net/ice: support advance Rx/Tx
Add Rx functions, scatter and bulk. Add Tx function, simple. Signed-off-by: Wenzhuo Lu <wenzhuo.lu@intel.com> Signed-off-by: Qiming Yang <qiming.yang@intel.com> Signed-off-by: Xiaoyun Li <xiaoyun.li@intel.com> Signed-off-by: Jingjing Wu <jingjing.wu@intel.com> Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
This commit is contained in:
parent
d0dd1c8e19
commit
6eac0b7fde
@ -8,9 +8,11 @@ Speed capabilities = Y
|
||||
Link status = Y
|
||||
Link status event = Y
|
||||
Rx interrupt = Y
|
||||
Fast mbuf free = Y
|
||||
Queue start/stop = Y
|
||||
MTU update = Y
|
||||
Jumbo frame = Y
|
||||
Scattered Rx = Y
|
||||
TSO = Y
|
||||
Unicast MAC filter = Y
|
||||
Multicast MAC filter = Y
|
||||
|
@ -1726,6 +1726,7 @@ ice_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
|
||||
DEV_RX_OFFLOAD_VLAN_EXTEND |
|
||||
DEV_RX_OFFLOAD_JUMBO_FRAME |
|
||||
DEV_RX_OFFLOAD_KEEP_CRC |
|
||||
DEV_RX_OFFLOAD_SCATTER |
|
||||
DEV_RX_OFFLOAD_VLAN_FILTER;
|
||||
dev_info->tx_offload_capa =
|
||||
DEV_TX_OFFLOAD_VLAN_INSERT |
|
||||
@ -1736,7 +1737,8 @@ ice_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
|
||||
DEV_TX_OFFLOAD_SCTP_CKSUM |
|
||||
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
|
||||
DEV_TX_OFFLOAD_TCP_TSO |
|
||||
DEV_TX_OFFLOAD_MULTI_SEGS;
|
||||
DEV_TX_OFFLOAD_MULTI_SEGS |
|
||||
DEV_TX_OFFLOAD_MBUF_FAST_FREE;
|
||||
dev_info->rx_queue_offload_capa = 0;
|
||||
dev_info->tx_queue_offload_capa = 0;
|
||||
|
||||
|
@ -111,6 +111,10 @@ ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
|
||||
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
|
||||
RTE_PKTMBUF_HEADROOM);
|
||||
|
||||
/* Check if scattered RX needs to be used. */
|
||||
if ((rxq->max_pkt_len + 2 * ICE_VLAN_TAG_SIZE) > buf_size)
|
||||
dev->data->scattered_rx = 1;
|
||||
|
||||
rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
|
||||
|
||||
/* Init the Rx tail register*/
|
||||
@ -1020,6 +1024,430 @@ ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_desc *rxdp)
|
||||
mb->vlan_tci, mb->vlan_tci_outer);
|
||||
}
|
||||
|
||||
#ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
|
||||
#define ICE_LOOK_AHEAD 8
|
||||
#if (ICE_LOOK_AHEAD != 8)
|
||||
#error "PMD ICE: ICE_LOOK_AHEAD must be 8\n"
|
||||
#endif
|
||||
static inline int
|
||||
ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
|
||||
{
|
||||
volatile union ice_rx_desc *rxdp;
|
||||
struct ice_rx_entry *rxep;
|
||||
struct rte_mbuf *mb;
|
||||
uint16_t pkt_len;
|
||||
uint64_t qword1;
|
||||
uint32_t rx_status;
|
||||
int32_t s[ICE_LOOK_AHEAD], nb_dd;
|
||||
int32_t i, j, nb_rx = 0;
|
||||
uint64_t pkt_flags = 0;
|
||||
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
|
||||
|
||||
rxdp = &rxq->rx_ring[rxq->rx_tail];
|
||||
rxep = &rxq->sw_ring[rxq->rx_tail];
|
||||
|
||||
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
|
||||
rx_status = (qword1 & ICE_RXD_QW1_STATUS_M) >> ICE_RXD_QW1_STATUS_S;
|
||||
|
||||
/* Make sure there is at least 1 packet to receive */
|
||||
if (!(rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)))
|
||||
return 0;
|
||||
|
||||
/**
|
||||
* Scan LOOK_AHEAD descriptors at a time to determine which
|
||||
* descriptors reference packets that are ready to be received.
