net/bnxt: support flow filter ops

This patch adds support for flow validate/create/destroy/flush,
ethertype add/del ops

Signed-off-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
This commit is contained in:
Ajit Khaparde 2017-09-28 16:43:39 -05:00 committed by Ferruh Yigit
parent c6cca7760e
commit 5ef3b79fdf
9 changed files with 1434 additions and 42 deletions

View File

@ -171,6 +171,12 @@ struct bnxt_cos_queue_info {
uint8_t profile; uint8_t profile;
}; };
struct rte_flow {
STAILQ_ENTRY(rte_flow) next;
struct bnxt_filter_info *filter;
struct bnxt_vnic_info *vnic;
};
#define BNXT_HWRM_SHORT_REQ_LEN sizeof(struct hwrm_short_input) #define BNXT_HWRM_SHORT_REQ_LEN sizeof(struct hwrm_short_input)
struct bnxt { struct bnxt {
void *bar0; void *bar0;
@ -271,4 +277,5 @@ int bnxt_rcv_msg_from_vf(struct bnxt *bp, uint16_t vf_id, void *msg);
#define RX_PROD_AGG_BD_TYPE_RX_PROD_AGG 0x6 #define RX_PROD_AGG_BD_TYPE_RX_PROD_AGG 0x6
bool is_bnxt_supported(struct rte_eth_dev *dev); bool is_bnxt_supported(struct rte_eth_dev *dev);
extern const struct rte_flow_ops bnxt_flow_ops;
#endif #endif

View File

@ -616,7 +616,7 @@ static void bnxt_mac_addr_remove_op(struct rte_eth_dev *eth_dev,
if (filter->mac_index == index) { if (filter->mac_index == index) {
STAILQ_REMOVE(&vnic->filter, filter, STAILQ_REMOVE(&vnic->filter, filter,
bnxt_filter_info, next); bnxt_filter_info, next);
bnxt_hwrm_clear_filter(bp, filter); bnxt_hwrm_clear_l2_filter(bp, filter);
filter->mac_index = INVALID_MAC_INDEX; filter->mac_index = INVALID_MAC_INDEX;
memset(&filter->l2_addr, 0, memset(&filter->l2_addr, 0,
ETHER_ADDR_LEN); ETHER_ADDR_LEN);
@ -663,7 +663,7 @@ static int bnxt_mac_addr_add_op(struct rte_eth_dev *eth_dev,
STAILQ_INSERT_TAIL(&vnic->filter, filter, next); STAILQ_INSERT_TAIL(&vnic->filter, filter, next);
filter->mac_index = index; filter->mac_index = index;
memcpy(filter->l2_addr, mac_addr, ETHER_ADDR_LEN); memcpy(filter->l2_addr, mac_addr, ETHER_ADDR_LEN);
return bnxt_hwrm_set_filter(bp, vnic->fw_vnic_id, filter); return bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
} }
int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete) int bnxt_link_update_op(struct rte_eth_dev *eth_dev, int wait_to_complete)
@ -1157,7 +1157,7 @@ static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
/* Must delete the filter */ /* Must delete the filter */
STAILQ_REMOVE(&vnic->filter, filter, STAILQ_REMOVE(&vnic->filter, filter,
bnxt_filter_info, next); bnxt_filter_info, next);
bnxt_hwrm_clear_filter(bp, filter); bnxt_hwrm_clear_l2_filter(bp, filter);
STAILQ_INSERT_TAIL( STAILQ_INSERT_TAIL(
&bp->free_filter_list, &bp->free_filter_list,
filter, next); filter, next);
@ -1183,7 +1183,7 @@ static int bnxt_del_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
memcpy(new_filter->l2_addr, memcpy(new_filter->l2_addr,
filter->l2_addr, ETHER_ADDR_LEN); filter->l2_addr, ETHER_ADDR_LEN);
/* MAC only filter */ /* MAC only filter */
rc = bnxt_hwrm_set_filter(bp, rc = bnxt_hwrm_set_l2_filter(bp,
vnic->fw_vnic_id, vnic->fw_vnic_id,
new_filter); new_filter);
if (rc) if (rc)
@ -1235,7 +1235,7 @@ static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
/* Must delete the MAC filter */ /* Must delete the MAC filter */
STAILQ_REMOVE(&vnic->filter, filter, STAILQ_REMOVE(&vnic->filter, filter,
bnxt_filter_info, next); bnxt_filter_info, next);
bnxt_hwrm_clear_filter(bp, filter); bnxt_hwrm_clear_l2_filter(bp, filter);
filter->l2_ovlan = 0; filter->l2_ovlan = 0;
STAILQ_INSERT_TAIL( STAILQ_INSERT_TAIL(
&bp->free_filter_list, &bp->free_filter_list,
@ -1258,8 +1258,9 @@ static int bnxt_add_vlan_filter(struct bnxt *bp, uint16_t vlan_id)
new_filter->l2_ovlan = vlan_id; new_filter->l2_ovlan = vlan_id;
new_filter->l2_ovlan_mask = 0xF000; new_filter->l2_ovlan_mask = 0xF000;
new_filter->enables |= en; new_filter->enables |= en;
rc = bnxt_hwrm_set_filter(bp, vnic->fw_vnic_id, rc = bnxt_hwrm_set_l2_filter(bp,
new_filter); vnic->fw_vnic_id,
new_filter);
if (rc) if (rc)
goto exit; goto exit;
RTE_LOG(INFO, PMD, RTE_LOG(INFO, PMD,
@ -1338,7 +1339,7 @@ bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev, struct ether_addr *addr)
/* Default Filter is at Index 0 */ /* Default Filter is at Index 0 */
if (filter->mac_index != 0) if (filter->mac_index != 0)
continue; continue;
rc = bnxt_hwrm_clear_filter(bp, filter); rc = bnxt_hwrm_clear_l2_filter(bp, filter);
if (rc) if (rc)
break; break;
memcpy(filter->l2_addr, bp->mac_addr, ETHER_ADDR_LEN); memcpy(filter->l2_addr, bp->mac_addr, ETHER_ADDR_LEN);
@ -1347,7 +1348,7 @@ bnxt_set_default_mac_addr_op(struct rte_eth_dev *dev, struct ether_addr *addr)
filter->enables |= filter->enables |=
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR | HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK; HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK;
rc = bnxt_hwrm_set_filter(bp, vnic->fw_vnic_id, filter); rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id, filter);
if (rc) if (rc)
break; break;
filter->mac_index = 0; filter->mac_index = 0;
@ -1647,6 +1648,188 @@ bnxt_tx_descriptor_status_op(void *tx_queue, uint16_t offset)
return RTE_ETH_TX_DESC_FULL; return RTE_ETH_TX_DESC_FULL;
} }
static struct bnxt_filter_info *
bnxt_match_and_validate_ether_filter(struct bnxt *bp,
struct rte_eth_ethertype_filter *efilter,
struct bnxt_vnic_info *vnic0,
struct bnxt_vnic_info *vnic,
int *ret)
{
struct bnxt_filter_info *mfilter = NULL;
int match = 0;
*ret = 0;
if (efilter->ether_type != ETHER_TYPE_IPv4 &&
efilter->ether_type != ETHER_TYPE_IPv6) {
RTE_LOG(ERR, PMD, "unsupported ether_type(0x%04x) in"
" ethertype filter.", efilter->ether_type);
*ret = -EINVAL;
}
if (efilter->queue >= bp->rx_nr_rings) {
RTE_LOG(ERR, PMD, "Invalid queue %d\n", efilter->queue);
*ret = -EINVAL;
}
vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
vnic = STAILQ_FIRST(&bp->ff_pool[efilter->queue]);
if (vnic == NULL) {
RTE_LOG(ERR, PMD, "Invalid queue %d\n", efilter->queue);
*ret = -EINVAL;
}
if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
STAILQ_FOREACH(mfilter, &vnic0->filter, next) {
if ((!memcmp(efilter->mac_addr.addr_bytes,
mfilter->l2_addr, ETHER_ADDR_LEN) &&
mfilter->flags ==
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP &&
mfilter->ethertype == efilter->ether_type)) {
match = 1;
break;
}
}
} else {
STAILQ_FOREACH(mfilter, &vnic->filter, next)
if ((!memcmp(efilter->mac_addr.addr_bytes,
mfilter->l2_addr, ETHER_ADDR_LEN) &&
mfilter->ethertype == efilter->ether_type &&
mfilter->flags ==
HWRM_CFA_L2_FILTER_CFG_INPUT_FLAGS_PATH_RX)) {
match = 1;
break;
}
}
if (match)
*ret = -EEXIST;
return mfilter;
}
static int
bnxt_ethertype_filter(struct rte_eth_dev *dev,
enum rte_filter_op filter_op,
void *arg)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
struct rte_eth_ethertype_filter *efilter =
(struct rte_eth_ethertype_filter *)arg;
struct bnxt_filter_info *bfilter, *filter1;
struct bnxt_vnic_info *vnic, *vnic0;
int ret;
if (filter_op == RTE_ETH_FILTER_NOP)
return 0;
if (arg == NULL) {
RTE_LOG(ERR, PMD, "arg shouldn't be NULL for operation %u.",
filter_op);
return -EINVAL;
}
vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
vnic = STAILQ_FIRST(&bp->ff_pool[efilter->queue]);
switch (filter_op) {
case RTE_ETH_FILTER_ADD:
bnxt_match_and_validate_ether_filter(bp, efilter,
vnic0, vnic, &ret);
if (ret < 0)
return ret;
bfilter = bnxt_get_unused_filter(bp);
if (bfilter == NULL) {
RTE_LOG(ERR, PMD,
"Not enough resources for a new filter.\n");
return -ENOMEM;
}
bfilter->filter_type = HWRM_CFA_NTUPLE_FILTER;
memcpy(bfilter->l2_addr, efilter->mac_addr.addr_bytes,
ETHER_ADDR_LEN);
memcpy(bfilter->dst_macaddr, efilter->mac_addr.addr_bytes,
ETHER_ADDR_LEN);
bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR;
bfilter->ethertype = efilter->ether_type;
bfilter->enables |= NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE;
filter1 = bnxt_get_l2_filter(bp, bfilter, vnic0);
if (filter1 == NULL) {
ret = -1;
goto cleanup;
}
bfilter->enables |=
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
bfilter->fw_l2_filter_id = filter1->fw_l2_filter_id;
bfilter->dst_id = vnic->fw_vnic_id;
if (efilter->flags & RTE_ETHTYPE_FLAGS_DROP) {
bfilter->flags =
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
}
ret = bnxt_hwrm_set_ntuple_filter(bp, bfilter->dst_id, bfilter);
if (ret)
goto cleanup;
STAILQ_INSERT_TAIL(&vnic->filter, bfilter, next);
break;
case RTE_ETH_FILTER_DELETE:
filter1 = bnxt_match_and_validate_ether_filter(bp, efilter,
vnic0, vnic, &ret);
if (ret == -EEXIST) {
ret = bnxt_hwrm_clear_ntuple_filter(bp, filter1);
STAILQ_REMOVE(&vnic->filter, filter1, bnxt_filter_info,
next);
bnxt_free_filter(bp, filter1);
} else if (ret == 0) {
RTE_LOG(ERR, PMD, "No matching filter found\n");
}
break;
default:
RTE_LOG(ERR, PMD, "unsupported operation %u.", filter_op);
ret = -EINVAL;
goto error;
}
return ret;
cleanup:
bnxt_free_filter(bp, bfilter);
error:
return ret;
}
static int
bnxt_filter_ctrl_op(struct rte_eth_dev *dev __rte_unused,
enum rte_filter_type filter_type,
enum rte_filter_op filter_op, void *arg)
{
int ret = 0;
switch (filter_type) {
case RTE_ETH_FILTER_NTUPLE:
case RTE_ETH_FILTER_FDIR:
case RTE_ETH_FILTER_TUNNEL:
/* FALLTHROUGH */
RTE_LOG(ERR, PMD,
"filter type: %d: To be implemented\n", filter_type);
break;
case RTE_ETH_FILTER_ETHERTYPE:
ret = bnxt_ethertype_filter(dev, filter_op, arg);
break;
case RTE_ETH_FILTER_GENERIC:
if (filter_op != RTE_ETH_FILTER_GET)
return -EINVAL;
*(const void **)arg = &bnxt_flow_ops;
break;
default:
RTE_LOG(ERR, PMD,
"Filter type (%d) not supported", filter_type);
ret = -EINVAL;
break;
}
return ret;
}
/* /*
* Initialization * Initialization
*/ */
@ -1699,6 +1882,7 @@ static const struct eth_dev_ops bnxt_dev_ops = {
.rx_queue_count = bnxt_rx_queue_count_op, .rx_queue_count = bnxt_rx_queue_count_op,
.rx_descriptor_status = bnxt_rx_descriptor_status_op, .rx_descriptor_status = bnxt_rx_descriptor_status_op,
.tx_descriptor_status = bnxt_tx_descriptor_status_op, .tx_descriptor_status = bnxt_tx_descriptor_status_op,
.filter_ctrl = bnxt_filter_ctrl_op,
}; };
static bool bnxt_vf_pciid(uint16_t id) static bool bnxt_vf_pciid(uint16_t id)

