crypto/scheduler: use unified session

This patch updates the scheduler PMD to use unified session
data structure. Previously thanks to the private session
array in cryptodev sym session there are no necessary
change needed for scheduler PMD other than the way ops
are enqueued/dequeued. The patch inherits the same design
in the original session data structure to the scheduler PMD
so the cryptodev sym session can be as a linear buffer for
both session header and driver private data.

With the change there are inevitable extra cost on both memory
(64 bytes per session per driver type) and cycle count (set
the correct session for each cop based on the worker before
enqueue, and retrieve the original session after dequeue).

Signed-off-by: Fan Zhang <roy.fan.zhang@intel.com>
Signed-off-by: Akhil Goyal <gakhil@marvell.com>
Acked-by: Kai Ji <kai.ji@intel.com>
Tested-by: Gagandeep Singh <g.singh@nxp.com>
Tested-by: David Coyle <david.coyle@intel.com>
Tested-by: Kevin O'Sullivan <kevin.osullivan@intel.com>
This commit is contained in:
Fan Zhang 2022-10-04 23:07:05 +05:30 committed by Akhil Goyal
parent bdce2564db
commit 6812b9bf47
6 changed files with 318 additions and 40 deletions

View File

@ -16,18 +16,19 @@
struct fo_scheduler_qp_ctx {
struct scheduler_worker primary_worker;
struct scheduler_worker secondary_worker;
uint8_t primary_worker_index;
uint8_t secondary_worker_index;
uint8_t deq_idx;
};
static __rte_always_inline uint16_t
failover_worker_enqueue(struct scheduler_worker *worker,
struct rte_crypto_op **ops, uint16_t nb_ops)
struct rte_crypto_op **ops, uint16_t nb_ops, uint8_t index)
{
uint16_t i, processed_ops;
uint16_t processed_ops;
for (i = 0; i < nb_ops && i < 4; i++)
rte_prefetch0(ops[i]->sym->session);
scheduler_set_worker_session(ops, nb_ops, index);
processed_ops = rte_cryptodev_enqueue_burst(worker->dev_id,
worker->qp_id, ops, nb_ops);
@ -47,13 +48,14 @@ schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
return 0;
enqueued_ops = failover_worker_enqueue(&qp_ctx->primary_worker,
ops, nb_ops);
ops, nb_ops, PRIMARY_WORKER_IDX);
if (enqueued_ops < nb_ops)
enqueued_ops += failover_worker_enqueue(
&qp_ctx->secondary_worker,
&ops[enqueued_ops],
nb_ops - enqueued_ops);
nb_ops - enqueued_ops,
SECONDARY_WORKER_IDX);
return enqueued_ops;
}
@ -94,7 +96,7 @@ schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
qp_ctx->deq_idx = (~qp_ctx->deq_idx) & WORKER_SWITCH_MASK;
if (nb_deq_ops == nb_ops)
return nb_deq_ops;
goto retrieve_session;
worker = workers[qp_ctx->deq_idx];
@ -104,6 +106,9 @@ schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
worker->nb_inflight_cops -= nb_deq_ops2;
}
retrieve_session:
scheduler_retrieve_session(ops, nb_deq_ops + nb_deq_ops2);
return nb_deq_ops + nb_deq_ops2;
}

View File

@ -183,11 +183,19 @@ mc_scheduler_worker(struct rte_cryptodev *dev)
while (!mc_ctx->stop_signal) {
if (pending_enq_ops) {
scheduler_set_worker_session(
&enq_ops[pending_enq_ops_idx], pending_enq_ops,
worker_idx);
processed_ops =
rte_cryptodev_enqueue_burst(worker->dev_id,
worker->qp_id,
&enq_ops[pending_enq_ops_idx],
pending_enq_ops);
if (processed_ops < pending_deq_ops)
scheduler_retrieve_session(
&enq_ops[pending_enq_ops_idx +
processed_ops],
pending_deq_ops - processed_ops);
pending_enq_ops -= processed_ops;
pending_enq_ops_idx += processed_ops;
inflight_ops += processed_ops;
@ -195,9 +203,16 @@ mc_scheduler_worker(struct rte_cryptodev *dev)
processed_ops = rte_ring_dequeue_burst(enq_ring, (void *)enq_ops,
MC_SCHED_BUFFER_SIZE, NULL);
if (processed_ops) {
scheduler_set_worker_session(enq_ops,
processed_ops, worker_idx);
pending_enq_ops_idx = rte_cryptodev_enqueue_burst(
worker->dev_id, worker->qp_id,
enq_ops, processed_ops);
if (pending_enq_ops_idx < processed_ops)
scheduler_retrieve_session(
enq_ops + pending_enq_ops_idx,
processed_ops -
pending_enq_ops_idx);
pending_enq_ops = processed_ops - pending_enq_ops_idx;
inflight_ops += pending_enq_ops_idx;
}
@ -214,6 +229,8 @@ mc_scheduler_worker(struct rte_cryptodev *dev)
worker->dev_id, worker->qp_id, deq_ops,
MC_SCHED_BUFFER_SIZE);
if (processed_ops) {
scheduler_retrieve_session(deq_ops,
processed_ops);
inflight_ops -= processed_ops;
if (reordering_enabled) {
uint16_t j;

