crypto/qat: support raw datapath API

This patch updates QAT PMD to add raw data-path API support.

Signed-off-by: Fan Zhang <roy.fan.zhang@intel.com>
Acked-by: Adam Dybkowski <adamx.dybkowski@intel.com>
This commit is contained in:
Fan Zhang 2020-10-11 01:38:53 +01:00 committed by Akhil Goyal
parent eb7eed345c
commit 728c76b0e5
6 changed files with 983 additions and 2 deletions

View File

@ -17,6 +17,7 @@ Digest encrypted = Y
Asymmetric sessionless = Y
RSA PRIV OP KEY EXP = Y
RSA PRIV OP KEY QT = Y
Sym raw data path API = Y
;
; Supported crypto algorithms of the 'qat' crypto driver.

View File

@ -193,6 +193,10 @@ New Features
* Updated the OCTEON TX2 crypto PMD lookaside protocol offload for IPsec with
IPv6 support.
* **Updated QAT crypto PMD.**
* Added Raw Data-path APIs support.
* **Added Intel ACC100 bbdev PMD.**
Added a new ``acc100`` bbdev driver for the Intel\ |reg| ACC100 accelerator

View File

@ -15,6 +15,7 @@ if dep.found()
qat_sources += files('qat_sym_pmd.c',
'qat_sym.c',
'qat_sym_session.c',
'qat_sym_hw_dp.c',
'qat_asym_pmd.c',
'qat_asym.c')
qat_ext_deps += dep

View File

@ -264,6 +264,16 @@ qat_sym_process_response(void **op, uint8_t *resp)
}
*op = (void *)rx_op;
}
int
qat_sym_configure_dp_ctx(struct rte_cryptodev *dev, uint16_t qp_id,
struct rte_crypto_raw_dp_ctx *raw_dp_ctx,
enum rte_crypto_op_sess_type sess_type,
union rte_cryptodev_session_ctx session_ctx, uint8_t is_update);
int
qat_sym_get_dp_ctx_size(struct rte_cryptodev *dev);
#else
static inline void
@ -276,5 +286,6 @@ static inline void
qat_sym_process_response(void **op __rte_unused, uint8_t *resp __rte_unused)
{
}
#endif
#endif /* _QAT_SYM_H_ */