View File

@ -35,6 +35,9 @@
#include <rte_log.h> #include <rte_log.h>
#include <rte_malloc.h> #include <rte_malloc.h>
#include <rte_flow.h>
#include <rte_flow_driver.h>
#include <rte_tailq.h>
#include "bnxt.h" #include "bnxt.h"
#include "bnxt_filter.h" #include "bnxt_filter.h"
@ -94,6 +97,8 @@ void bnxt_init_filters(struct bnxt *bp)
for (i = 0; i < max_filters; i++) { for (i = 0; i < max_filters; i++) {
filter = &bp->filter_info[i]; filter = &bp->filter_info[i];
filter->fw_l2_filter_id = -1; filter->fw_l2_filter_id = -1;
filter->fw_em_filter_id = -1;
filter->fw_ntuple_filter_id = -1;
STAILQ_INSERT_TAIL(&bp->free_filter_list, filter, next); STAILQ_INSERT_TAIL(&bp->free_filter_list, filter, next);
} }
} }
@ -121,7 +126,7 @@ void bnxt_free_all_filters(struct bnxt *bp)
for (i = 0; i < bp->pf.max_vfs; i++) { for (i = 0; i < bp->pf.max_vfs; i++) {
STAILQ_FOREACH(filter, &bp->pf.vf_info[i].filter, next) { STAILQ_FOREACH(filter, &bp->pf.vf_info[i].filter, next) {
bnxt_hwrm_clear_filter(bp, filter); bnxt_hwrm_clear_l2_filter(bp, filter);
} }
} }
} }
@ -142,7 +147,7 @@ void bnxt_free_filter_mem(struct bnxt *bp)
if (filter->fw_l2_filter_id != ((uint64_t)-1)) { if (filter->fw_l2_filter_id != ((uint64_t)-1)) {
RTE_LOG(ERR, PMD, "HWRM filter is not freed??\n"); RTE_LOG(ERR, PMD, "HWRM filter is not freed??\n");
/* Call HWRM to try to free filter again */ /* Call HWRM to try to free filter again */
rc = bnxt_hwrm_clear_filter(bp, filter); rc = bnxt_hwrm_clear_l2_filter(bp, filter);
if (rc) if (rc)
RTE_LOG(ERR, PMD, RTE_LOG(ERR, PMD,
"HWRM filter cannot be freed rc = %d\n", "HWRM filter cannot be freed rc = %d\n",
@ -174,3 +179,865 @@ int bnxt_alloc_filter_mem(struct bnxt *bp)
bp->filter_info = filter_mem; bp->filter_info = filter_mem;
return 0; return 0;
} }
struct bnxt_filter_info *bnxt_get_unused_filter(struct bnxt *bp)
{
struct bnxt_filter_info *filter;
/* Find the 1st unused filter from the free_filter_list pool*/
filter = STAILQ_FIRST(&bp->free_filter_list);
if (!filter) {
RTE_LOG(ERR, PMD, "No more free filter resources\n");
return NULL;
}
STAILQ_REMOVE_HEAD(&bp->free_filter_list, next);
return filter;
}
void bnxt_free_filter(struct bnxt *bp, struct bnxt_filter_info *filter)
{
STAILQ_INSERT_TAIL(&bp->free_filter_list, filter, next);
}
static int
bnxt_flow_agrs_validate(const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
if (!pattern) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "NULL pattern.");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "NULL action.");
return -rte_errno;
}
if (!attr) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "NULL attribute.");
return -rte_errno;
}
return 0;
}
static const struct rte_flow_item *
nxt_non_void_pattern(const struct rte_flow_item *cur)
{
while (1) {
if (cur->type != RTE_FLOW_ITEM_TYPE_VOID)
return cur;
cur++;
}
}
static const struct rte_flow_action *
nxt_non_void_action(const struct rte_flow_action *cur)
{
while (1) {
if (cur->type != RTE_FLOW_ACTION_TYPE_VOID)
return cur;
cur++;
}
}
static inline int check_zero_bytes(const uint8_t *bytes, int len)
{
int i;
for (i = 0; i < len; i++)
if (bytes[i] != 0x00)
return 0;
return 1;
}
static int
bnxt_filter_type_check(const struct rte_flow_item pattern[],
struct rte_flow_error *error __rte_unused)
{
const struct rte_flow_item *item = nxt_non_void_pattern(pattern);
int use_ntuple = 1;
while (item->type != RTE_FLOW_ITEM_TYPE_END) {
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_ETH:
use_ntuple = 1;
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
use_ntuple = 0;
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
case RTE_FLOW_ITEM_TYPE_IPV6:
case RTE_FLOW_ITEM_TYPE_TCP:
case RTE_FLOW_ITEM_TYPE_UDP:
/* FALLTHROUGH */
/* need ntuple match, reset exact match */
if (!use_ntuple) {
RTE_LOG(ERR, PMD,
"VLAN flow cannot use NTUPLE filter\n");
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Cannot use VLAN with NTUPLE");
return -rte_errno;
}
use_ntuple |= 1;
break;
default:
RTE_LOG(ERR, PMD, "Unknown Flow type");
use_ntuple |= 1;
}
item++;
}
return use_ntuple;
}
static int
bnxt_validate_and_parse_flow_type(const struct rte_flow_item pattern[],
struct rte_flow_error *error,
struct bnxt_filter_info *filter)
{
const struct rte_flow_item *item = nxt_non_void_pattern(pattern);
const struct rte_flow_item_vlan *vlan_spec, *vlan_mask;
const struct rte_flow_item_ipv4 *ipv4_spec, *ipv4_mask;
const struct rte_flow_item_ipv6 *ipv6_spec, *ipv6_mask;
const struct rte_flow_item_tcp *tcp_spec, *tcp_mask;
const struct rte_flow_item_udp *udp_spec, *udp_mask;
const struct rte_flow_item_eth *eth_spec, *eth_mask;
const struct rte_flow_item_nvgre *nvgre_spec;
const struct rte_flow_item_nvgre *nvgre_mask;
const struct rte_flow_item_vxlan *vxlan_spec;
const struct rte_flow_item_vxlan *vxlan_mask;
uint8_t vni_mask[] = {0xFF, 0xFF, 0xFF};
uint8_t tni_mask[] = {0xFF, 0xFF, 0xFF};
uint32_t tenant_id_be = 0;
bool vni_masked = 0;
bool tni_masked = 0;
int use_ntuple;
uint32_t en = 0;
use_ntuple = bnxt_filter_type_check(pattern, error);
RTE_LOG(ERR, PMD, "Use NTUPLE %d\n", use_ntuple);
if (use_ntuple < 0)
return use_ntuple;
filter->filter_type = use_ntuple ?
HWRM_CFA_NTUPLE_FILTER : HWRM_CFA_EM_FILTER;
while (item->type != RTE_FLOW_ITEM_TYPE_END) {
if (item->last) {
/* last or range is NOT supported as match criteria */
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"No support for range");
return -rte_errno;
}
if (!item->spec || !item->mask) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"spec/mask is NULL");
return -rte_errno;
}
switch (item->type) {
case RTE_FLOW_ITEM_TYPE_ETH:
eth_spec = (const struct rte_flow_item_eth *)item->spec;
eth_mask = (const struct rte_flow_item_eth *)item->mask;
/* Source MAC address mask cannot be partially set.
* Should be All 0's or all 1's.
* Destination MAC address mask must not be partially
* set. Should be all 1's or all 0's.
*/
if ((!is_zero_ether_addr(&eth_mask->src) &&
!is_broadcast_ether_addr(&eth_mask->src)) ||
(!is_zero_ether_addr(&eth_mask->dst) &&
!is_broadcast_ether_addr(&eth_mask->dst))) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"MAC_addr mask not valid");
return -rte_errno;
}
/* Mask is not allowed. Only exact matches are */
if ((eth_mask->type & UINT16_MAX) != UINT16_MAX) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"ethertype mask not valid");
return -rte_errno;
}
if (is_broadcast_ether_addr(&eth_mask->dst)) {
rte_memcpy(filter->dst_macaddr,
&eth_spec->dst, 6);
en |= use_ntuple ?
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR :
EM_FLOW_ALLOC_INPUT_EN_DST_MACADDR;
}
if (is_broadcast_ether_addr(&eth_mask->src)) {
rte_memcpy(filter->src_macaddr,
&eth_spec->src, 6);
en |= use_ntuple ?
NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_MACADDR :
EM_FLOW_ALLOC_INPUT_EN_SRC_MACADDR;
} /*
* else {
* RTE_LOG(ERR, PMD, "Handle this condition\n");
* }
*/
if (eth_spec->type) {
filter->ethertype =
rte_be_to_cpu_16(eth_spec->type);
en |= use_ntuple ?
NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE :
EM_FLOW_ALLOC_INPUT_EN_ETHERTYPE;
}
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
vlan_spec =
(const struct rte_flow_item_vlan *)item->spec;
vlan_mask =
(const struct rte_flow_item_vlan *)item->mask;
if (vlan_mask->tci & 0xFFFF && !vlan_mask->tpid) {
/* Only the VLAN ID can be matched. */
filter->l2_ovlan =
rte_be_to_cpu_16(vlan_spec->tci &
0xFFF);
en |= EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID;
} else {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"VLAN mask is invalid");
