net/ice/base: add OS specific implementation

Add some MACRO defination and small functions which
are specific for DPDK.
Add readme too.

Signed-off-by: Wenzhuo Lu <wenzhuo.lu@intel.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
This commit is contained in:
Wenzhuo Lu 2018-12-18 16:46:23 +08:00 committed by Ferruh Yigit
parent 64e9587d56
commit 5f0978e962
2 changed files with 546 additions and 0 deletions

View File

@ -0,0 +1,22 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
Intel® ICE driver
==================
This directory contains source code of FreeBSD ice driver of version
2018.12.11 released by the team which develops
basic drivers for any ice NIC. The directory of base/ contains the
original source package.
This driver is valid for the product(s) listed below
* Intel® Ethernet Network Adapters E810
Updating the driver
===================
NOTE: The source code in this directory should not be modified apart from
the following file(s):
ice_osdep.h

View File

@ -0,0 +1,524 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#ifndef _ICE_OSDEP_H_
#define _ICE_OSDEP_H_
#include <string.h>
#include <stdint.h>
#include <stdio.h>
#include <stdarg.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <stdbool.h>
#include <rte_common.h>
#include <rte_memcpy.h>
#include <rte_malloc.h>
#include <rte_memzone.h>
#include <rte_byteorder.h>
#include <rte_cycles.h>
#include <rte_spinlock.h>
#include <rte_log.h>
#include <rte_random.h>
#include <rte_io.h>
#include "../ice_logs.h"
#define INLINE inline
#define STATIC static
typedef uint8_t u8;
typedef int8_t s8;
typedef uint16_t u16;
typedef int16_t s16;
typedef uint32_t u32;
typedef int32_t s32;
typedef uint64_t u64;
typedef uint64_t s64;
#define __iomem
#define hw_dbg(hw, S, A...) do {} while (0)
#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
#define lower_32_bits(n) ((u32)(n))
#define low_16_bits(x) ((x) & 0xFFFF)
#define high_16_bits(x) (((x) & 0xFFFF0000) >> 16)
#ifndef ETH_ADDR_LEN
#define ETH_ADDR_LEN 6
#endif
#ifndef __le16
#define __le16 uint16_t
#endif
#ifndef __le32
#define __le32 uint32_t
#endif
#ifndef __le64
#define __le64 uint64_t
#endif
#ifndef __be16
#define __be16 uint16_t
#endif
#ifndef __be32
#define __be32 uint32_t
#endif
#ifndef __be64
#define __be64 uint64_t
#endif
#ifndef __always_unused
#define __always_unused __attribute__((unused))
#endif
#ifndef __maybe_unused
#define __maybe_unused __attribute__((unused))
#endif
#ifndef __packed
#define __packed __attribute__((packed))
#endif
#ifndef BIT_ULL
#define BIT_ULL(a) (1ULL << (a))
#endif
#define FALSE 0
#define TRUE 1
#define false 0
#define true 1
#define min(a, b) RTE_MIN(a, b)
#define max(a, b) RTE_MAX(a, b)
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0]))