View File

@ -0,0 +1,959 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Intel Corporation
*/
#include <rte_cryptodev_pmd.h>
#include "adf_transport_access_macros.h"
#include "icp_qat_fw.h"
#include "icp_qat_fw_la.h"
#include "qat_sym.h"
#include "qat_sym_pmd.h"
#include "qat_sym_session.h"
#include "qat_qp.h"
struct qat_sym_dp_ctx {
struct qat_sym_session *session;
uint32_t tail;
uint32_t head;
uint16_t cached_enqueue;
uint16_t cached_dequeue;
};
static __rte_always_inline int32_t
qat_sym_dp_parse_data_vec(struct qat_qp *qp, struct icp_qat_fw_la_bulk_req *req,
struct rte_crypto_vec *data, uint16_t n_data_vecs)
{
struct qat_queue *tx_queue;
struct qat_sym_op_cookie *cookie;
struct qat_sgl *list;
uint32_t i;
uint32_t total_len;
if (likely(n_data_vecs == 1)) {
req->comn_mid.src_data_addr = req->comn_mid.dest_data_addr =
data[0].iova;
req->comn_mid.src_length = req->comn_mid.dst_length =
data[0].len;
return data[0].len;
}
if (n_data_vecs == 0 || n_data_vecs > QAT_SYM_SGL_MAX_NUMBER)
return -1;
total_len = 0;
tx_queue = &qp->tx_q;
ICP_QAT_FW_COMN_PTR_TYPE_SET(req->comn_hdr.comn_req_flags,
QAT_COMN_PTR_TYPE_SGL);
cookie = qp->op_cookies[tx_queue->tail >> tx_queue->trailz];
list = (struct qat_sgl *)&cookie->qat_sgl_src;
for (i = 0; i < n_data_vecs; i++) {
list->buffers[i].len = data[i].len;
list->buffers[i].resrvd = 0;
list->buffers[i].addr = data[i].iova;
if (total_len + data[i].len > UINT32_MAX) {
QAT_DP_LOG(ERR, "Message too long");
return -1;
}
total_len += data[i].len;
}
list->num_bufs = i;
req->comn_mid.src_data_addr = req->comn_mid.dest_data_addr =
cookie->qat_sgl_src_phys_addr;
req->comn_mid.src_length = req->comn_mid.dst_length = 0;
return total_len;
}
static __rte_always_inline void
set_cipher_iv(struct icp_qat_fw_la_cipher_req_params *cipher_param,
struct rte_crypto_va_iova_ptr *iv_ptr, uint32_t iv_len,
struct icp_qat_fw_la_bulk_req *qat_req)
{
/* copy IV into request if it fits */
if (iv_len <= sizeof(cipher_param->u.cipher_IV_array))
rte_memcpy(cipher_param->u.cipher_IV_array, iv_ptr->va,
iv_len);
else {
ICP_QAT_FW_LA_CIPH_IV_FLD_FLAG_SET(
qat_req->comn_hdr.serv_specif_flags,
ICP_QAT_FW_CIPH_IV_64BIT_PTR);
cipher_param->u.s.cipher_IV_ptr = iv_ptr->iova;
}
}
#define QAT_SYM_DP_IS_RESP_SUCCESS(resp) \
(ICP_QAT_FW_COMN_STATUS_FLAG_OK == \
ICP_QAT_FW_COMN_RESP_CRYPTO_STAT_GET(resp->comn_hdr.comn_status))
static __rte_always_inline void
qat_sym_dp_fill_vec_status(int32_t *sta, int status, uint32_t n)
{
uint32_t i;
for (i = 0; i < n; i++)
sta[i] = status;
}
#define QAT_SYM_DP_GET_MAX_ENQ(q, c, n) \
RTE_MIN((q->max_inflights - q->enqueued + q->dequeued - c), n)
static __rte_always_inline void
enqueue_one_aead_job(struct qat_sym_session *ctx,
struct icp_qat_fw_la_bulk_req *req,
struct rte_crypto_va_iova_ptr *iv,
struct rte_crypto_va_iova_ptr *digest,
struct rte_crypto_va_iova_ptr *aad,
union rte_crypto_sym_ofs ofs, uint32_t data_len)
{
struct icp_qat_fw_la_cipher_req_params *cipher_param =
(void *)&req->serv_specif_rqpars;
struct icp_qat_fw_la_auth_req_params *auth_param =
(void *)((uint8_t *)&req->serv_specif_rqpars +
ICP_QAT_FW_HASH_REQUEST_PARAMETERS_OFFSET);
uint8_t *aad_data;
uint8_t aad_ccm_real_len;