return -rte_errno;
}
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
/* If mask is not involved, we could use EM filters. */
ipv4_spec =
(const struct rte_flow_item_ipv4 *)item->spec;
ipv4_mask =
(const struct rte_flow_item_ipv4 *)item->mask;
/* Only IP DST and SRC fields are maskable. */
if (ipv4_mask->hdr.version_ihl ||
ipv4_mask->hdr.type_of_service ||
ipv4_mask->hdr.total_length ||
ipv4_mask->hdr.packet_id ||
ipv4_mask->hdr.fragment_offset ||
ipv4_mask->hdr.time_to_live ||
ipv4_mask->hdr.next_proto_id ||
ipv4_mask->hdr.hdr_checksum) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid IPv4 mask.");
return -rte_errno;
}
filter->dst_ipaddr[0] = ipv4_spec->hdr.dst_addr;
filter->src_ipaddr[0] = ipv4_spec->hdr.src_addr;
if (use_ntuple)
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
else
en |= EM_FLOW_ALLOC_INPUT_EN_SRC_IPADDR |
EM_FLOW_ALLOC_INPUT_EN_DST_IPADDR;
if (ipv4_mask->hdr.src_addr) {
filter->src_ipaddr_mask[0] =
ipv4_mask->hdr.src_addr;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
}
if (ipv4_mask->hdr.dst_addr) {
filter->dst_ipaddr_mask[0] =
ipv4_mask->hdr.dst_addr;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
}
filter->ip_addr_type = use_ntuple ?
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_IP_ADDR_TYPE_IPV4 :
HWRM_CFA_EM_FLOW_ALLOC_INPUT_IP_ADDR_TYPE_IPV4;
if (ipv4_spec->hdr.next_proto_id) {
filter->ip_protocol =
ipv4_spec->hdr.next_proto_id;
if (use_ntuple)
en |= NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO;
else
en |= EM_FLOW_ALLOC_INPUT_EN_IP_PROTO;
}
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
ipv6_spec =
(const struct rte_flow_item_ipv6 *)item->spec;
ipv6_mask =
(const struct rte_flow_item_ipv6 *)item->mask;
/* Only IP DST and SRC fields are maskable. */
if (ipv6_mask->hdr.vtc_flow ||
ipv6_mask->hdr.payload_len ||
ipv6_mask->hdr.proto ||
ipv6_mask->hdr.hop_limits) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid IPv6 mask.");
return -rte_errno;
}
if (use_ntuple)
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR |
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR;
else
en |= EM_FLOW_ALLOC_INPUT_EN_SRC_IPADDR |
EM_FLOW_ALLOC_INPUT_EN_DST_IPADDR;
rte_memcpy(filter->src_ipaddr,
ipv6_spec->hdr.src_addr, 16);
rte_memcpy(filter->dst_ipaddr,
ipv6_spec->hdr.dst_addr, 16);
if (!check_zero_bytes(ipv6_mask->hdr.src_addr, 16)) {
rte_memcpy(filter->src_ipaddr_mask,
ipv6_mask->hdr.src_addr, 16);
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK;
}
if (!check_zero_bytes(ipv6_mask->hdr.dst_addr, 16)) {
rte_memcpy(filter->dst_ipaddr_mask,
ipv6_mask->hdr.dst_addr, 16);
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK;
}
filter->ip_addr_type = use_ntuple ?
NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6 :
EM_FLOW_ALLOC_INPUT_IP_ADDR_TYPE_IPV6;
break;
case RTE_FLOW_ITEM_TYPE_TCP:
tcp_spec = (const struct rte_flow_item_tcp *)item->spec;
tcp_mask = (const struct rte_flow_item_tcp *)item->mask;
/* Check TCP mask. Only DST & SRC ports are maskable */
if (tcp_mask->hdr.sent_seq ||
tcp_mask->hdr.recv_ack ||
tcp_mask->hdr.data_off ||
tcp_mask->hdr.tcp_flags ||
tcp_mask->hdr.rx_win ||
tcp_mask->hdr.cksum ||
tcp_mask->hdr.tcp_urp) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid TCP mask");
return -rte_errno;
}
filter->src_port = tcp_spec->hdr.src_port;
filter->dst_port = tcp_spec->hdr.dst_port;
if (use_ntuple)
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
else
en |= EM_FLOW_ALLOC_INPUT_EN_SRC_PORT |
EM_FLOW_ALLOC_INPUT_EN_DST_PORT;
if (tcp_mask->hdr.dst_port) {
filter->dst_port_mask = tcp_mask->hdr.dst_port;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
}
if (tcp_mask->hdr.src_port) {
filter->src_port_mask = tcp_mask->hdr.src_port;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
}
break;
case RTE_FLOW_ITEM_TYPE_UDP:
udp_spec = (const struct rte_flow_item_udp *)item->spec;
udp_mask = (const struct rte_flow_item_udp *)item->mask;
if (udp_mask->hdr.dgram_len ||
udp_mask->hdr.dgram_cksum) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid UDP mask");
return -rte_errno;
}
filter->src_port = udp_spec->hdr.src_port;
filter->dst_port = udp_spec->hdr.dst_port;
if (use_ntuple)
en |= NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT |
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT;
else
en |= EM_FLOW_ALLOC_INPUT_EN_SRC_PORT |
EM_FLOW_ALLOC_INPUT_EN_DST_PORT;
if (udp_mask->hdr.dst_port) {
filter->dst_port_mask = udp_mask->hdr.dst_port;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK;
}
if (udp_mask->hdr.src_port) {
filter->src_port_mask = udp_mask->hdr.src_port;
en |= !use_ntuple ? 0 :
NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK;
}
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
vxlan_spec =
(const struct rte_flow_item_vxlan *)item->spec;
vxlan_mask =
(const struct rte_flow_item_vxlan *)item->mask;
/* Check if VXLAN item is used to describe protocol.
* If yes, both spec and mask should be NULL.
* If no, both spec and mask shouldn't be NULL.
*/
if ((!vxlan_spec && vxlan_mask) ||
(vxlan_spec && !vxlan_mask)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid VXLAN item");
return -rte_errno;
}
if (vxlan_spec->rsvd1 || vxlan_spec->rsvd0[0] ||
vxlan_spec->rsvd0[1] || vxlan_spec->rsvd0[2] ||
vxlan_spec->flags != 0x8) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid VXLAN item");
return -rte_errno;
}
/* Check if VNI is masked. */
if (vxlan_spec && vxlan_mask) {
vni_masked =
!!memcmp(vxlan_mask->vni, vni_mask,
RTE_DIM(vni_mask));
if (vni_masked) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid VNI mask");
return -rte_errno;
}
rte_memcpy(((uint8_t *)&tenant_id_be + 1),
vxlan_spec->vni, 3);
filter->vni =
rte_be_to_cpu_32(tenant_id_be);
filter->tunnel_type =
CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN;
}
break;
case RTE_FLOW_ITEM_TYPE_NVGRE:
nvgre_spec =
(const struct rte_flow_item_nvgre *)item->spec;
nvgre_mask =
(const struct rte_flow_item_nvgre *)item->mask;
/* Check if NVGRE item is used to describe protocol.
* If yes, both spec and mask should be NULL.
* If no, both spec and mask shouldn't be NULL.
*/
if ((!nvgre_spec && nvgre_mask) ||
(nvgre_spec && !nvgre_mask)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid NVGRE item");
return -rte_errno;
}
if (nvgre_spec->c_k_s_rsvd0_ver != 0x2000 ||
nvgre_spec->protocol != 0x6558) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid NVGRE item");
return -rte_errno;
}
if (nvgre_spec && nvgre_mask) {
tni_masked =
!!memcmp(nvgre_mask->tni, tni_mask,
RTE_DIM(tni_mask));
if (tni_masked) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid TNI mask");
return -rte_errno;
}
rte_memcpy(((uint8_t *)&tenant_id_be + 1),
nvgre_spec->tni, 3);
filter->vni =
rte_be_to_cpu_32(tenant_id_be);
filter->tunnel_type =
CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE;
}
break;
default:
break;
}
item++;
}
filter->enables = en;
return 0;
}
/* Parse attributes */
static int
bnxt_flow_parse_attr(const struct rte_flow_attr *attr,
struct rte_flow_error *error)
{
/* Must be input direction */
if (!attr->ingress) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "Only support ingress.");
return -rte_errno;
}
/* Not supported */
if (attr->egress) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "No support for egress.");
return -rte_errno;
}
/* Not supported */
if (attr->priority) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "No support for priority.");
return -rte_errno;
}
/* Not supported */
if (attr->group) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