|
||||
*/
|
||||
for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
|
||||
rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
|
||||
/* Read desc statuses backwards to avoid race condition */
|
||||
for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--) {
|
||||
qword1 = rte_le_to_cpu_64(
|
||||
rxdp[j].wb.qword1.status_error_len);
|
||||
s[j] = (qword1 & ICE_RXD_QW1_STATUS_M) >>
|
||||
ICE_RXD_QW1_STATUS_S;
|
||||
}
|
||||
|
||||
rte_smp_rmb();
|
||||
|
||||
/* Compute how many status bits were set */
|
||||
for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
|
||||
nb_dd += s[j] & (1 << ICE_RX_DESC_STATUS_DD_S);
|
||||
|
||||
nb_rx += nb_dd;
|
||||
|
||||
/* Translate descriptor info to mbuf parameters */
|
||||
for (j = 0; j < nb_dd; j++) {
|
||||
mb = rxep[j].mbuf;
|
||||
qword1 = rte_le_to_cpu_64(
|
||||
rxdp[j].wb.qword1.status_error_len);
|
||||
pkt_len = ((qword1 & ICE_RXD_QW1_LEN_PBUF_M) >>
|
||||
ICE_RXD_QW1_LEN_PBUF_S) - rxq->crc_len;
|
||||
mb->data_len = pkt_len;
|
||||
mb->pkt_len = pkt_len;
|
||||
mb->ol_flags = 0;
|
||||
pkt_flags = ice_rxd_status_to_pkt_flags(qword1);
|
||||
pkt_flags |= ice_rxd_error_to_pkt_flags(qword1);
|
||||
if (pkt_flags & PKT_RX_RSS_HASH)
|
||||
mb->hash.rss =
|
||||
rte_le_to_cpu_32(
|
||||
rxdp[j].wb.qword0.hi_dword.rss);
|
||||
mb->packet_type = ptype_tbl[(uint8_t)(
|
||||
(qword1 &
|
||||
ICE_RXD_QW1_PTYPE_M) >>
|
||||
ICE_RXD_QW1_PTYPE_S)];
|
||||
ice_rxd_to_vlan_tci(mb, &rxdp[j]);
|
||||
|
||||
mb->ol_flags |= pkt_flags;
|
||||
}
|
||||
|
||||
for (j = 0; j < ICE_LOOK_AHEAD; j++)
|
||||
rxq->rx_stage[i + j] = rxep[j].mbuf;
|
||||
|
||||
if (nb_dd != ICE_LOOK_AHEAD)
|
||||
break;
|
||||
}
|
||||
|
||||
/* Clear software ring entries */
|
||||
for (i = 0; i < nb_rx; i++)
|
||||
rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
|
||||
|
||||
PMD_RX_LOG(DEBUG, "ice_rx_scan_hw_ring: "
|
||||
"port_id=%u, queue_id=%u, nb_rx=%d",
|
||||
rxq->port_id, rxq->queue_id, nb_rx);
|
||||
|
||||
return nb_rx;
|
||||
}
|
||||
|
||||
static inline uint16_t
|
||||
ice_rx_fill_from_stage(struct ice_rx_queue *rxq,
|
||||
struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts)
|
||||
{
|
||||
uint16_t i;
|
||||
struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
|
||||
|
||||
nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
|
||||
|
||||
for (i = 0; i < nb_pkts; i++)
|
||||
rx_pkts[i] = stage[i];
|
||||
|
||||
rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
|
||||
rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
|
||||
|
||||
return nb_pkts;
|
||||
}
|
||||
|
||||
static inline int
|
||||
ice_rx_alloc_bufs(struct ice_rx_queue *rxq)
|
||||
{
|
||||
volatile union ice_rx_desc *rxdp;
|
||||
struct ice_rx_entry *rxep;
|
||||
struct rte_mbuf *mb;
|
||||
uint16_t alloc_idx, i;
|
||||
uint64_t dma_addr;
|
||||