uint8_t aad_len_field_sz;
uint32_t msg_len_be;
rte_iova_t aad_iova = 0;
uint8_t q;
switch (ctx->qat_hash_alg) {
case ICP_QAT_HW_AUTH_ALGO_GALOIS_128:
case ICP_QAT_HW_AUTH_ALGO_GALOIS_64:
ICP_QAT_FW_LA_GCM_IV_LEN_FLAG_SET(
req->comn_hdr.serv_specif_flags,
ICP_QAT_FW_LA_GCM_IV_LEN_12_OCTETS);
rte_memcpy(cipher_param->u.cipher_IV_array, iv->va,
ctx->cipher_iv.length);
aad_iova = aad->iova;
break;
case ICP_QAT_HW_AUTH_ALGO_AES_CBC_MAC:
aad_data = aad->va;
aad_iova = aad->iova;
aad_ccm_real_len = 0;
aad_len_field_sz = 0;
msg_len_be = rte_bswap32((uint32_t)data_len -
ofs.ofs.cipher.head);
if (ctx->aad_len > ICP_QAT_HW_CCM_AAD_DATA_OFFSET) {
aad_len_field_sz = ICP_QAT_HW_CCM_AAD_LEN_INFO;
aad_ccm_real_len = ctx->aad_len -
ICP_QAT_HW_CCM_AAD_B0_LEN -
ICP_QAT_HW_CCM_AAD_LEN_INFO;
} else {
aad_data = iv->va;
aad_iova = iv->iova;
}
q = ICP_QAT_HW_CCM_NQ_CONST - ctx->cipher_iv.length;
aad_data[0] = ICP_QAT_HW_CCM_BUILD_B0_FLAGS(
aad_len_field_sz, ctx->digest_length, q);
if (q > ICP_QAT_HW_CCM_MSG_LEN_MAX_FIELD_SIZE) {
memcpy(aad_data + ctx->cipher_iv.length +
ICP_QAT_HW_CCM_NONCE_OFFSET + (q -
ICP_QAT_HW_CCM_MSG_LEN_MAX_FIELD_SIZE),
(uint8_t *)&msg_len_be,
ICP_QAT_HW_CCM_MSG_LEN_MAX_FIELD_SIZE);
} else {
memcpy(aad_data + ctx->cipher_iv.length +
ICP_QAT_HW_CCM_NONCE_OFFSET,
(uint8_t *)&msg_len_be +
(ICP_QAT_HW_CCM_MSG_LEN_MAX_FIELD_SIZE
- q), q);
}
if (aad_len_field_sz > 0) {
*(uint16_t *)&aad_data[ICP_QAT_HW_CCM_AAD_B0_LEN] =
rte_bswap16(aad_ccm_real_len);
if ((aad_ccm_real_len + aad_len_field_sz)
% ICP_QAT_HW_CCM_AAD_B0_LEN) {
uint8_t pad_len = 0;
uint8_t pad_idx = 0;
pad_len = ICP_QAT_HW_CCM_AAD_B0_LEN -
((aad_ccm_real_len +
aad_len_field_sz) %
ICP_QAT_HW_CCM_AAD_B0_LEN);
pad_idx = ICP_QAT_HW_CCM_AAD_B0_LEN +
aad_ccm_real_len +
aad_len_field_sz;
memset(&aad_data[pad_idx], 0, pad_len);
}
}
rte_memcpy(((uint8_t *)cipher_param->u.cipher_IV_array)
+ ICP_QAT_HW_CCM_NONCE_OFFSET,
(uint8_t *)iv->va +
ICP_QAT_HW_CCM_NONCE_OFFSET, ctx->cipher_iv.length);
*(uint8_t *)&cipher_param->u.cipher_IV_array[0] =
q - ICP_QAT_HW_CCM_NONCE_OFFSET;
rte_memcpy((uint8_t *)aad->va +
ICP_QAT_HW_CCM_NONCE_OFFSET,
(uint8_t *)iv->va + ICP_QAT_HW_CCM_NONCE_OFFSET,
ctx->cipher_iv.length);
break;
default:
break;
}
cipher_param->cipher_offset = ofs.ofs.cipher.head;
cipher_param->cipher_length = data_len - ofs.ofs.cipher.head -
ofs.ofs.cipher.tail;
auth_param->auth_off = ofs.ofs.cipher.head;
auth_param->auth_len = cipher_param->cipher_length;
auth_param->auth_res_addr = digest->iova;
auth_param->u1.aad_adr = aad_iova;
if (ctx->is_single_pass) {
cipher_param->spc_aad_addr = aad_iova;
cipher_param->spc_auth_res_addr = digest->iova;
}
}
static __rte_always_inline int
qat_sym_dp_enqueue_single_aead(void *qp_data, uint8_t *drv_ctx,
struct rte_crypto_vec *data, uint16_t n_data_vecs,
union rte_crypto_sym_ofs ofs,
struct rte_crypto_va_iova_ptr *iv,
struct rte_crypto_va_iova_ptr *digest,
struct rte_crypto_va_iova_ptr *aad,
void *user_data)
{
struct qat_qp *qp = qp_data;
struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
struct qat_queue *tx_queue = &qp->tx_q;
struct qat_sym_session *ctx = dp_ctx->session;
struct icp_qat_fw_la_bulk_req *req;
int32_t data_len;