attr, "No support for group.");
return -rte_errno;
}
return 0;
}
struct bnxt_filter_info *
bnxt_get_l2_filter(struct bnxt *bp, struct bnxt_filter_info *nf,
struct bnxt_vnic_info *vnic)
{
struct bnxt_filter_info *filter1, *f0;
struct bnxt_vnic_info *vnic0;
int rc;
vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
f0 = STAILQ_FIRST(&vnic0->filter);
//This flow has same DST MAC as the port/l2 filter.
if (memcmp(f0->l2_addr, nf->dst_macaddr, ETHER_ADDR_LEN) == 0)
return f0;
//This flow needs DST MAC which is not same as port/l2
RTE_LOG(DEBUG, PMD, "Create L2 filter for DST MAC\n");
filter1 = bnxt_get_unused_filter(bp);
filter1->flags = HWRM_CFA_L2_FILTER_ALLOC_INPUT_FLAGS_PATH_RX;
filter1->enables = HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
L2_FILTER_ALLOC_INPUT_EN_L2_ADDR_MASK;
memcpy(filter1->l2_addr, nf->dst_macaddr, ETHER_ADDR_LEN);
memset(filter1->l2_addr_mask, 0xff, ETHER_ADDR_LEN);
rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id,
filter1);
if (rc) {
bnxt_free_filter(bp, filter1);
return NULL;
}
STAILQ_INSERT_TAIL(&vnic->filter, filter1, next);
return filter1;
}
static int
bnxt_validate_and_parse_flow(struct rte_eth_dev *dev,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
const struct rte_flow_attr *attr,
struct rte_flow_error *error,
struct bnxt_filter_info *filter)
{
const struct rte_flow_action *act = nxt_non_void_action(actions);
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
const struct rte_flow_action_queue *act_q;
struct bnxt_vnic_info *vnic, *vnic0;
struct bnxt_filter_info *filter1;
int rc;
if (bp->eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS) {
RTE_LOG(ERR, PMD, "Cannot create flow on RSS queues\n");
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"Cannot create flow on RSS queues");
rc = -rte_errno;
goto ret;
}
rc = bnxt_validate_and_parse_flow_type(pattern, error, filter);
if (rc != 0)
goto ret;
rc = bnxt_flow_parse_attr(attr, error);
if (rc != 0)
goto ret;
//Since we support ingress attribute only - right now.
filter->flags = HWRM_CFA_EM_FLOW_ALLOC_INPUT_FLAGS_PATH_RX;
switch (act->type) {
case RTE_FLOW_ACTION_TYPE_QUEUE:
/* Allow this flow. Redirect to a VNIC. */
act_q = (const struct rte_flow_action_queue *)act->conf;
if (act_q->index >= bp->rx_nr_rings) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, act,
"Invalid queue ID.");
rc = -rte_errno;
goto ret;
}
RTE_LOG(ERR, PMD, "Queue index %d\n", act_q->index);
vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
vnic = STAILQ_FIRST(&bp->ff_pool[act_q->index]);
if (vnic == NULL) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, act,
"No matching VNIC for queue ID.");
rc = -rte_errno;
goto ret;
}
filter->dst_id = vnic->fw_vnic_id;
filter1 = bnxt_get_l2_filter(bp, filter, vnic);
filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
RTE_LOG(DEBUG, PMD, "VNIC found\n");
break;
case RTE_FLOW_ACTION_TYPE_DROP:
vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
if (filter->filter_type == HWRM_CFA_EM_FILTER)
filter->flags =
HWRM_CFA_EM_FLOW_ALLOC_INPUT_FLAGS_DROP;
else
filter->flags =
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_DROP;
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
vnic0 = STAILQ_FIRST(&bp->ff_pool[0]);
filter1 = bnxt_get_l2_filter(bp, filter, vnic0);
filter->fw_l2_filter_id = filter1->fw_l2_filter_id;
filter->flags = HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_FLAGS_METER;
break;
default:
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, act,
"Invalid action.");
rc = -rte_errno;
goto ret;
}
act = nxt_non_void_action(++act);
if (act->type != RTE_FLOW_ACTION_TYPE_END) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
act, "Invalid action.");
rc = -rte_errno;
goto ret;
}
ret:
return rc;
}
static int
bnxt_flow_validate(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
struct bnxt_filter_info *filter;
int ret = 0;
ret = bnxt_flow_agrs_validate(attr, pattern, actions, error);
if (ret != 0)
return ret;
filter = bnxt_get_unused_filter(bp);
if (filter == NULL) {
RTE_LOG(ERR, PMD, "Not enough resources for a new flow.\n");
return -ENOMEM;
}
ret = bnxt_validate_and_parse_flow(dev, pattern, actions, attr,
error, filter);
/* No need to hold on to this filter if we are just validating flow */
bnxt_free_filter(bp, filter);
return ret;
}
static struct rte_flow *
bnxt_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
struct bnxt_filter_info *filter;
struct bnxt_vnic_info *vnic;
struct rte_flow *flow;
unsigned int i;
int ret = 0;
flow = rte_zmalloc("bnxt_flow", sizeof(struct rte_flow), 0);
if (!flow) {
rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to allocate memory");
return flow;
}
ret = bnxt_flow_agrs_validate(attr, pattern, actions, error);
if (ret != 0) {
RTE_LOG(ERR, PMD, "Not a validate flow.\n");
goto free_flow;
}
filter = bnxt_get_unused_filter(bp);
if (filter == NULL) {
RTE_LOG(ERR, PMD, "Not enough resources for a new flow.\n");
goto free_flow;
}
ret = bnxt_validate_and_parse_flow(dev, pattern, actions, attr,
error, filter);
if (ret != 0)
goto free_filter;
if (filter->filter_type == HWRM_CFA_EM_FILTER) {
filter->enables |=
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
ret = bnxt_hwrm_set_em_filter(bp, filter->dst_id, filter);
}
if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER) {
filter->enables |=
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID;
ret = bnxt_hwrm_set_ntuple_filter(bp, filter->dst_id, filter);
}
for (i = 0; i < bp->nr_vnics; i++) {
vnic = &bp->vnic_info[i];
if (filter->dst_id == vnic->fw_vnic_id)
break;
}
if (!ret) {
flow->filter = filter;
flow->vnic = vnic;
RTE_LOG(ERR, PMD, "Successfully created flow.\n");
STAILQ_INSERT_TAIL(&vnic->flow_list, flow, next);
return flow;
}
free_filter:
bnxt_free_filter(bp, filter);
free_flow:
RTE_LOG(ERR, PMD, "Failed to create flow.\n");
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to create flow.");
rte_free(flow);
flow = NULL;
return flow;
}
static int
bnxt_flow_destroy(struct rte_eth_dev *dev,
struct rte_flow *flow,
struct rte_flow_error *error)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
struct bnxt_filter_info *filter = flow->filter;
struct bnxt_vnic_info *vnic = flow->vnic;
int ret = 0;
if (filter->filter_type == HWRM_CFA_EM_FILTER)
ret = bnxt_hwrm_clear_em_filter(bp, filter);
if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER)
ret = bnxt_hwrm_clear_ntuple_filter(bp, filter);
if (!ret) {
STAILQ_REMOVE(&vnic->flow_list, flow, rte_flow, next);
rte_free(flow);
} else {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to destroy flow.");
}
return ret;
}
static int
bnxt_flow_flush(struct rte_eth_dev *dev, struct rte_flow_error *error)
{
struct bnxt *bp = (struct bnxt *)dev->data->dev_private;
struct bnxt_vnic_info *vnic;
struct rte_flow *flow;
unsigned int i;
int ret = 0;
for (i = 0; i < bp->nr_vnics; i++) {
vnic = &bp->vnic_info[i];
STAILQ_FOREACH(flow, &vnic->flow_list, next) {
struct bnxt_filter_info *filter = flow->filter;
if (filter->filter_type == HWRM_CFA_EM_FILTER)
ret = bnxt_hwrm_clear_em_filter(bp, filter);
if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER)
ret = bnxt_hwrm_clear_ntuple_filter(bp, filter);
if (ret) {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL,
"Failed to flush flow in HW.");
return -rte_errno;
}
STAILQ_REMOVE(&vnic->flow_list, flow,
rte_flow, next);
rte_free(flow);
}
}
return ret;
}
const struct rte_flow_ops bnxt_flow_ops = {
.validate = bnxt_flow_validate,
.create = bnxt_flow_create,
.destroy = bnxt_flow_destroy,
.flush = bnxt_flow_flush,
};