int diag;
|
||||
|
||||
/* Allocate buffers in bulk */
|
||||
alloc_idx = (uint16_t)(rxq->rx_free_trigger -
|
||||
(rxq->rx_free_thresh - 1));
|
||||
rxep = &rxq->sw_ring[alloc_idx];
|
||||
diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
|
||||
rxq->rx_free_thresh);
|
||||
if (unlikely(diag != 0)) {
|
||||
PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
rxdp = &rxq->rx_ring[alloc_idx];
|
||||
for (i = 0; i < rxq->rx_free_thresh; i++) {
|
||||
if (likely(i < (rxq->rx_free_thresh - 1)))
|
||||
/* Prefetch next mbuf */
|
||||
rte_prefetch0(rxep[i + 1].mbuf);
|
||||
|
||||
mb = rxep[i].mbuf;
|
||||
rte_mbuf_refcnt_set(mb, 1);
|
||||
mb->next = NULL;
|
||||
mb->data_off = RTE_PKTMBUF_HEADROOM;
|
||||
mb->nb_segs = 1;
|
||||
mb->port = rxq->port_id;
|
||||
dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
|
||||
rxdp[i].read.hdr_addr = 0;
|
||||
rxdp[i].read.pkt_addr = dma_addr;
|
||||
}
|
||||
|
||||
/* Update rx tail regsiter */
|
||||
rte_wmb();
|
||||
ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
|
||||
|
||||
rxq->rx_free_trigger =
|
||||
(uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
|
||||
if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
|
||||
rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline uint16_t
|
||||
rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
||||
{
|
||||
struct ice_rx_queue *rxq = (struct ice_rx_queue *)rx_queue;
|
||||
uint16_t nb_rx = 0;
|
||||
struct rte_eth_dev *dev;
|
||||
|
||||
if (!nb_pkts)
|
||||
return 0;
|
||||
|
||||
if (rxq->rx_nb_avail)
|
||||
return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
|
||||
|
||||
nb_rx = (uint16_t)ice_rx_scan_hw_ring(rxq);
|
||||
rxq->rx_next_avail = 0;
|
||||
rxq->rx_nb_avail = nb_rx;
|
||||
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
|
||||
|
||||
if (rxq->rx_tail > rxq->rx_free_trigger) {
|
||||
if (ice_rx_alloc_bufs(rxq) != 0) {
|
||||
uint16_t i, j;
|
||||
|
||||
dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
|
||||
dev->data->rx_mbuf_alloc_failed +=
|
||||
rxq->rx_free_thresh;
|
||||
PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
|
||||
"port_id=%u, queue_id=%u",
|
||||
rxq->port_id, rxq->queue_id);
|
||||
rxq->rx_nb_avail = 0;
|
||||
rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
|
||||
for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
|
||||
rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
|
||||
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (rxq->rx_tail >= rxq->nb_rx_desc)
|
||||
rxq->rx_tail = 0;
|
||||
|
||||
if (rxq->rx_nb_avail)
|
||||
return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static uint16_t
|
||||
ice_recv_pkts_bulk_alloc(void *rx_queue,
|
||||
struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts)
|
||||
{
|
||||
uint16_t nb_rx = 0;
|
||||
uint16_t n;
|
||||
uint16_t count;