uint32_t tail = dp_ctx->tail;
req = (struct icp_qat_fw_la_bulk_req *)(
(uint8_t *)tx_queue->base_addr + tail);
tail = (tail + tx_queue->msg_size) & tx_queue->modulo_mask;
rte_mov128((uint8_t *)req, (const uint8_t *)&(ctx->fw_req));
rte_prefetch0((uint8_t *)tx_queue->base_addr + tail);
data_len = qat_sym_dp_parse_data_vec(qp, req, data, n_data_vecs);
if (unlikely(data_len < 0))
return -1;
req->comn_mid.opaque_data = (uint64_t)(uintptr_t)user_data;
enqueue_one_aead_job(ctx, req, iv, digest, aad, ofs,
(uint32_t)data_len);
dp_ctx->tail = tail;
dp_ctx->cached_enqueue++;
return 0;
}
static __rte_always_inline uint32_t
qat_sym_dp_enqueue_aead_jobs(void *qp_data, uint8_t *drv_ctx,
struct rte_crypto_sym_vec *vec, union rte_crypto_sym_ofs ofs,
void *user_data[], int *status)
{
struct qat_qp *qp = qp_data;
struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
struct qat_queue *tx_queue = &qp->tx_q;
struct qat_sym_session *ctx = dp_ctx->session;
uint32_t i, n;
uint32_t tail;
struct icp_qat_fw_la_bulk_req *req;
int32_t data_len;
n = QAT_SYM_DP_GET_MAX_ENQ(qp, dp_ctx->cached_enqueue, vec->num);
if (unlikely(n == 0)) {
qat_sym_dp_fill_vec_status(vec->status, -1, vec->num);
*status = 0;
return 0;
}
tail = dp_ctx->tail;
for (i = 0; i < n; i++) {
req = (struct icp_qat_fw_la_bulk_req *)(
(uint8_t *)tx_queue->base_addr + tail);
rte_mov128((uint8_t *)req, (const uint8_t *)&(ctx->fw_req));
data_len = qat_sym_dp_parse_data_vec(qp, req, vec->sgl[i].vec,
vec->sgl[i].num);
if (unlikely(data_len < 0))
break;
req->comn_mid.opaque_data = (uint64_t)(uintptr_t)user_data[i];
enqueue_one_aead_job(ctx, req, &vec->iv[i], &vec->digest[i],
&vec->aad[i], ofs, (uint32_t)data_len);
tail = (tail + tx_queue->msg_size) & tx_queue->modulo_mask;
}
if (unlikely(i < n))
qat_sym_dp_fill_vec_status(vec->status + i, -1, n - i);
dp_ctx->tail = tail;
dp_ctx->cached_enqueue += i;
*status = 0;
return i;
}
static __rte_always_inline void
enqueue_one_cipher_job(struct qat_sym_session *ctx,
struct icp_qat_fw_la_bulk_req *req,
struct rte_crypto_va_iova_ptr *iv,
union rte_crypto_sym_ofs ofs, uint32_t data_len)
{
struct icp_qat_fw_la_cipher_req_params *cipher_param;
cipher_param = (void *)&req->serv_specif_rqpars;
/* cipher IV */
set_cipher_iv(cipher_param, iv, ctx->cipher_iv.length, req);
cipher_param->cipher_offset = ofs.ofs.cipher.head;
cipher_param->cipher_length = data_len - ofs.ofs.cipher.head -
ofs.ofs.cipher.tail;
}
static __rte_always_inline int
qat_sym_dp_enqueue_single_cipher(void *qp_data, uint8_t *drv_ctx,
struct rte_crypto_vec *data, uint16_t n_data_vecs,
union rte_crypto_sym_ofs ofs,
struct rte_crypto_va_iova_ptr *iv,
struct rte_crypto_va_iova_ptr *digest __rte_unused,
struct rte_crypto_va_iova_ptr *aad __rte_unused,
void *user_data)
{
struct qat_qp *qp = qp_data;
struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
struct qat_queue *tx_queue = &qp->tx_q;
struct qat_sym_session *ctx = dp_ctx->session;
struct icp_qat_fw_la_bulk_req *req;
int32_t data_len;
uint32_t tail = dp_ctx->tail;
req = (struct icp_qat_fw_la_bulk_req *)(
(uint8_t *)tx_queue->base_addr + tail);
tail = (tail + tx_queue->msg_size) & tx_queue->modulo_mask;
rte_mov128((uint8_t *)req, (const uint8_t *)&(ctx->fw_req));