View File

@ -40,8 +40,15 @@ struct bnxt;
struct bnxt_filter_info { struct bnxt_filter_info {
STAILQ_ENTRY(bnxt_filter_info) next; STAILQ_ENTRY(bnxt_filter_info) next;
uint64_t fw_l2_filter_id; uint64_t fw_l2_filter_id;
uint64_t fw_em_filter_id;
uint64_t fw_ntuple_filter_id;
#define INVALID_MAC_INDEX ((uint16_t)-1) #define INVALID_MAC_INDEX ((uint16_t)-1)
uint16_t mac_index; uint16_t mac_index;
#define HWRM_CFA_L2_FILTER 0
#define HWRM_CFA_EM_FILTER 1
#define HWRM_CFA_NTUPLE_FILTER 2
uint8_t filter_type; //L2 or EM or NTUPLE filter
uint32_t dst_id;
/* Filter Characteristics */ /* Filter Characteristics */
uint32_t flags; uint32_t flags;
@ -65,6 +72,19 @@ struct bnxt_filter_info {
uint64_t l2_filter_id_hint; uint64_t l2_filter_id_hint;
uint32_t src_id; uint32_t src_id;
uint8_t src_type; uint8_t src_type;
uint8_t src_macaddr[6];
uint8_t dst_macaddr[6];
uint32_t dst_ipaddr[4];
uint32_t dst_ipaddr_mask[4];
uint32_t src_ipaddr[4];
uint32_t src_ipaddr_mask[4];
uint16_t dst_port;
uint16_t dst_port_mask;
uint16_t src_port;
uint16_t src_port_mask;
uint16_t ip_protocol;
uint16_t ip_addr_type;
uint16_t ethertype;
}; };
struct bnxt_filter_info *bnxt_alloc_filter(struct bnxt *bp); struct bnxt_filter_info *bnxt_alloc_filter(struct bnxt *bp);
@ -73,5 +93,61 @@ void bnxt_init_filters(struct bnxt *bp);
void bnxt_free_all_filters(struct bnxt *bp); void bnxt_free_all_filters(struct bnxt *bp);
void bnxt_free_filter_mem(struct bnxt *bp); void bnxt_free_filter_mem(struct bnxt *bp);
int bnxt_alloc_filter_mem(struct bnxt *bp); int bnxt_alloc_filter_mem(struct bnxt *bp);
struct bnxt_filter_info *bnxt_get_unused_filter(struct bnxt *bp);
void bnxt_free_filter(struct bnxt *bp, struct bnxt_filter_info *filter);
struct bnxt_filter_info *bnxt_get_l2_filter(struct bnxt *bp,
struct bnxt_filter_info *nf, struct bnxt_vnic_info *vnic);
#define NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_MACADDR \
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_MACADDR
#define EM_FLOW_ALLOC_INPUT_EN_SRC_MACADDR \
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_SRC_MACADDR
#define NTUPLE_FLTR_ALLOC_INPUT_EN_DST_MACADDR \
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_MACADDR
#define EM_FLOW_ALLOC_INPUT_EN_DST_MACADDR \
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_DST_MACADDR
#define NTUPLE_FLTR_ALLOC_INPUT_EN_ETHERTYPE \
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_ETHERTYPE
#define EM_FLOW_ALLOC_INPUT_EN_ETHERTYPE \
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_ETHERTYPE
#define EM_FLOW_ALLOC_INPUT_EN_OVLAN_VID \
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_OVLAN_VID
#define NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR \
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_IPADDR
#define NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_IPADDR_MASK \
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_IPADDR_MASK
#define NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR \
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_IPADDR
#define NTUPLE_FLTR_ALLOC_INPUT_EN_DST_IPADDR_MASK \
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_IPADDR_MASK
#define NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT \
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_PORT
#define NTUPLE_FLTR_ALLOC_INPUT_EN_SRC_PORT_MASK \
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_PORT_MASK
#define NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT \
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_PORT
#define NTUPLE_FLTR_ALLOC_INPUT_EN_DST_PORT_MASK \
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_PORT_MASK
#define NTUPLE_FLTR_ALLOC_IN_EN_IP_PROTO \
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_IP_PROTOCOL
#define EM_FLOW_ALLOC_INPUT_EN_SRC_IPADDR \
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_SRC_IPADDR
#define EM_FLOW_ALLOC_INPUT_EN_DST_IPADDR \
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_DST_IPADDR
#define EM_FLOW_ALLOC_INPUT_EN_SRC_PORT \
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_SRC_PORT
#define EM_FLOW_ALLOC_INPUT_EN_DST_PORT \
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_DST_PORT
#define EM_FLOW_ALLOC_INPUT_EN_IP_PROTO \
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_IP_PROTOCOL
#define EM_FLOW_ALLOC_INPUT_IP_ADDR_TYPE_IPV6 \
HWRM_CFA_EM_FLOW_ALLOC_INPUT_IP_ADDR_TYPE_IPV6
#define NTUPLE_FLTR_ALLOC_INPUT_IP_ADDR_TYPE_IPV6 \
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_IP_ADDR_TYPE_IPV6
#define CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_VXLAN \
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_TUNNEL_TYPE_VXLAN
#define CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_NVGRE \
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_TUNNEL_TYPE_NVGRE
#define L2_FILTER_ALLOC_INPUT_EN_L2_ADDR_MASK \
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK
#endif #endif