#define FIELD_SIZEOF(t, f) (sizeof(((t *)0)->f))
#define MAKEMASK(m, s) ((m) << (s))
#define DEBUGOUT(S, A...) PMD_DRV_LOG_RAW(DEBUG, S, ##A)
#define DEBUGFUNC(F) PMD_DRV_LOG_RAW(DEBUG, F)
#define ice_debug(h, m, s, ...) \
do { \
if (((m) & (h)->debug_mask)) \
PMD_DRV_LOG_RAW(DEBUG, "ice %02x.%x " s, \
(h)->bus.device, (h)->bus.func, \
##__VA_ARGS__); \
} while (0)
#define ice_info(hw, fmt, args...) ice_debug(hw, ICE_DBG_ALL, fmt, ##args)
#define ice_warn(hw, fmt, args...) ice_debug(hw, ICE_DBG_ALL, fmt, ##args)
#define ice_debug_array(hw, type, rowsize, groupsize, buf, len) \
do { \
struct ice_hw *hw_l = hw; \
u16 len_l = len; \
u8 *buf_l = buf; \
int i; \
for (i = 0; i < len_l; i += 8) \
ice_debug(hw_l, type, \
"0x%04X 0x%016"PRIx64"\n", \
i, *((u64 *)((buf_l) + i))); \
} while (0)
#define ice_snprintf snprintf
#ifndef SNPRINTF
#define SNPRINTF ice_snprintf
#endif
#define ICE_PCI_REG(reg) rte_read32(reg)
#define ICE_PCI_REG_ADDR(a, reg) \
((volatile uint32_t *)((char *)(a)->hw_addr + (reg)))
static inline uint32_t ice_read_addr(volatile void *addr)
{
return rte_le_to_cpu_32(ICE_PCI_REG(addr));
}
#define ICE_PCI_REG_WRITE(reg, value) \
rte_write32((rte_cpu_to_le_32(value)), reg)
#define ice_flush(a) ICE_READ_REG((a), GLGEN_STAT)
#define icevf_flush(a) ICE_READ_REG((a), VFGEN_RSTAT)
#define ICE_READ_REG(hw, reg) ice_read_addr(ICE_PCI_REG_ADDR((hw), (reg)))
#define ICE_WRITE_REG(hw, reg, value) \
ICE_PCI_REG_WRITE(ICE_PCI_REG_ADDR((hw), (reg)), (value))
#define rd32(a, reg) ice_read_addr(ICE_PCI_REG_ADDR((a), (reg)))
#define wr32(a, reg, value) \
ICE_PCI_REG_WRITE(ICE_PCI_REG_ADDR((a), (reg)), (value))
#define flush(a) ice_read_addr(ICE_PCI_REG_ADDR((a), (GLGEN_STAT)))
#define div64_long(n, d) ((n) / (d))
#define BITS_PER_BYTE 8
typedef u32 ice_bitmap_t;
#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
#define BITS_TO_CHUNKS(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(ice_bitmap_t))
#define ice_declare_bitmap(name, bits) \
ice_bitmap_t name[BITS_TO_CHUNKS(bits)]
#define BITS_CHUNK_MASK(nr) (((ice_bitmap_t)~0) >> \
((BITS_PER_BYTE * sizeof(ice_bitmap_t)) - \
(((nr) - 1) % (BITS_PER_BYTE * sizeof(ice_bitmap_t)) \
+ 1)))
#define BITS_PER_CHUNK (BITS_PER_BYTE * sizeof(ice_bitmap_t))
#define BIT_CHUNK(nr) ((nr) / BITS_PER_CHUNK)
#define BIT_IN_CHUNK(nr) BIT((nr) % BITS_PER_CHUNK)
static inline bool ice_is_bit_set(const ice_bitmap_t *bitmap, u16 nr)
{
return !!(bitmap[BIT_CHUNK(nr)] & BIT_IN_CHUNK(nr));
}
#define ice_and_bitmap(d, b1, b2, sz) \
ice_intersect_bitmaps((u8 *)d, (u8 *)b1, (const u8 *)b2, (u16)sz)
static inline int
ice_intersect_bitmaps(u8 *dst, const u8 *bmp1, const u8 *bmp2, u16 sz)
{
u32 res = 0;
int cnt;
u16 i;
/* Utilize 32-bit operations */
cnt = (sz % BITS_PER_BYTE) ?