|
||||
|
||||
if (unlikely(nb_pkts == 0))
|
||||
return nb_rx;
|
||||
|
||||
if (likely(nb_pkts <= ICE_RX_MAX_BURST))
|
||||
return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
|
||||
|
||||
while (nb_pkts) {
|
||||
n = RTE_MIN(nb_pkts, ICE_RX_MAX_BURST);
|
||||
count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
|
||||
nb_rx = (uint16_t)(nb_rx + count);
|
||||
nb_pkts = (uint16_t)(nb_pkts - count);
|
||||
if (count < n)
|
||||
break;
|
||||
}
|
||||
|
||||
return nb_rx;
|
||||
}
|
||||
#else
|
||||
static uint16_t
|
||||
ice_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
|
||||
struct rte_mbuf __rte_unused **rx_pkts,
|
||||
uint16_t __rte_unused nb_pkts)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
#endif /* RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC */
|
||||
|
||||
static uint16_t
|
||||
ice_recv_scattered_pkts(void *rx_queue,
|
||||
struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts)
|
||||
{
|
||||
struct ice_rx_queue *rxq = rx_queue;
|
||||
volatile union ice_rx_desc *rx_ring = rxq->rx_ring;
|
||||
volatile union ice_rx_desc *rxdp;
|
||||
union ice_rx_desc rxd;
|
||||
struct ice_rx_entry *sw_ring = rxq->sw_ring;
|
||||
struct ice_rx_entry *rxe;
|
||||
struct rte_mbuf *first_seg = rxq->pkt_first_seg;
|
||||
struct rte_mbuf *last_seg = rxq->pkt_last_seg;
|
||||
struct rte_mbuf *nmb; /* new allocated mbuf */
|
||||
struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
|
||||
uint16_t rx_id = rxq->rx_tail;
|
||||
uint16_t nb_rx = 0;
|
||||
uint16_t nb_hold = 0;
|
||||
uint16_t rx_packet_len;
|
||||
uint32_t rx_status;
|
||||
uint64_t qword1;
|
||||
uint64_t dma_addr;
|
||||
uint64_t pkt_flags = 0;
|
||||
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
|
||||
struct rte_eth_dev *dev;
|
||||
|
||||
while (nb_rx < nb_pkts) {
|
||||
rxdp = &rx_ring[rx_id];
|
||||
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
|
||||
rx_status = (qword1 & ICE_RXD_QW1_STATUS_M) >>
|
||||
ICE_RXD_QW1_STATUS_S;
|
||||
|
||||
/* Check the DD bit first */
|
||||
if (!(rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)))
|
||||
break;
|
||||
|
||||
/* allocate mbuf */
|
||||
nmb = rte_mbuf_raw_alloc(rxq->mp);
|
||||
if (unlikely(!nmb)) {
|
||||
dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
|
||||
dev->data->rx_mbuf_alloc_failed++;
|
||||
break;
|
||||
}
|
||||
rxd = *rxdp; /* copy descriptor in ring to temp variable*/
|
||||
|
||||
nb_hold++;
|
||||
rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
|
||||
rx_id++;
|
||||
if (unlikely(rx_id == rxq->nb_rx_desc))
|
||||
rx_id = 0;
|
||||
|
||||
/* Prefetch next mbuf */
|
||||
rte_prefetch0(sw_ring[rx_id].mbuf);
|
||||
|
||||
/**
|
||||
* When next RX descriptor is on a cache line boundary,
|
||||
* prefetch the next 4 RX descriptors and next 8 pointers
|
||||
* to mbufs.