View File

@ -48,34 +48,54 @@ schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
};
struct psd_schedule_op *p_enq_op;
uint16_t i, processed_ops_pri = 0, processed_ops_sec = 0;
uint32_t job_len;
if (unlikely(nb_ops == 0))
return 0;
for (i = 0; i < nb_ops && i < 4; i++) {
rte_prefetch0(ops[i]->sym);
rte_prefetch0(ops[i]->sym->session);
rte_prefetch0((uint8_t *)ops[i]->sym->session +
sizeof(struct rte_cryptodev_sym_session));
}
for (i = 0; (i < (nb_ops - 8)) && (nb_ops > 8); i += 4) {
struct scheduler_session_ctx *sess_ctx[4];
uint8_t target[4];
uint32_t job_len[4];
rte_prefetch0(ops[i + 4]->sym);
rte_prefetch0(ops[i + 4]->sym->session);
rte_prefetch0((uint8_t *)ops[i + 4]->sym->session +
sizeof(struct rte_cryptodev_sym_session));
rte_prefetch0(ops[i + 5]->sym);
rte_prefetch0(ops[i + 5]->sym->session);
rte_prefetch0((uint8_t *)ops[i + 5]->sym->session +
sizeof(struct rte_cryptodev_sym_session));
rte_prefetch0(ops[i + 6]->sym);
rte_prefetch0(ops[i + 6]->sym->session);
rte_prefetch0((uint8_t *)ops[i + 6]->sym->session +
sizeof(struct rte_cryptodev_sym_session));
rte_prefetch0(ops[i + 7]->sym);
rte_prefetch0(ops[i + 7]->sym->session);
rte_prefetch0((uint8_t *)ops[i + 7]->sym->session +
sizeof(struct rte_cryptodev_sym_session));
sess_ctx[0] = (void *)ops[i]->sym->session->driver_priv_data;
sess_ctx[1] =
(void *)ops[i + 1]->sym->session->driver_priv_data;
sess_ctx[2] =
(void *)ops[i + 2]->sym->session->driver_priv_data;
sess_ctx[3] =
(void *)ops[i + 3]->sym->session->driver_priv_data;
/* job_len is initialized as cipher data length, once
* it is 0, equals to auth data length
*/
job_len = ops[i]->sym->cipher.data.length;
job_len += (ops[i]->sym->cipher.data.length == 0) *
job_len[0] = ops[i]->sym->cipher.data.length;
job_len[0] += (ops[i]->sym->cipher.data.length == 0) *
ops[i]->sym->auth.data.length;
/* decide the target op based on the job length */
p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];
target[0] = !(job_len[0] & psd_qp_ctx->threshold);
if (ops[i]->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
ops[i]->sym->session =
sess_ctx[0]->worker_sess[target[0]];
p_enq_op = &enq_ops[target[0]];
/* stop schedule cops before the queue is full, this shall
* prevent the failed enqueue
@ -89,10 +109,14 @@ schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
sched_ops[p_enq_op->worker_idx][p_enq_op->pos] = ops[i];
p_enq_op->pos++;
job_len = ops[i+1]->sym->cipher.data.length;
job_len += (ops[i+1]->sym->cipher.data.length == 0) *
job_len[1] = ops[i + 1]->sym->cipher.data.length;
job_len[1] += (ops[i + 1]->sym->cipher.data.length == 0) *
ops[i+1]->sym->auth.data.length;
p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];
target[1] = !(job_len[1] & psd_qp_ctx->threshold);
if (ops[i + 1]->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
ops[i + 1]->sym->session =
sess_ctx[1]->worker_sess[target[1]];
p_enq_op = &enq_ops[target[1]];