(sz / BITS_PER_BYTE) + 1 : sz / BITS_PER_BYTE;
for (i = 0; i < cnt / 4; i++) {
((u32 *)dst)[i] = ((const u32 *)bmp1)[i] &
((const u32 *)bmp2)[i];
res |= ((u32 *)dst)[i];
}
for (i *= 4; i < cnt; i++) {
if ((sz % 8 == 0) || (i + 1 < cnt)) {
dst[i] = bmp1[i] & bmp2[i];
} else {
/* Remaining bits that do not occupy the whole byte */
u8 mask = ~0u >> (8 - (sz % 8));
dst[i] = bmp1[i] & bmp2[i] & mask;
}
res |= dst[i];
}
return res != 0;
}
static inline int ice_find_first_bit(ice_bitmap_t *name, u16 size)
{
u16 i;
for (i = 0; i < BITS_PER_BYTE * (size / BITS_PER_BYTE); i++)
if (ice_is_bit_set(name, i))
return i;
return size;
}
static inline int ice_find_next_bit(ice_bitmap_t *name, u16 size, u16 bits)
{
u16 i;
for (i = bits; i < BITS_PER_BYTE * (size / BITS_PER_BYTE); i++)
if (ice_is_bit_set(name, i))
return i;
return bits;
}
#define for_each_set_bit(bit, addr, size) \
for ((bit) = ice_find_first_bit((addr), (size)); \
(bit) < (size); \
(bit) = ice_find_next_bit((addr), (size), (bit) + 1))
static inline bool ice_is_any_bit_set(ice_bitmap_t *bitmap, u32 bits)
{
u32 max_index = BITS_TO_CHUNKS(bits);
u32 i;
for (i = 0; i < max_index; i++) {
if (bitmap[i])
return true;
}
return false;
}
/* memory allocation tracking */
struct ice_dma_mem {
void *va;
u64 pa;
u32 size;
const void *zone;
} __attribute__((packed));
struct ice_virt_mem {
void *va;
u32 size;
} __attribute__((packed));
#define ice_malloc(h, s) rte_zmalloc(NULL, s, 0)
#define ice_calloc(h, c, s) rte_zmalloc(NULL, (c) * (s), 0)
#define ice_free(h, m) rte_free(m)
#define ice_memset(a, b, c, d) memset((a), (b), (c))
#define ice_memcpy(a, b, c, d) rte_memcpy((a), (b), (c))
#define ice_memdup(a, b, c, d) rte_memcpy(ice_malloc(a, c), b, c)
#define CPU_TO_BE16(o) rte_cpu_to_be_16(o)
#define CPU_TO_BE32(o) rte_cpu_to_be_32(o)
#define CPU_TO_BE64(o) rte_cpu_to_be_64(o)
#define CPU_TO_LE16(o) rte_cpu_to_le_16(o)
#define CPU_TO_LE32(s) rte_cpu_to_le_32(s)
#define CPU_TO_LE64(h) rte_cpu_to_le_64(h)
#define LE16_TO_CPU(a) rte_le_to_cpu_16(a)
#define LE32_TO_CPU(c) rte_le_to_cpu_32(c)
#define LE64_TO_CPU(k) rte_le_to_cpu_64(k)
#define NTOHS(a) rte_be_to_cpu_16(a)
#define NTOHL(a) rte_be_to_cpu_32(a)
#define HTONS(a) rte_cpu_to_be_16(a)
#define HTONL(a) rte_cpu_to_be_32(a)
static inline void
ice_set_bit(unsigned int nr, volatile ice_bitmap_t *addr)
{
__sync_fetch_and_or(addr, (1UL << nr));
}
static inline void
ice_clear_bit(unsigned int nr, volatile ice_bitmap_t *addr)
{
__sync_fetch_and_and(addr, (0UL << nr));
}
static inline void
ice_zero_bitmap(ice_bitmap_t *bmp, u16 size)
{
unsigned long mask;
u16 i;
for (i = 0; i < BITS_TO_CHUNKS(size) - 1; i++)
bmp[i] = 0;
mask = BITS_CHUNK_MASK(size);
bmp[i] &= ~mask;
}
static inline void
ice_or_bitmap(ice_bitmap_t *dst, const ice_bitmap_t *bmp1,
const ice_bitmap_t *bmp2, u16 size)
{
unsigned long mask;
u16 i;
/* Handle all but last chunk*/
for (i = 0; i < BITS_TO_CHUNKS(size) - 1; i++)
dst[i] = bmp1[i] | bmp2[i];
/* We want to only OR bits within the size. Furthermore, we also do
* not want to modify destination bits which are beyond the specified
* size. Use a bitmask to ensure that we only modify the bits that are
* within the specified size.