|
||||
*/
|
||||
if ((rx_id & 0x3) == 0) {
|
||||
rte_prefetch0(&rx_ring[rx_id]);
|
||||
rte_prefetch0(&sw_ring[rx_id]);
|
||||
}
|
||||
|
||||
rxm = rxe->mbuf;
|
||||
rxe->mbuf = nmb;
|
||||
dma_addr =
|
||||
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
|
||||
|
||||
/* Set data buffer address and data length of the mbuf */
|
||||
rxdp->read.hdr_addr = 0;
|
||||
rxdp->read.pkt_addr = dma_addr;
|
||||
rx_packet_len = (qword1 & ICE_RXD_QW1_LEN_PBUF_M) >>
|
||||
ICE_RXD_QW1_LEN_PBUF_S;
|
||||
rxm->data_len = rx_packet_len;
|
||||
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
||||
ice_rxd_to_vlan_tci(rxm, rxdp);
|
||||
rxm->packet_type = ptype_tbl[(uint8_t)((qword1 &
|
||||
ICE_RXD_QW1_PTYPE_M) >>
|
||||
ICE_RXD_QW1_PTYPE_S)];
|
||||
|
||||
/**
|
||||
* If this is the first buffer of the received packet, set the
|
||||
* pointer to the first mbuf of the packet and initialize its
|
||||
* context. Otherwise, update the total length and the number
|
||||
* of segments of the current scattered packet, and update the
|
||||
* pointer to the last mbuf of the current packet.
|
||||
*/
|
||||
if (!first_seg) {
|
||||
first_seg = rxm;
|
||||
first_seg->nb_segs = 1;
|
||||
first_seg->pkt_len = rx_packet_len;
|
||||
} else {
|
||||
first_seg->pkt_len =
|
||||
(uint16_t)(first_seg->pkt_len +
|
||||
rx_packet_len);
|
||||
first_seg->nb_segs++;
|
||||
last_seg->next = rxm;
|
||||
}
|
||||
|
||||
/**
|
||||
* If this is not the last buffer of the received packet,
|
||||
* update the pointer to the last mbuf of the current scattered
|
||||
* packet and continue to parse the RX ring.
|
||||
*/
|
||||
if (!(rx_status & (1 << ICE_RX_DESC_STATUS_EOF_S))) {
|
||||
last_seg = rxm;
|
||||
continue;
|
||||
}
|
||||
|
||||
/**
|
||||
* This is the last buffer of the received packet. If the CRC
|
||||
* is not stripped by the hardware:
|
||||
* - Subtract the CRC length from the total packet length.
|
||||
* - If the last buffer only contains the whole CRC or a part
|
||||
* of it, free the mbuf associated to the last buffer. If part
|
||||
* of the CRC is also contained in the previous mbuf, subtract
|
||||
* the length of that CRC part from the data length of the
|
||||
* previous mbuf.
|
||||
*/
|
||||
rxm->next = NULL;
|
||||
if (unlikely(rxq->crc_len > 0)) {
|
||||
first_seg->pkt_len -= ETHER_CRC_LEN;
|
||||
if (rx_packet_len <= ETHER_CRC_LEN) {
|
||||
rte_pktmbuf_free_seg(rxm);
|
||||
first_seg->nb_segs--;
|
||||
last_seg->data_len =
|
||||
(uint16_t)(last_seg->data_len -
|
||||
(ETHER_CRC_LEN - rx_packet_len));
|
||||
last_seg->next = NULL;
|
||||
} else
|
||||
rxm->data_len = (uint16_t)(rx_packet_len -
|
||||
ETHER_CRC_LEN);
|
||||
}
|
||||
|
||||
first_seg->port = rxq->port_id;
|
||||
first_seg->ol_flags = 0;
|
||||
|
||||
pkt_flags = ice_rxd_status_to_pkt_flags(qword1);
|
||||
pkt_flags |= ice_rxd_error_to_pkt_flags(qword1);
|
||||
if (pkt_flags & PKT_RX_RSS_HASH)
|
||||
first_seg->hash.rss =
|
||||
rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
|
||||
|
||||
first_seg->ol_flags |= pkt_flags;
|
||||
/* Prefetch data of first segment, if configured to do so. */
|
||||
rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
|
||||
first_seg->data_off));
|
||||
rx_pkts[nb_rx++] = first_seg;
|
||||
first_seg = NULL;
|
||||
}
|
||||
|
||||
/* Record index of the next RX descriptor to probe. */
|
||||
rxq->rx_tail = rx_id;
|
||||
rxq->pkt_first_seg = first_seg;
|
||||
rxq->pkt_last_seg = last_seg;
|
||||
|
||||
/**
|
||||
* If the number of free RX descriptors is greater than the RX free
|
||||
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
|
||||
* register. Update the RDT with the value of the last processed RX
|
||||
* descriptor minus 1, to guarantee that the RDT register is never
|
||||
* equal to the RDH register, which creates a "full" ring situtation
|
||||
* from the hardware point of view.
