const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
|
||||
const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
|
||||
|
||||
mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype3], 4);
|
||||
mb2_3 = _mm256_insert_epi32(mb2_3, type_table[ptype2], 0);
|
||||
mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype1], 4);
|
||||
mb0_1 = _mm256_insert_epi32(mb0_1, type_table[ptype0], 0);
|
||||
/* merge the status bits into one register */
|
||||
const __m256i status0_3 = _mm256_unpackhi_epi32(raw_desc2_3,
|
||||
raw_desc0_1);
|
||||
|
||||
/**
|
||||
* take the two sets of status bits and merge to one
|
||||
* After merge, the packets status flags are in the
|
||||
* order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
|
||||
*/
|
||||
__m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
|
||||
status0_3);
|
||||
|
||||
/* now do flag manipulation */
|
||||
|
||||
/* get only flag/error bits we want */
|
||||
const __m256i flag_bits =
|
||||
_mm256_and_si256(status0_7, flags_mask);
|
||||
/**
|
||||
* l3_l4_error flags, shuffle, then shift to correct adjustment
|
||||
* of flags in flags_shuf, and finally mask out extra bits
|
||||
*/
|
||||
__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
|
||||
_mm256_srli_epi32(flag_bits, 4));
|
||||
l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
|
||||
l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
|
||||
/* set rss and vlan flags */
|
||||
const __m256i rss_vlan_flag_bits =
|
||||
_mm256_srli_epi32(flag_bits, 12);
|
||||
const __m256i rss_vlan_flags =
|
||||
_mm256_shuffle_epi8(rss_vlan_flags_shuf,
|
||||
rss_vlan_flag_bits);
|
||||
|
||||
/* merge flags */
|
||||
const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
|
||||
rss_vlan_flags);
|
||||
/**
|
||||
* At this point, we have the 8 sets of flags in the low 16-bits
|
||||
* of each 32-bit value in vlan0.
|
||||
* We want to extract these, and merge them with the mbuf init
|
||||
* data so we can do a single write to the mbuf to set the flags
|
||||
* and all the other initialization fields. Extracting the
|
||||
* appropriate flags means that we have to do a shift and blend
|
||||
* for each mbuf before we do the write. However, we can also
|
||||
* add in the previously computed rx_descriptor fields to
|
||||
* make a single 256-bit write per mbuf
|
||||
*/
|
||||
/* check the structure matches expectations */
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
|
||||
offsetof(struct rte_mbuf, rearm_data) + 8);
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
|
||||
RTE_ALIGN(offsetof(struct rte_mbuf,
|
||||
rearm_data),
|
||||
16));
|
||||
/* build up data and do writes */
|
||||
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
|
||||
rearm6, rearm7;
|
||||
rearm6 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_slli_si256(mbuf_flags, 8),
|
||||
0x04);
|
||||
rearm4 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_slli_si256(mbuf_flags, 4),
|
||||
0x04);
|
||||
rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
|
||||
rearm0 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_srli_si256(mbuf_flags, 4),
|
||||
0x04);
|
||||
/* permute to add in the rx_descriptor e.g. rss fields */
|
||||
rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
|
||||
rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
|
||||
rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
|
||||
rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
|
||||
/* write to mbuf */
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
|
||||
rearm6);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
|
||||
rearm4);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
|
||||
rearm2);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
|
||||
rearm0);
|
||||
|
||||
/* repeat for the odd mbufs */
|
||||
const __m256i odd_flags =
|
||||
_mm256_castsi128_si256
|
||||
(_mm256_extracti128_si256(mbuf_flags, 1));
|
||||
rearm7 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_slli_si256(odd_flags, 8),
|
||||
0x04);
|
||||
rearm5 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_slli_si256(odd_flags, 4),
|
||||
0x04);
|
||||
rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
|
||||
rearm1 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_srli_si256(odd_flags, 4),
|
||||
0x04);
|
||||
/* since odd mbufs are already in hi 128-bits use blend */
|
||||
rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
|
||||
rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
|
||||
rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
|
||||
rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
|
||||
/* again write to mbufs */
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
|
||||
rearm7);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
|
||||
rearm5);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
|
||||
rearm3);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
|
||||
rearm1);
|
||||
|
||||
/* extract and record EOP bit */
|
||||
if (split_packet) {
|
||||
const __m128i eop_mask =
|
||||
_mm_set1_epi16(1 <<
|
||||
IAVF_RX_FLEX_DESC_STATUS0_EOF_S);
|
||||
const __m256i eop_bits256 = _mm256_and_si256(status0_7,
|
||||
eop_check);
|
||||
/* pack status bits into a single 128-bit register */
|
||||
const __m128i eop_bits =
|
||||
_mm_packus_epi32
|
||||
(_mm256_castsi256_si128(eop_bits256),
|
||||
_mm256_extractf128_si256(eop_bits256,
|
||||
1));
|
||||
/**
|
||||
* flip bits, and mask out the EOP bit, which is now
|
||||
* a split-packet bit i.e. !EOP, rather than EOP one.
|
||||
*/
|
||||
__m128i split_bits = _mm_andnot_si128(eop_bits,
|
||||
eop_mask);
|
||||
/**
|
||||
* eop bits are out of order, so we need to shuffle them
|
||||
* back into order again. In doing so, only use low 8
|
||||
* bits, which acts like another pack instruction
|
||||
* The original order is (hi->lo): 1,3,5,7,0,2,4,6
|
||||
* [Since we use epi8, the 16-bit positions are
|
||||
* multiplied by 2 in the eop_shuffle value.]