if (p_enq_op->pos + in_flight_ops[p_enq_op->worker_idx] ==
qp_ctx->max_nb_objs) {
@ -103,10 +127,14 @@ schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
sched_ops[p_enq_op->worker_idx][p_enq_op->pos] = ops[i+1];
p_enq_op->pos++;
job_len = ops[i+2]->sym->cipher.data.length;
job_len += (ops[i+2]->sym->cipher.data.length == 0) *
ops[i+2]->sym->auth.data.length;
p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];
job_len[2] = ops[i + 2]->sym->cipher.data.length;
job_len[2] += (ops[i + 2]->sym->cipher.data.length == 0) *
ops[i + 2]->sym->auth.data.length;
target[2] = !(job_len[2] & psd_qp_ctx->threshold);
if (ops[i + 2]->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
ops[i + 2]->sym->session =
sess_ctx[2]->worker_sess[target[2]];
p_enq_op = &enq_ops[target[2]];
if (p_enq_op->pos + in_flight_ops[p_enq_op->worker_idx] ==
qp_ctx->max_nb_objs) {
@ -117,10 +145,14 @@ schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
sched_ops[p_enq_op->worker_idx][p_enq_op->pos] = ops[i+2];
p_enq_op->pos++;
job_len = ops[i+3]->sym->cipher.data.length;
job_len += (ops[i+3]->sym->cipher.data.length == 0) *
ops[i+3]->sym->auth.data.length;
p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];
job_len[3] = ops[i + 3]->sym->cipher.data.length;
job_len[3] += (ops[i + 3]->sym->cipher.data.length == 0) *
ops[i + 3]->sym->auth.data.length;
target[3] = !(job_len[3] & psd_qp_ctx->threshold);
if (ops[i + 3]->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
ops[i + 3]->sym->session =
sess_ctx[1]->worker_sess[target[3]];
p_enq_op = &enq_ops[target[3]];
if (p_enq_op->pos + in_flight_ops[p_enq_op->worker_idx] ==
qp_ctx->max_nb_objs) {
@ -133,10 +165,18 @@ schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
}
for (; i < nb_ops; i++) {
struct scheduler_session_ctx *sess_ctx =
(void *)ops[i]->sym->session->driver_priv_data;
uint32_t job_len;
uint8_t target;
job_len = ops[i]->sym->cipher.data.length;
job_len += (ops[i]->sym->cipher.data.length == 0) *
ops[i]->sym->auth.data.length;
p_enq_op = &enq_ops[!(job_len & psd_qp_ctx->threshold)];
target = !(job_len & psd_qp_ctx->threshold);
if (ops[i]->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
ops[i]->sym->session = sess_ctx->worker_sess[target];
p_enq_op = &enq_ops[target];
if (p_enq_op->pos + in_flight_ops[p_enq_op->worker_idx] ==
qp_ctx->max_nb_objs) {
@ -199,6 +239,7 @@ schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
if (worker->nb_inflight_cops) {
nb_deq_ops_pri = rte_cryptodev_dequeue_burst(worker->dev_id,
worker->qp_id, ops, nb_ops);
scheduler_retrieve_session(ops, nb_deq_ops_pri);
worker->nb_inflight_cops -= nb_deq_ops_pri;
}
@ -213,6 +254,7 @@ schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
nb_deq_ops_sec = rte_cryptodev_dequeue_burst(worker->dev_id,
worker->qp_id, &ops[nb_deq_ops_pri],
nb_ops - nb_deq_ops_pri);
scheduler_retrieve_session(ops, nb_deq_ops_sec);
worker->nb_inflight_cops -= nb_deq_ops_sec;
if (!worker->nb_inflight_cops)