View File

@ -329,7 +329,7 @@ int bnxt_hwrm_cfa_vlan_antispoof_cfg(struct bnxt *bp, uint16_t fid,
return rc; return rc;
} }
int bnxt_hwrm_clear_filter(struct bnxt *bp, int bnxt_hwrm_clear_l2_filter(struct bnxt *bp,
struct bnxt_filter_info *filter) struct bnxt_filter_info *filter)
{ {
int rc = 0; int rc = 0;
@ -353,7 +353,7 @@ int bnxt_hwrm_clear_filter(struct bnxt *bp,
return 0; return 0;
} }
int bnxt_hwrm_set_filter(struct bnxt *bp, int bnxt_hwrm_set_l2_filter(struct bnxt *bp,
uint16_t dst_id, uint16_t dst_id,
struct bnxt_filter_info *filter) struct bnxt_filter_info *filter)
{ {
@ -363,7 +363,7 @@ int bnxt_hwrm_set_filter(struct bnxt *bp,
uint32_t enables = 0; uint32_t enables = 0;
if (filter->fw_l2_filter_id != UINT64_MAX) if (filter->fw_l2_filter_id != UINT64_MAX)
bnxt_hwrm_clear_filter(bp, filter); bnxt_hwrm_clear_l2_filter(bp, filter);
HWRM_PREP(req, CFA_L2_FILTER_ALLOC); HWRM_PREP(req, CFA_L2_FILTER_ALLOC);
@ -1017,6 +1017,7 @@ int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
cpr->hw_stats_ctx_id = rte_le_to_cpu_16(resp->stat_ctx_id); cpr->hw_stats_ctx_id = rte_le_to_cpu_16(resp->stat_ctx_id);
HWRM_UNLOCK(); HWRM_UNLOCK();
bp->grp_info[idx].fw_stats_ctx = cpr->hw_stats_ctx_id;
return rc; return rc;
} }
@ -1133,7 +1134,7 @@ int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic)
int rc = 0; int rc = 0;
struct hwrm_vnic_cfg_input req = {.req_type = 0 }; struct hwrm_vnic_cfg_input req = {.req_type = 0 };
struct hwrm_vnic_cfg_output *resp = bp->hwrm_cmd_resp_addr; struct hwrm_vnic_cfg_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t ctx_enable_flag = HWRM_VNIC_CFG_INPUT_ENABLES_RSS_RULE; uint32_t ctx_enable_flag = 0;
struct bnxt_plcmodes_cfg pmodes; struct bnxt_plcmodes_cfg pmodes;
if (vnic->fw_vnic_id == INVALID_HW_RING_ID) { if (vnic->fw_vnic_id == INVALID_HW_RING_ID) {
@ -1149,14 +1150,15 @@ int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic)
/* Only RSS support for now TBD: COS & LB */ /* Only RSS support for now TBD: COS & LB */
req.enables = req.enables =
rte_cpu_to_le_32(HWRM_VNIC_CFG_INPUT_ENABLES_DFLT_RING_GRP | rte_cpu_to_le_32(HWRM_VNIC_CFG_INPUT_ENABLES_DFLT_RING_GRP);
HWRM_VNIC_CFG_INPUT_ENABLES_MRU);
if (vnic->lb_rule != 0xffff) if (vnic->lb_rule != 0xffff)
ctx_enable_flag = HWRM_VNIC_CFG_INPUT_ENABLES_LB_RULE; ctx_enable_flag |= HWRM_VNIC_CFG_INPUT_ENABLES_LB_RULE;
if (vnic->cos_rule != 0xffff) if (vnic->cos_rule != 0xffff)
ctx_enable_flag = HWRM_VNIC_CFG_INPUT_ENABLES_COS_RULE; ctx_enable_flag |= HWRM_VNIC_CFG_INPUT_ENABLES_COS_RULE;
if (vnic->rss_rule != 0xffff) if (vnic->rss_rule != 0xffff) {
ctx_enable_flag = HWRM_VNIC_CFG_INPUT_ENABLES_RSS_RULE; ctx_enable_flag |= HWRM_VNIC_CFG_INPUT_ENABLES_MRU;
ctx_enable_flag |= HWRM_VNIC_CFG_INPUT_ENABLES_RSS_RULE;
}
req.enables |= rte_cpu_to_le_32(ctx_enable_flag); req.enables |= rte_cpu_to_le_32(ctx_enable_flag);
req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id); req.vnic_id = rte_cpu_to_le_16(vnic->fw_vnic_id);
req.dflt_ring_grp = rte_cpu_to_le_16(vnic->dflt_ring_grp); req.dflt_ring_grp = rte_cpu_to_le_16(vnic->dflt_ring_grp);
@ -1591,12 +1593,8 @@ int bnxt_free_all_hwrm_ring_grps(struct bnxt *bp)
for (idx = 0; idx < bp->rx_cp_nr_rings; idx++) { for (idx = 0; idx < bp->rx_cp_nr_rings; idx++) {
if (bp->grp_info[idx].fw_grp_id == INVALID_HW_RING_ID) { if (bp->grp_info[idx].fw_grp_id == INVALID_HW_RING_ID)
RTE_LOG(ERR, PMD,
"Attempt to free invalid ring group %d\n",
idx);
continue; continue;
}
rc = bnxt_hwrm_ring_grp_free(bp, idx); rc = bnxt_hwrm_ring_grp_free(bp, idx);
@ -1749,9 +1747,39 @@ int bnxt_clear_hwrm_vnic_filters(struct bnxt *bp, struct bnxt_vnic_info *vnic)
int rc = 0; int rc = 0;
STAILQ_FOREACH(filter, &vnic->filter, next) { STAILQ_FOREACH(filter, &vnic->filter, next) {
rc = bnxt_hwrm_clear_filter(bp, filter); if (filter->filter_type == HWRM_CFA_EM_FILTER)
if (rc) rc = bnxt_hwrm_clear_em_filter(bp, filter);
break; else if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER)
rc = bnxt_hwrm_clear_ntuple_filter(bp, filter);
else
rc = bnxt_hwrm_clear_l2_filter(bp, filter);
//if (rc)
//break;
}
return rc;
}
static int
bnxt_clear_hwrm_vnic_flows(struct bnxt *bp, struct bnxt_vnic_info *vnic)
{
struct bnxt_filter_info *filter;
struct rte_flow *flow;
int rc = 0;
STAILQ_FOREACH(flow, &vnic->flow_list, next) {
filter = flow->filter;
RTE_LOG(ERR, PMD, "filter type %d\n", filter->filter_type);
if (filter->filter_type == HWRM_CFA_EM_FILTER)
rc = bnxt_hwrm_clear_em_filter(bp, filter);
else if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER)
rc = bnxt_hwrm_clear_ntuple_filter(bp, filter);
else
rc = bnxt_hwrm_clear_l2_filter(bp, filter);
STAILQ_REMOVE(&vnic->flow_list, flow, rte_flow, next);
rte_free(flow);
//if (rc)
//break;
} }
return rc; return rc;
} }
@ -1762,7 +1790,15 @@ int bnxt_set_hwrm_vnic_filters(struct bnxt *bp, struct bnxt_vnic_info *vnic)
int rc = 0; int rc = 0;
STAILQ_FOREACH(filter, &vnic->filter, next) { STAILQ_FOREACH(filter, &vnic->filter, next) {
rc = bnxt_hwrm_set_filter(bp, vnic->fw_vnic_id, filter); if (filter->filter_type == HWRM_CFA_EM_FILTER)
rc = bnxt_hwrm_set_em_filter(bp, filter->dst_id,
filter);
else if (filter->filter_type == HWRM_CFA_NTUPLE_FILTER)
rc = bnxt_hwrm_set_ntuple_filter(bp, filter->dst_id,
filter);
else
rc = bnxt_hwrm_set_l2_filter(bp, vnic->fw_vnic_id,
filter);
if (rc) if (rc)
break; break;
} }
@ -1783,20 +1819,20 @@ void bnxt_free_tunnel_ports(struct bnxt *bp)
void bnxt_free_all_hwrm_resources(struct bnxt *bp) void bnxt_free_all_hwrm_resources(struct bnxt *bp)
{ {
struct bnxt_vnic_info *vnic; int i;
unsigned int i;
if (bp->vnic_info == NULL) if (bp->vnic_info == NULL)
return; return;
vnic = &bp->vnic_info[0]; /*
if (BNXT_PF(bp)) * Cleanup VNICs in reverse order, to make sure the L2 filter
bnxt_hwrm_cfa_l2_clear_rx_mask(bp, vnic); * from vnic0 is last to be cleaned up.
*/
/* VNIC resources */ for (i = bp->nr_vnics - 1; i >= 0; i--) {
for (i = 0; i < bp->nr_vnics; i++) {
struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
bnxt_clear_hwrm_vnic_flows(bp, vnic);
bnxt_clear_hwrm_vnic_filters(bp, vnic); bnxt_clear_hwrm_vnic_filters(bp, vnic);
bnxt_hwrm_vnic_ctx_free(bp, vnic); bnxt_hwrm_vnic_ctx_free(bp, vnic);