*/
mask = BITS_CHUNK_MASK(size);
dst[i] &= ~mask;
dst[i] |= (bmp1[i] | bmp2[i]) & mask;
}
static inline void ice_cp_bitmap(ice_bitmap_t *dst, ice_bitmap_t *src, u16 size)
{
ice_bitmap_t mask;
u16 i;
/* Handle all but last chunk*/
for (i = 0; i < BITS_TO_CHUNKS(size) - 1; i++)
dst[i] = src[i];
/* We want to only copy bits within the size.*/
mask = BITS_CHUNK_MASK(size);
dst[i] &= ~mask;
dst[i] |= src[i] & mask;
}
static inline bool
ice_cmp_bitmap(ice_bitmap_t *bmp1, ice_bitmap_t *bmp2, u16 size)
{
ice_bitmap_t mask;
u16 i;
/* Handle all but last chunk*/
for (i = 0; i < BITS_TO_CHUNKS(size) - 1; i++)
if (bmp1[i] != bmp2[i])
return false;
/* We want to only compare bits within the size.*/
mask = BITS_CHUNK_MASK(size);
if ((bmp1[i] & mask) != (bmp2[i] & mask))
return false;
return true;
}
/* SW spinlock */
struct ice_lock {
rte_spinlock_t spinlock;
};
static inline void
ice_init_lock(struct ice_lock *sp)
{
rte_spinlock_init(&sp->spinlock);
}
static inline void
ice_acquire_lock(struct ice_lock *sp)
{
rte_spinlock_lock(&sp->spinlock);
}
static inline void
ice_release_lock(struct ice_lock *sp)
{
rte_spinlock_unlock(&sp->spinlock);
}
static inline void
ice_destroy_lock(__attribute__((unused)) struct ice_lock *sp)
{
}
struct ice_hw;
static inline void *
ice_alloc_dma_mem(__attribute__((unused)) struct ice_hw *hw,
struct ice_dma_mem *mem, u64 size)
{
const struct rte_memzone *mz = NULL;
char z_name[RTE_MEMZONE_NAMESIZE];
if (!mem)
return NULL;
snprintf(z_name, sizeof(z_name), "ice_dma_%"PRIu64, rte_rand());
mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY, 0,
0, RTE_PGSIZE_2M);
if (!mz)
return NULL;
mem->size = size;
mem->va = mz->addr;
mem->pa = mz->phys_addr;
mem->zone = (const void *)mz;
PMD_DRV_LOG(DEBUG, "memzone %s allocated with physical address: "
"%"PRIu64, mz->name, mem->pa);
return mem->va;
}
static inline void
ice_free_dma_mem(__attribute__((unused)) struct ice_hw *hw,
struct ice_dma_mem *mem)
{
PMD_DRV_LOG(DEBUG, "memzone %s to be freed with physical address: "
"%"PRIu64, ((const struct rte_memzone *)mem->zone)->name,
mem->pa);
rte_memzone_free((const struct rte_memzone *)mem->zone);
mem->zone = NULL;
mem->va = NULL;
mem->pa = (u64)0;
}
static inline u8
ice_hweight8(u32 num)
{
u8 bits = 0;
u32 i;
for (i = 0; i < 8; i++) {
bits += (u8)(num & 0x1);
num >>= 1;
}
return bits;
}
#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
#define DELAY(x) rte_delay_us(x)
#define ice_usec_delay(x) rte_delay_us(x)
#define ice_msec_delay(x, y) rte_delay_us(1000 * (x))
#define udelay(x) DELAY(x)