View File

@ -9,6 +9,7 @@
#include <rte_cryptodev.h>
#include <cryptodev_pmd.h>
#include <rte_reorder.h>
#include <rte_errno.h>
#include "scheduler_pmd_private.h"
@ -469,19 +470,113 @@ scheduler_pmd_sym_session_get_size(struct rte_cryptodev *dev __rte_unused)
return max_priv_sess_size;
}
struct scheduler_configured_sess_info {
uint8_t dev_id;
uint8_t driver_id;
struct rte_cryptodev_sym_session *sess;
};
static int
scheduler_pmd_sym_session_configure(struct rte_cryptodev *dev __rte_unused,
struct rte_crypto_sym_xform *xform __rte_unused,
struct rte_cryptodev_sym_session *sess __rte_unused)
scheduler_pmd_sym_session_configure(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform,
struct rte_cryptodev_sym_session *sess)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
struct rte_mempool *mp = rte_mempool_from_obj(sess);
struct scheduler_session_ctx *sess_ctx = (void *)sess->driver_priv_data;
struct scheduler_configured_sess_info configured_sess[
RTE_CRYPTODEV_SCHEDULER_MAX_NB_WORKERS] = {{0}};
uint32_t i, j, n_configured_sess = 0;
int ret = 0;
if (mp == NULL)
return -EINVAL;
for (i = 0; i < sched_ctx->nb_workers; i++) {
struct scheduler_worker *worker = &sched_ctx->workers[i];
struct rte_cryptodev_sym_session *worker_sess;
uint8_t next_worker = 0;
for (j = 0; j < n_configured_sess; j++) {
if (configured_sess[j].driver_id ==
worker->driver_id) {
sess_ctx->worker_sess[i] =
configured_sess[j].sess;
next_worker = 1;
break;
}
}
if (next_worker)
continue;
if (rte_mempool_avail_count(mp) == 0) {
ret = -ENOMEM;
goto error_exit;
}
worker_sess = rte_cryptodev_sym_session_create(worker->dev_id,
xform, mp);
if (worker_sess == NULL) {
ret = -rte_errno;
goto error_exit;
}
worker_sess->opaque_data = (uint64_t)sess;
sess_ctx->worker_sess[i] = worker_sess;
configured_sess[n_configured_sess].driver_id =
worker->driver_id;
configured_sess[n_configured_sess].dev_id = worker->dev_id;
configured_sess[n_configured_sess].sess = worker_sess;
n_configured_sess++;
}
return 0;
error_exit:
sess_ctx->ref_cnt = sched_ctx->ref_cnt;
for (i = 0; i < n_configured_sess; i++)
rte_cryptodev_sym_session_free(configured_sess[i].dev_id,
configured_sess[i].sess);
return ret;
}
/** Clear the memory of session so it doesn't leave key material behind */
static void
scheduler_pmd_sym_session_clear(struct rte_cryptodev *dev __rte_unused,
struct rte_cryptodev_sym_session *sess __rte_unused)
{}
scheduler_pmd_sym_session_clear(struct rte_cryptodev *dev,
struct rte_cryptodev_sym_session *sess)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
struct scheduler_session_ctx *sess_ctx = (void *)sess->driver_priv_data;
struct scheduler_configured_sess_info deleted_sess[
RTE_CRYPTODEV_SCHEDULER_MAX_NB_WORKERS] = {{0}};
uint32_t i, j, n_deleted_sess = 0;
if (sched_ctx->ref_cnt != sess_ctx->ref_cnt) {
CR_SCHED_LOG(WARNING,
"Worker updated between session creation/deletion. "
"The session may not be freed fully.");
}
for (i = 0; i < sched_ctx->nb_workers; i++) {
struct scheduler_worker *worker = &sched_ctx->workers[i];
uint8_t next_worker = 0;
for (j = 0; j < n_deleted_sess; j++) {
if (deleted_sess[j].driver_id == worker->driver_id) {
sess_ctx->worker_sess[i] = NULL;
next_worker = 1;
break;
}
}
if (next_worker)
continue;
rte_cryptodev_sym_session_free(worker->dev_id,
sess_ctx->worker_sess[i]);
deleted_sess[n_deleted_sess++].driver_id = worker->driver_id;
sess_ctx->worker_sess[i] = NULL;
}
}
static struct rte_cryptodev_ops scheduler_pmd_ops = {
.dev_configure = scheduler_pmd_config,