@ -3126,3 +3162,215 @@ int bnxt_hwrm_func_qcfg_vf_dflt_vnic_id(struct bnxt *bp, int vf)
rte_free(vnic_ids); rte_free(vnic_ids);
return -1; return -1;
} }
int bnxt_hwrm_set_em_filter(struct bnxt *bp,
uint16_t dst_id,
struct bnxt_filter_info *filter)
{
int rc = 0;
struct hwrm_cfa_em_flow_alloc_input req = {.req_type = 0 };
struct hwrm_cfa_em_flow_alloc_output *resp = bp->hwrm_cmd_resp_addr;
uint32_t enables = 0;
if (filter->fw_em_filter_id != UINT64_MAX)
bnxt_hwrm_clear_em_filter(bp, filter);
HWRM_PREP(req, CFA_EM_FLOW_ALLOC);
req.flags = rte_cpu_to_le_32(filter->flags);
enables = filter->enables |
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_DST_ID;
req.dst_id = rte_cpu_to_le_16(dst_id);
if (filter->ip_addr_type) {
req.ip_addr_type = filter->ip_addr_type;
enables |= HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_IPADDR_TYPE;
}
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_L2_FILTER_ID)
req.l2_filter_id = rte_cpu_to_le_64(filter->fw_l2_filter_id);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_SRC_MACADDR)
memcpy(req.src_macaddr, filter->src_macaddr,
ETHER_ADDR_LEN);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_DST_MACADDR)
memcpy(req.dst_macaddr, filter->dst_macaddr,
ETHER_ADDR_LEN);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_OVLAN_VID)
req.ovlan_vid = filter->l2_ovlan;
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_IVLAN_VID)
req.ivlan_vid = filter->l2_ivlan;
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_ETHERTYPE)
req.ethertype = rte_cpu_to_be_16(filter->ethertype);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_IP_PROTOCOL)
req.ip_protocol = filter->ip_protocol;
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_SRC_IPADDR)
req.src_ipaddr[0] = rte_cpu_to_be_32(filter->src_ipaddr[0]);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_DST_IPADDR)
req.dst_ipaddr[0] = rte_cpu_to_be_32(filter->dst_ipaddr[0]);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_SRC_PORT)
req.src_port = rte_cpu_to_be_16(filter->src_port);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_DST_PORT)
req.dst_port = rte_cpu_to_be_16(filter->dst_port);
if (enables &
HWRM_CFA_EM_FLOW_ALLOC_INPUT_ENABLES_MIRROR_VNIC_ID)
req.mirror_vnic_id = filter->mirror_vnic_id;
req.enables = rte_cpu_to_le_32(enables);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
filter->fw_em_filter_id = rte_le_to_cpu_64(resp->em_filter_id);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_clear_em_filter(struct bnxt *bp, struct bnxt_filter_info *filter)
{
int rc = 0;
struct hwrm_cfa_em_flow_free_input req = {.req_type = 0 };
struct hwrm_cfa_em_flow_free_output *resp = bp->hwrm_cmd_resp_addr;
if (filter->fw_em_filter_id == UINT64_MAX)
return 0;
RTE_LOG(ERR, PMD, "Clear EM filter\n");
HWRM_PREP(req, CFA_EM_FLOW_FREE);
req.em_filter_id = rte_cpu_to_le_64(filter->fw_em_filter_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
filter->fw_em_filter_id = -1;
filter->fw_l2_filter_id = -1;
return 0;
}
int bnxt_hwrm_set_ntuple_filter(struct bnxt *bp,
uint16_t dst_id,
struct bnxt_filter_info *filter)
{
int rc = 0;
struct hwrm_cfa_ntuple_filter_alloc_input req = {.req_type = 0 };
struct hwrm_cfa_ntuple_filter_alloc_output *resp =
bp->hwrm_cmd_resp_addr;
uint32_t enables = 0;
if (filter->fw_ntuple_filter_id != UINT64_MAX)
bnxt_hwrm_clear_ntuple_filter(bp, filter);
HWRM_PREP(req, CFA_NTUPLE_FILTER_ALLOC);
req.flags = rte_cpu_to_le_32(filter->flags);
enables = filter->enables |
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_ID;
req.dst_id = rte_cpu_to_le_16(dst_id);
if (filter->ip_addr_type) {
req.ip_addr_type = filter->ip_addr_type;
enables |=
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_IPADDR_TYPE;
}
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_L2_FILTER_ID)
req.l2_filter_id = rte_cpu_to_le_64(filter->fw_l2_filter_id);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_MACADDR)
memcpy(req.src_macaddr, filter->src_macaddr,
ETHER_ADDR_LEN);
//if (enables &
//HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_MACADDR)
//memcpy(req.dst_macaddr, filter->dst_macaddr,
//ETHER_ADDR_LEN);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_ETHERTYPE)
req.ethertype = rte_cpu_to_be_16(filter->ethertype);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_IP_PROTOCOL)
req.ip_protocol = filter->ip_protocol;
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_IPADDR)
req.src_ipaddr[0] = rte_cpu_to_le_32(filter->src_ipaddr[0]);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_IPADDR_MASK)
req.src_ipaddr_mask[0] =
rte_cpu_to_le_32(filter->src_ipaddr_mask[0]);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_IPADDR)
req.dst_ipaddr[0] = rte_cpu_to_le_32(filter->dst_ipaddr[0]);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_IPADDR_MASK)
req.dst_ipaddr_mask[0] =
rte_cpu_to_be_32(filter->dst_ipaddr_mask[0]);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_PORT)
req.src_port = rte_cpu_to_le_16(filter->src_port);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_SRC_PORT_MASK)
req.src_port_mask = rte_cpu_to_le_16(filter->src_port_mask);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_PORT)
req.dst_port = rte_cpu_to_le_16(filter->dst_port);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_DST_PORT_MASK)
req.dst_port_mask = rte_cpu_to_le_16(filter->dst_port_mask);
if (enables &
HWRM_CFA_NTUPLE_FILTER_ALLOC_INPUT_ENABLES_MIRROR_VNIC_ID)
req.mirror_vnic_id = filter->mirror_vnic_id;
req.enables = rte_cpu_to_le_32(enables);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
filter->fw_ntuple_filter_id = rte_le_to_cpu_64(resp->ntuple_filter_id);
HWRM_UNLOCK();
return rc;
}
int bnxt_hwrm_clear_ntuple_filter(struct bnxt *bp,
struct bnxt_filter_info *filter)
{
int rc = 0;
struct hwrm_cfa_ntuple_filter_free_input req = {.req_type = 0 };
struct hwrm_cfa_ntuple_filter_free_output *resp =
bp->hwrm_cmd_resp_addr;
if (filter->fw_ntuple_filter_id == UINT64_MAX)
return 0;
HWRM_PREP(req, CFA_NTUPLE_FILTER_FREE);
req.ntuple_filter_id = rte_cpu_to_le_64(filter->fw_ntuple_filter_id);
rc = bnxt_hwrm_send_message(bp, &req, sizeof(req));
HWRM_CHECK_RESULT();
HWRM_UNLOCK();
filter->fw_ntuple_filter_id = -1;
filter->fw_l2_filter_id = -1;
return 0;
}