|
||||
*/
|
||||
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
|
||||
if (nb_hold > rxq->rx_free_thresh) {
|
||||
rx_id = (uint16_t)(rx_id == 0 ?
|
||||
(rxq->nb_rx_desc - 1) : (rx_id - 1));
|
||||
/* write TAIL register */
|
||||
ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
|
||||
nb_hold = 0;
|
||||
}
|
||||
rxq->nb_rx_hold = nb_hold;
|
||||
|
||||
/* return received packet in the burst */
|
||||
return nb_rx;
|
||||
}
|
||||
|
||||
const uint32_t *
|
||||
ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
|
||||
{
|
||||
@ -1053,7 +1481,11 @@ ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
|
||||
RTE_PTYPE_UNKNOWN
|
||||
};
|
||||
|
||||
if (dev->rx_pkt_burst == ice_recv_pkts)
|
||||
if (dev->rx_pkt_burst == ice_recv_pkts ||
|
||||
#ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
|
||||
dev->rx_pkt_burst == ice_recv_pkts_bulk_alloc ||
|
||||
#endif
|
||||
dev->rx_pkt_burst == ice_recv_scattered_pkts)
|
||||
return ptypes;
|
||||
return NULL;
|
||||
}
|
||||
@ -1310,6 +1742,20 @@ ice_xmit_cleanup(struct ice_tx_queue *txq)
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Construct the tx flags */
|
||||
static inline uint64_t
|
||||
ice_build_ctob(uint32_t td_cmd,
|
||||
uint32_t td_offset,
|
||||
uint16_t size,
|
||||
uint32_t td_tag)
|
||||
{
|
||||
return rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
|
||||
((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
|
||||
((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
|
||||
((uint64_t)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
|
||||
((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
|
||||
}
|
||||
|
||||
/* Check if the context descriptor is needed for TX offloading */
|
||||
static inline uint16_t
|
||||
ice_calc_context_desc(uint64_t flags)
|
||||
@ -1528,10 +1974,213 @@ ice_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
||||
return nb_tx;
|
||||
}
|
||||
|
||||
static inline int __attribute__((always_inline))
|
||||
ice_tx_free_bufs(struct ice_tx_queue *txq)
|
||||
{
|
||||
struct ice_tx_entry *txep;
|
||||
uint16_t i;
|
||||
|
||||
if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
|
||||
rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
|
||||
rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
|
||||
return 0;
|
||||
|
||||
txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)];
|
||||
|
||||
for (i = 0; i < txq->tx_rs_thresh; i++)
|
||||
rte_prefetch0((txep + i)->mbuf);
|
||||
|
||||
if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) {
|
||||
for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
|
||||
rte_mempool_put(txep->mbuf->pool, txep->mbuf);
|
||||
txep->mbuf = NULL;
|
||||
}
|
||||
} else {
|
||||
for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
|
||||
rte_pktmbuf_free_seg(txep->mbuf);
|
||||