rte_prefetch0((uint8_t *)tx_queue->base_addr + tail);
data_len = qat_sym_dp_parse_data_vec(qp, req, data, n_data_vecs);
if (unlikely(data_len < 0))
return -1;
req->comn_mid.opaque_data = (uint64_t)(uintptr_t)user_data;
enqueue_one_cipher_job(ctx, req, iv, ofs, (uint32_t)data_len);
dp_ctx->tail = tail;
dp_ctx->cached_enqueue++;
return 0;
}
static __rte_always_inline uint32_t
qat_sym_dp_enqueue_cipher_jobs(void *qp_data, uint8_t *drv_ctx,
struct rte_crypto_sym_vec *vec, union rte_crypto_sym_ofs ofs,
void *user_data[], int *status)
{
struct qat_qp *qp = qp_data;
struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
struct qat_queue *tx_queue = &qp->tx_q;
struct qat_sym_session *ctx = dp_ctx->session;
uint32_t i, n;
uint32_t tail;
struct icp_qat_fw_la_bulk_req *req;
int32_t data_len;
n = QAT_SYM_DP_GET_MAX_ENQ(qp, dp_ctx->cached_enqueue, vec->num);
if (unlikely(n == 0)) {
qat_sym_dp_fill_vec_status(vec->status, -1, vec->num);
*status = 0;
return 0;
}
tail = dp_ctx->tail;
for (i = 0; i < n; i++) {
req = (struct icp_qat_fw_la_bulk_req *)(
(uint8_t *)tx_queue->base_addr + tail);
rte_mov128((uint8_t *)req, (const uint8_t *)&(ctx->fw_req));
data_len = qat_sym_dp_parse_data_vec(qp, req, vec->sgl[i].vec,
vec->sgl[i].num);
if (unlikely(data_len < 0))
break;
req->comn_mid.opaque_data = (uint64_t)(uintptr_t)user_data[i];
enqueue_one_cipher_job(ctx, req, &vec->iv[i], ofs,
(uint32_t)data_len);
tail = (tail + tx_queue->msg_size) & tx_queue->modulo_mask;
}
if (unlikely(i < n))
qat_sym_dp_fill_vec_status(vec->status + i, -1, n - i);
dp_ctx->tail = tail;
dp_ctx->cached_enqueue += i;
*status = 0;
return i;
}
static __rte_always_inline void
enqueue_one_auth_job(struct qat_sym_session *ctx,
struct icp_qat_fw_la_bulk_req *req,
struct rte_crypto_va_iova_ptr *digest,
struct rte_crypto_va_iova_ptr *auth_iv,
union rte_crypto_sym_ofs ofs, uint32_t data_len)
{
struct icp_qat_fw_la_cipher_req_params *cipher_param;
struct icp_qat_fw_la_auth_req_params *auth_param;
cipher_param = (void *)&req->serv_specif_rqpars;
auth_param = (void *)((uint8_t *)cipher_param +
ICP_QAT_FW_HASH_REQUEST_PARAMETERS_OFFSET);
auth_param->auth_off = ofs.ofs.auth.head;
auth_param->auth_len = data_len - ofs.ofs.auth.head -
ofs.ofs.auth.tail;
auth_param->auth_res_addr = digest->iova;
switch (ctx->qat_hash_alg) {
case ICP_QAT_HW_AUTH_ALGO_SNOW_3G_UIA2:
case ICP_QAT_HW_AUTH_ALGO_KASUMI_F9:
case ICP_QAT_HW_AUTH_ALGO_ZUC_3G_128_EIA3:
auth_param->u1.aad_adr = auth_iv->iova;
break;
case ICP_QAT_HW_AUTH_ALGO_GALOIS_128:
case ICP_QAT_HW_AUTH_ALGO_GALOIS_64:
ICP_QAT_FW_LA_GCM_IV_LEN_FLAG_SET(
req->comn_hdr.serv_specif_flags,
ICP_QAT_FW_LA_GCM_IV_LEN_12_OCTETS);
rte_memcpy(cipher_param->u.cipher_IV_array, auth_iv->va,
ctx->auth_iv.length);
break;
default:
break;
}
}
static __rte_always_inline int
qat_sym_dp_enqueue_single_auth(void *qp_data, uint8_t *drv_ctx,
struct rte_crypto_vec *data, uint16_t n_data_vecs,
union rte_crypto_sym_ofs ofs,
struct rte_crypto_va_iova_ptr *iv __rte_unused,
struct rte_crypto_va_iova_ptr *digest,
struct rte_crypto_va_iova_ptr *auth_iv,
void *user_data)
{
struct qat_qp *qp = qp_data;
struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