#define msleep(x) DELAY(1000 * (x))
#define usleep_range(min, max) msleep(DIV_ROUND_UP(min, 1000))
struct ice_list_entry {
LIST_ENTRY(ice_list_entry) next;
};
LIST_HEAD(ice_list_head, ice_list_entry);
#define LIST_ENTRY_TYPE ice_list_entry
#define LIST_HEAD_TYPE ice_list_head
#define INIT_LIST_HEAD(list_head) LIST_INIT(list_head)
#define LIST_DEL(entry) LIST_REMOVE(entry, next)
/* LIST_EMPTY(list_head)) the same in sys/queue.h */
/*Note parameters are swapped*/
#define LIST_FIRST_ENTRY(head, type, field) (type *)((head)->lh_first)
#define LIST_ADD(entry, list_head) LIST_INSERT_HEAD(list_head, entry, next)
#define LIST_ADD_AFTER(entry, list_entry) \
LIST_INSERT_AFTER(list_entry, entry, next)
#define LIST_FOR_EACH_ENTRY(pos, head, type, member) \
for ((pos) = (head)->lh_first ? \
container_of((head)->lh_first, struct type, member) : \
0; \
(pos); \
(pos) = (pos)->member.next.le_next ? \
container_of((pos)->member.next.le_next, struct type, \
member) : \
0)
#define LIST_REPLACE_INIT(list_head, head) do { \
(head)->lh_first = (list_head)->lh_first; \
INIT_LIST_HEAD(list_head); \
} while (0)
#define HLIST_NODE_TYPE LIST_ENTRY_TYPE
#define HLIST_HEAD_TYPE LIST_HEAD_TYPE
#define INIT_HLIST_HEAD(list_head) INIT_LIST_HEAD(list_head)
#define HLIST_ADD_HEAD(entry, list_head) LIST_ADD(entry, list_head)
#define HLIST_EMPTY(list_head) LIST_EMPTY(list_head)
#define HLIST_DEL(entry) LIST_DEL(entry)
#define HLIST_FOR_EACH_ENTRY(pos, head, type, member) \
LIST_FOR_EACH_ENTRY(pos, head, type, member)
#define LIST_FOR_EACH_ENTRY_SAFE(pos, tmp, head, type, member) \
LIST_FOR_EACH_ENTRY(pos, head, type, member)
#ifndef ICE_DBG_TRACE
#define ICE_DBG_TRACE BIT_ULL(0)
#endif
#ifndef DIVIDE_AND_ROUND_UP
#define DIVIDE_AND_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
#endif
#ifndef ICE_INTEL_VENDOR_ID
#define ICE_INTEL_VENDOR_ID 0x8086
#endif
#ifndef IS_UNICAST_ETHER_ADDR
#define IS_UNICAST_ETHER_ADDR(addr) \
((bool)((((u8 *)(addr))[0] % ((u8)0x2)) == 0))
#endif
#ifndef IS_MULTICAST_ETHER_ADDR
#define IS_MULTICAST_ETHER_ADDR(addr) \
((bool)((((u8 *)(addr))[0] % ((u8)0x2)) == 1))
#endif
#ifndef IS_BROADCAST_ETHER_ADDR
/* Check whether an address is broadcast. */
#define IS_BROADCAST_ETHER_ADDR(addr) \
((bool)((((u16 *)(addr))[0] == ((u16)0xffff))))
#endif
#ifndef IS_ZERO_ETHER_ADDR
#define IS_ZERO_ETHER_ADDR(addr) \
(((bool)((((u16 *)(addr))[0] == ((u16)0x0)))) && \
((bool)((((u16 *)(addr))[1] == ((u16)0x0)))) && \
((bool)((((u16 *)(addr))[2] == ((u16)0x0)))))
#endif
#endif /* _ICE_OSDEP_H_ */