txep->mbuf = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
|
||||
txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
|
||||
if (txq->tx_next_dd >= txq->nb_tx_desc)
|
||||
txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
|
||||
|
||||
return txq->tx_rs_thresh;
|
||||
}
|
||||
|
||||
/* Populate 4 descriptors with data from 4 mbufs */
|
||||
static inline void
|
||||
tx4(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
|
||||
{
|
||||
uint64_t dma_addr;
|
||||
uint32_t i;
|
||||
|
||||
for (i = 0; i < 4; i++, txdp++, pkts++) {
|
||||
dma_addr = rte_mbuf_data_iova(*pkts);
|
||||
txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
|
||||
txdp->cmd_type_offset_bsz =
|
||||
ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
|
||||
(*pkts)->data_len, 0);
|
||||
}
|
||||
}
|
||||
|
||||
/* Populate 1 descriptor with data from 1 mbuf */
|
||||
static inline void
|
||||
tx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
|
||||
{
|
||||
uint64_t dma_addr;
|
||||
|
||||
dma_addr = rte_mbuf_data_iova(*pkts);
|
||||
txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
|
||||
txdp->cmd_type_offset_bsz =
|
||||
ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
|
||||
(*pkts)->data_len, 0);
|
||||
}
|
||||
|
||||
static inline void
|
||||
ice_tx_fill_hw_ring(struct ice_tx_queue *txq, struct rte_mbuf **pkts,
|
||||
uint16_t nb_pkts)
|
||||
{
|
||||
volatile struct ice_tx_desc *txdp = &txq->tx_ring[txq->tx_tail];
|
||||
struct ice_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
|
||||
const int N_PER_LOOP = 4;
|
||||
const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
|
||||
int mainpart, leftover;
|
||||
int i, j;
|
||||
|
||||
/**
|
||||
* Process most of the packets in chunks of N pkts. Any
|
||||
* leftover packets will get processed one at a time.
|
||||
*/
|
||||
mainpart = nb_pkts & ((uint32_t)~N_PER_LOOP_MASK);
|
||||
leftover = nb_pkts & ((uint32_t)N_PER_LOOP_MASK);
|
||||
for (i = 0; i < mainpart; i += N_PER_LOOP) {
|
||||
/* Copy N mbuf pointers to the S/W ring */
|
||||
for (j = 0; j < N_PER_LOOP; ++j)
|
||||
(txep + i + j)->mbuf = *(pkts + i + j);
|
||||
tx4(txdp + i, pkts + i);
|
||||
}
|
||||
|
||||
if (unlikely(leftover > 0)) {
|
||||
for (i = 0; i < leftover; ++i) {
|
||||
(txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
|
||||
tx1(txdp + mainpart + i, pkts + mainpart + i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static inline uint16_t
|
||||
tx_xmit_pkts(struct ice_tx_queue *txq,
|
||||
struct rte_mbuf **tx_pkts,
|
||||
uint16_t nb_pkts)
|
||||
{
|
||||
volatile struct ice_tx_desc *txr = txq->tx_ring;
|
||||
uint16_t n = 0;
|
||||
|
||||
/**
|
||||
* Begin scanning the H/W ring for done descriptors when the number
|
||||
* of available descriptors drops below tx_free_thresh. For each done
|
||||
* descriptor, free the associated buffer.