|
||||
*/
|
||||
__m128i eop_shuffle =
|
||||
_mm_set_epi8(/* zero hi 64b */
|
||||
0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFF,
|
||||
/* move values to lo 64b */
|
||||
8, 0, 10, 2,
|
||||
12, 4, 14, 6);
|
||||
split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
|
||||
*(uint64_t *)split_packet =
|
||||
_mm_cvtsi128_si64(split_bits);
|
||||
split_packet += IAVF_DESCS_PER_LOOP_AVX;
|
||||
}
|
||||
|
||||
/* perform dd_check */
|
||||
status0_7 = _mm256_and_si256(status0_7, dd_check);
|
||||
status0_7 = _mm256_packs_epi32(status0_7,
|
||||
_mm256_setzero_si256());
|
||||
|
||||
uint64_t burst = __builtin_popcountll
|
||||
(_mm_cvtsi128_si64
|
||||
(_mm256_extracti128_si256
|
||||
(status0_7, 1)));
|
||||
burst += __builtin_popcountll
|
||||
(_mm_cvtsi128_si64
|
||||
(_mm256_castsi256_si128(status0_7)));
|
||||
received += burst;
|
||||
if (burst != IAVF_DESCS_PER_LOOP_AVX)
|
||||
break;
|
||||
}
|
||||
|
||||
/* update tail pointers */
|
||||
rxq->rx_tail += received;
|
||||
rxq->rx_tail &= (rxq->nb_rx_desc - 1);
|
||||
if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
|
||||
rxq->rx_tail--;
|
||||
received--;
|
||||
}
|
||||
rxq->rxrearm_nb += received;
|
||||
return received;
|
||||
}
|
||||
|
||||
/**
|
||||
* Notice:
|
||||
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
|
||||
@ -625,6 +1083,18 @@ iavf_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
|
||||
return _iavf_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
|
||||
}
|
||||
|
||||
/**
|
||||
* Notice:
|
||||
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
|
||||
*/
|
||||
uint16_t
|
||||
iavf_recv_pkts_vec_avx2_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts)
|
||||
{
|
||||
return _iavf_recv_raw_pkts_vec_avx2_flex_rxd(rx_queue, rx_pkts,
|
||||
nb_pkts, NULL);
|
||||
}
|
||||
|
||||
/**
|
||||
* vPMD receive routine that reassembles single burst of 32 scattered packets
|
||||
* Notice:
|
||||
@ -690,6 +1160,75 @@ iavf_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
|
||||
rx_pkts + retval, nb_pkts);
|
||||
}
|
||||
|
||||
/**
|
||||
* vPMD receive routine that reassembles single burst of
|
||||
* 32 scattered packets for flex RxD
|
||||
* Notice:
|
||||
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
|
||||
*/
|
||||
static uint16_t
|
||||
iavf_recv_scattered_burst_vec_avx2_flex_rxd(void *rx_queue,
|
||||
struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts)
|
||||
{
|
||||
struct iavf_rx_queue *rxq = rx_queue;
|
||||
uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
|
||||
|
||||
/* get some new buffers */
|
||||
uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx2_flex_rxd(rxq,
|
||||
rx_pkts, nb_pkts, split_flags);
|
||||
if (nb_bufs == 0)
|
||||
return 0;
|
||||
|
||||
/* happy day case, full burst + no packets to be joined */
|
||||
const uint64_t *split_fl64 = (uint64_t *)split_flags;
|
||||
|
||||
if (!rxq->pkt_first_seg &&
|
||||
split_fl64[0] == 0 && split_fl64[1] == 0 &&
|
||||
split_fl64[2] == 0 && split_fl64[3] == 0)
|
||||
return nb_bufs;
|
||||
|
||||
/* reassemble any packets that need reassembly*/
|
||||
unsigned int i = 0;
|
||||
|
||||
if (!rxq->pkt_first_seg) {
|
||||
/* find the first split flag, and only reassemble then*/
|
||||
while (i < nb_bufs && !split_flags[i])
|
||||
i++;
|
||||
if (i == nb_bufs)
|
||||
return nb_bufs;
|
||||
rxq->pkt_first_seg = rx_pkts[i];
|
||||
}
|
||||
return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
|
||||
&split_flags[i]);
|
||||
}
|
||||
|
||||
/**
|
||||
* vPMD receive routine that reassembles scattered packets for flex RxD.
|
||||
* Main receive routine that can handle arbitrary burst sizes
|
||||
* Notice:
|
||||
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
|
||||
*/
|
||||
uint16_t
|
||||
iavf_recv_scattered_pkts_vec_avx2_flex_rxd(void *rx_queue,
|
||||
struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts)
|
||||
{
|
||||
uint16_t retval = 0;
|
||||
|
||||
while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
|
||||
uint16_t burst =
|
||||
iavf_recv_scattered_burst_vec_avx2_flex_rxd
|
||||
(rx_queue, rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
|
||||
retval += burst;
|
||||
nb_pkts -= burst;
|
||||
if (burst < IAVF_VPMD_RX_MAX_BURST)
|
||||
return retval;
|
||||
}
|
||||
return retval + iavf_recv_scattered_burst_vec_avx2_flex_rxd(rx_queue,
|
||||
rx_pkts + retval, nb_pkts);
|
||||
}
|
||||
|
||||
static inline void
|
||||
iavf_vtx1(volatile struct iavf_tx_desc *txdp,
|
||||
struct rte_mbuf *pkt, uint64_t flags)
|
||||
|
Loading…
Reference in New Issue
Block a user