View File

@ -51,9 +51,9 @@ int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, struct bnxt_vnic_info *vnic,
int bnxt_hwrm_cfa_vlan_antispoof_cfg(struct bnxt *bp, uint16_t fid, int bnxt_hwrm_cfa_vlan_antispoof_cfg(struct bnxt *bp, uint16_t fid,
uint16_t vlan_count, uint16_t vlan_count,
struct bnxt_vlan_antispoof_table_entry *vlan_table); struct bnxt_vlan_antispoof_table_entry *vlan_table);
int bnxt_hwrm_clear_filter(struct bnxt *bp, int bnxt_hwrm_clear_l2_filter(struct bnxt *bp,
struct bnxt_filter_info *filter); struct bnxt_filter_info *filter);
int bnxt_hwrm_set_filter(struct bnxt *bp, int bnxt_hwrm_set_l2_filter(struct bnxt *bp,
uint16_t dst_id, uint16_t dst_id,
struct bnxt_filter_info *filter); struct bnxt_filter_info *filter);
int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, uint16_t target_id, int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, uint16_t target_id,
@ -156,4 +156,12 @@ int bnxt_hwrm_func_vf_vnic_query_and_config(struct bnxt *bp, uint16_t vf,
int bnxt_hwrm_func_cfg_vf_set_vlan_anti_spoof(struct bnxt *bp, uint16_t vf, int bnxt_hwrm_func_cfg_vf_set_vlan_anti_spoof(struct bnxt *bp, uint16_t vf,
bool on); bool on);
int bnxt_hwrm_func_qcfg_vf_dflt_vnic_id(struct bnxt *bp, int vf); int bnxt_hwrm_func_qcfg_vf_dflt_vnic_id(struct bnxt *bp, int vf);
int bnxt_hwrm_set_em_filter(struct bnxt *bp, uint16_t dst_id,
struct bnxt_filter_info *filter);
int bnxt_hwrm_clear_em_filter(struct bnxt *bp, struct bnxt_filter_info *filter);
int bnxt_hwrm_set_ntuple_filter(struct bnxt *bp, uint16_t dst_id,
struct bnxt_filter_info *filter);
int bnxt_hwrm_clear_ntuple_filter(struct bnxt *bp,
struct bnxt_filter_info *filter);
#endif #endif

View File

@ -83,6 +83,7 @@ void bnxt_init_vnics(struct bnxt *bp)
prandom_bytes(vnic->rss_hash_key, HW_HASH_KEY_SIZE); prandom_bytes(vnic->rss_hash_key, HW_HASH_KEY_SIZE);
STAILQ_INIT(&vnic->filter); STAILQ_INIT(&vnic->filter);
STAILQ_INIT(&vnic->flow_list);
STAILQ_INSERT_TAIL(&bp->free_vnic_list, vnic, next); STAILQ_INSERT_TAIL(&bp->free_vnic_list, vnic, next);
} }
for (i = 0; i < MAX_FF_POOLS; i++) for (i = 0; i < MAX_FF_POOLS; i++)

View File

@ -80,6 +80,7 @@ struct bnxt_vnic_info {
bool rss_dflt_cr; bool rss_dflt_cr;
STAILQ_HEAD(, bnxt_filter_info) filter; STAILQ_HEAD(, bnxt_filter_info) filter;
STAILQ_HEAD(, rte_flow) flow_list;
}; };
struct bnxt; struct bnxt;

View File

@ -730,7 +730,7 @@ int rte_pmd_bnxt_mac_addr_add(uint8_t port, struct ether_addr *addr,
(HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR | (HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR |
HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK) && HWRM_CFA_L2_FILTER_ALLOC_INPUT_ENABLES_L2_ADDR_MASK) &&
memcmp(addr, filter->l2_addr, ETHER_ADDR_LEN) == 0) { memcmp(addr, filter->l2_addr, ETHER_ADDR_LEN) == 0) {
bnxt_hwrm_clear_filter(bp, filter); bnxt_hwrm_clear_l2_filter(bp, filter);
break; break;
} }
} }
@ -748,7 +748,7 @@ int rte_pmd_bnxt_mac_addr_add(uint8_t port, struct ether_addr *addr,
/* Do not add a filter for the default MAC */ /* Do not add a filter for the default MAC */
if (bnxt_hwrm_func_qcfg_vf_default_mac(bp, vf_id, &dflt_mac) || if (bnxt_hwrm_func_qcfg_vf_default_mac(bp, vf_id, &dflt_mac) ||
memcmp(filter->l2_addr, dflt_mac.addr_bytes, ETHER_ADDR_LEN)) memcmp(filter->l2_addr, dflt_mac.addr_bytes, ETHER_ADDR_LEN))
rc = bnxt_hwrm_set_filter(bp, vnic.fw_vnic_id, filter); rc = bnxt_hwrm_set_l2_filter(bp, vnic.fw_vnic_id, filter);
exit: exit:
return rc; return rc;