|
||||
*/
|
||||
if (txq->nb_tx_free < txq->tx_free_thresh)
|
||||
ice_tx_free_bufs(txq);
|
||||
|
||||
/* Use available descriptor only */
|
||||
nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
|
||||
if (unlikely(!nb_pkts))
|
||||
return 0;
|
||||
|
||||
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
|
||||
if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
|
||||
n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
|
||||
ice_tx_fill_hw_ring(txq, tx_pkts, n);
|
||||
txr[txq->tx_next_rs].cmd_type_offset_bsz |=
|
||||
rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
|
||||
ICE_TXD_QW1_CMD_S);
|
||||
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
|
||||
txq->tx_tail = 0;
|
||||
}
|
||||
|
||||
/* Fill hardware descriptor ring with mbuf data */
|
||||
ice_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
|
||||
txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
|
||||
|
||||
/* Determin if RS bit needs to be set */
|
||||
if (txq->tx_tail > txq->tx_next_rs) {
|
||||
txr[txq->tx_next_rs].cmd_type_offset_bsz |=
|
||||
rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
|
||||
ICE_TXD_QW1_CMD_S);
|
||||
txq->tx_next_rs =
|
||||
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
|
||||
if (txq->tx_next_rs >= txq->nb_tx_desc)
|
||||
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
|
||||
}
|
||||
|
||||
if (txq->tx_tail >= txq->nb_tx_desc)
|
||||
txq->tx_tail = 0;
|
||||
|
||||
/* Update the tx tail register */
|
||||
rte_wmb();
|
||||
ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
|
||||
|
||||
return nb_pkts;
|
||||
}
|
||||
|
||||
static uint16_t
|
||||
ice_xmit_pkts_simple(void *tx_queue,
|
||||
struct rte_mbuf **tx_pkts,
|
||||
uint16_t nb_pkts)
|
||||
{
|
||||
uint16_t nb_tx = 0;
|
||||
|
||||
if (likely(nb_pkts <= ICE_TX_MAX_BURST))
|
||||
return tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
|
||||
tx_pkts, nb_pkts);
|
||||
|
||||
while (nb_pkts) {
|
||||
uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
|
||||
ICE_TX_MAX_BURST);
|
||||
|
||||
ret = tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
|
||||
&tx_pkts[nb_tx], num);
|
||||
nb_tx = (uint16_t)(nb_tx + ret);
|
||||
nb_pkts = (uint16_t)(nb_pkts - ret);
|
||||
if (ret < num)
|
||||
break;
|
||||
}
|
||||
|
||||
return nb_tx;
|
||||
}
|
||||
|
||||
void __attribute__((cold))
|
||||
ice_set_rx_function(struct rte_eth_dev *dev)
|
||||
{
|
||||
dev->rx_pkt_burst = ice_recv_pkts;
|
||||
PMD_INIT_FUNC_TRACE();
|
||||
struct ice_adapter *ad =
|
||||
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
||||
|
||||
if (dev->data->scattered_rx) {
|
||||
/* Set the non-LRO scattered function */
|
||||
PMD_INIT_LOG(DEBUG,
|
||||
"Using a Scattered function on port %d.",
|
||||
dev->data->port_id);
|
||||
dev->rx_pkt_burst = ice_recv_scattered_pkts;
|
||||
} else if (ad->rx_bulk_alloc_allowed) {
|
||||
PMD_INIT_LOG(DEBUG,
|
||||
"Rx Burst Bulk Alloc Preconditions are "
|
||||
"satisfied. Rx Burst Bulk Alloc function "
|
||||
"will be used on port %d.",
|
||||
dev->data->port_id);
|
||||
dev->rx_pkt_burst = ice_recv_pkts_bulk_alloc;
|
||||
} else {
|
||||
PMD_INIT_LOG(DEBUG,
|
||||
"Rx Burst Bulk Alloc Preconditions are not "
|
||||
"satisfied, Normal Rx will be used on port %d.",
|
||||
dev->data->port_id);
|
||||
dev->rx_pkt_burst = ice_recv_pkts;
|
||||
}
|
||||
}
|
||||
|
||||
/*********************************************************************
|
||||
@ -1585,8 +2234,18 @@ ice_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
|
||||
void __attribute__((cold))
|
||||
ice_set_tx_function(struct rte_eth_dev *dev)
|
||||
{
|
||||
struct ice_adapter *ad =
|
||||
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
|
||||
|
||||
if (ad->tx_simple_allowed) {
|
||||
PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
|
||||
dev->tx_pkt_burst = ice_xmit_pkts_simple;
|
||||
dev->tx_pkt_prepare = NULL;
|
||||
} else {
|
||||
PMD_INIT_LOG(DEBUG, "Normal tx finally be used.");
|
||||
dev->tx_pkt_burst = ice_xmit_pkts;
|
||||
dev->tx_pkt_prepare = ice_prep_pkts;
|
||||
}
|
||||
}
|
||||
|
||||
/* For each value it means, datasheet of hardware can tell more details
|
||||
|
Loading…
Reference in New Issue
Block a user