View File

@ -22,7 +22,6 @@ struct scheduler_worker {
uint8_t dev_id;
uint16_t qp_id;
uint32_t nb_inflight_cops;
uint8_t driver_id;
};
@ -37,6 +36,8 @@ struct scheduler_ctx {
struct scheduler_worker workers[RTE_CRYPTODEV_SCHEDULER_MAX_NB_WORKERS];
uint32_t nb_workers;
/* reference count when the workers are incremented/decremented */
uint32_t ref_cnt;
enum rte_cryptodev_scheduler_mode mode;
@ -61,6 +62,11 @@ struct scheduler_qp_ctx {
struct rte_ring *order_ring;
} __rte_cache_aligned;
struct scheduler_session_ctx {
uint32_t ref_cnt;
struct rte_cryptodev_sym_session *worker_sess[
RTE_CRYPTODEV_SCHEDULER_MAX_NB_WORKERS];
};
extern uint8_t cryptodev_scheduler_driver_id;
@ -101,6 +107,118 @@ scheduler_order_drain(struct rte_ring *order_ring,
return nb_ops_to_deq;
}
static __rte_always_inline void
scheduler_set_worker_session(struct rte_crypto_op **ops, uint16_t nb_ops,
uint8_t worker_index)
{
struct rte_crypto_op **op = ops;
uint16_t n = nb_ops;
if (n >= 4) {
rte_prefetch0(op[0]->sym->session);
rte_prefetch0(op[1]->sym->session);
rte_prefetch0(op[2]->sym->session);
rte_prefetch0(op[3]->sym->session);
}
while (n >= 4) {
if (n >= 8) {
rte_prefetch0(op[4]->sym->session);
rte_prefetch0(op[5]->sym->session);
rte_prefetch0(op[6]->sym->session);
rte_prefetch0(op[7]->sym->session);
}
if (op[0]->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
struct scheduler_session_ctx *sess_ctx =
(void *)op[0]->sym->session->driver_priv_data;
op[0]->sym->session =
sess_ctx->worker_sess[worker_index];
}
if (op[1]->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
struct scheduler_session_ctx *sess_ctx =
(void *)op[1]->sym->session->driver_priv_data;
op[1]->sym->session =
sess_ctx->worker_sess[worker_index];
}
if (op[2]->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
struct scheduler_session_ctx *sess_ctx =
(void *)op[2]->sym->session->driver_priv_data;
op[2]->sym->session =
sess_ctx->worker_sess[worker_index];
}
if (op[3]->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
struct scheduler_session_ctx *sess_ctx =
(void *)op[3]->sym->session->driver_priv_data;
op[3]->sym->session =
sess_ctx->worker_sess[worker_index];
}
op += 4;
n -= 4;
}
while (n--) {
if (op[0]->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
struct scheduler_session_ctx *sess_ctx =
(void *)op[0]->sym->session->driver_priv_data;
op[0]->sym->session =
sess_ctx->worker_sess[worker_index];
op++;
}
}
}
static __rte_always_inline void
scheduler_retrieve_session(struct rte_crypto_op **ops, uint16_t nb_ops)
{
uint16_t n = nb_ops;
struct rte_crypto_op **op = ops;
if (n >= 4) {
rte_prefetch0(op[0]->sym->session);
rte_prefetch0(op[1]->sym->session);
rte_prefetch0(op[2]->sym->session);
rte_prefetch0(op[3]->sym->session);
}
while (n >= 4) {
if (n >= 8) {
rte_prefetch0(op[4]->sym->session);
rte_prefetch0(op[5]->sym->session);
rte_prefetch0(op[6]->sym->session);
rte_prefetch0(op[7]->sym->session);
}
if (op[0]->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
op[0]->sym->session =
(void *)op[0]->sym->session->opaque_data;
if (op[1]->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
op[1]->sym->session =
(void *)op[1]->sym->session->opaque_data;
if (op[2]->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
op[2]->sym->session =
(void *)op[2]->sym->session->opaque_data;
if (op[3]->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
op[3]->sym->session =
(void *)op[3]->sym->session->opaque_data;
op += 4;
n -= 4;
}
while (n--) {
if (op[0]->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
op[0]->sym->session =
(void *)op[0]->sym->session->opaque_data;
op++;
}
}
/** device specific operations function pointer structure */
extern struct rte_cryptodev_ops *rte_crypto_scheduler_pmd_ops;

View File

@ -23,16 +23,17 @@ schedule_enqueue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
((struct scheduler_qp_ctx *)qp)->private_qp_ctx;
uint32_t worker_idx = rr_qp_ctx->last_enq_worker_idx;
struct scheduler_worker *worker = &rr_qp_ctx->workers[worker_idx];
uint16_t i, processed_ops;
uint16_t processed_ops;
if (unlikely(nb_ops == 0))
return 0;
for (i = 0; i < nb_ops && i < 4; i++)
rte_prefetch0(ops[i]->sym->session);
scheduler_set_worker_session(ops, nb_ops, worker_idx);
processed_ops = rte_cryptodev_enqueue_burst(worker->dev_id,
worker->qp_id, ops, nb_ops);
if (processed_ops < nb_ops)
scheduler_retrieve_session(ops + processed_ops,
nb_ops - processed_ops);
worker->nb_inflight_cops += processed_ops;
@ -86,7 +87,7 @@ schedule_dequeue(void *qp, struct rte_crypto_op **ops, uint16_t nb_ops)
nb_deq_ops = rte_cryptodev_dequeue_burst(worker->dev_id,
worker->qp_id, ops, nb_ops);
scheduler_retrieve_session(ops, nb_deq_ops);
last_worker_idx += 1;
last_worker_idx %= rr_qp_ctx->nb_workers;