struct qat_queue *tx_queue = &qp->tx_q;
struct qat_sym_session *ctx = dp_ctx->session;
struct icp_qat_fw_la_bulk_req *req;
int32_t data_len;
uint32_t tail = dp_ctx->tail;
req = (struct icp_qat_fw_la_bulk_req *)(
(uint8_t *)tx_queue->base_addr + tail);
tail = (tail + tx_queue->msg_size) & tx_queue->modulo_mask;
rte_mov128((uint8_t *)req, (const uint8_t *)&(ctx->fw_req));
rte_prefetch0((uint8_t *)tx_queue->base_addr + tail);
data_len = qat_sym_dp_parse_data_vec(qp, req, data, n_data_vecs);
if (unlikely(data_len < 0))
return -1;
req->comn_mid.opaque_data = (uint64_t)(uintptr_t)user_data;
enqueue_one_auth_job(ctx, req, digest, auth_iv, ofs,
(uint32_t)data_len);
dp_ctx->tail = tail;
dp_ctx->cached_enqueue++;
return 0;
}
static __rte_always_inline uint32_t
qat_sym_dp_enqueue_auth_jobs(void *qp_data, uint8_t *drv_ctx,
struct rte_crypto_sym_vec *vec, union rte_crypto_sym_ofs ofs,
void *user_data[], int *status)
{
struct qat_qp *qp = qp_data;
struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
struct qat_queue *tx_queue = &qp->tx_q;
struct qat_sym_session *ctx = dp_ctx->session;
uint32_t i, n;
uint32_t tail;
struct icp_qat_fw_la_bulk_req *req;
int32_t data_len;
n = QAT_SYM_DP_GET_MAX_ENQ(qp, dp_ctx->cached_enqueue, vec->num);
if (unlikely(n == 0)) {
qat_sym_dp_fill_vec_status(vec->status, -1, vec->num);
*status = 0;
return 0;
}
tail = dp_ctx->tail;
for (i = 0; i < n; i++) {
req = (struct icp_qat_fw_la_bulk_req *)(
(uint8_t *)tx_queue->base_addr + tail);
rte_mov128((uint8_t *)req, (const uint8_t *)&(ctx->fw_req));
data_len = qat_sym_dp_parse_data_vec(qp, req, vec->sgl[i].vec,
vec->sgl[i].num);
if (unlikely(data_len < 0))
break;
req->comn_mid.opaque_data = (uint64_t)(uintptr_t)user_data[i];
enqueue_one_auth_job(ctx, req, &vec->digest[i],
&vec->auth_iv[i], ofs, (uint32_t)data_len);
tail = (tail + tx_queue->msg_size) & tx_queue->modulo_mask;
}
if (unlikely(i < n))
qat_sym_dp_fill_vec_status(vec->status + i, -1, n - i);
dp_ctx->tail = tail;
dp_ctx->cached_enqueue += i;
*status = 0;
return i;
}
static __rte_always_inline int
enqueue_one_chain_job(struct qat_sym_session *ctx,
struct icp_qat_fw_la_bulk_req *req,
struct rte_crypto_vec *data,
uint16_t n_data_vecs,
struct rte_crypto_va_iova_ptr *cipher_iv,
struct rte_crypto_va_iova_ptr *digest,
struct rte_crypto_va_iova_ptr *auth_iv,
union rte_crypto_sym_ofs ofs, uint32_t data_len)
{
struct icp_qat_fw_la_cipher_req_params *cipher_param;
struct icp_qat_fw_la_auth_req_params *auth_param;
rte_iova_t auth_iova_end;
int32_t cipher_len, auth_len;
cipher_param = (void *)&req->serv_specif_rqpars;
auth_param = (void *)((uint8_t *)cipher_param +
ICP_QAT_FW_HASH_REQUEST_PARAMETERS_OFFSET);
cipher_len = data_len - ofs.ofs.cipher.head -
ofs.ofs.cipher.tail;
auth_len = data_len - ofs.ofs.auth.head - ofs.ofs.auth.tail;
if (unlikely(cipher_len < 0 || auth_len < 0))
return -1;
cipher_param->cipher_offset = ofs.ofs.cipher.head;
cipher_param->cipher_length = cipher_len;
set_cipher_iv(cipher_param, cipher_iv, ctx->cipher_iv.length, req);
auth_param->auth_off = ofs.ofs.auth.head;
auth_param->auth_len = auth_len;
auth_param->auth_res_addr = digest->iova;
switch (ctx->qat_hash_alg) {
case ICP_QAT_HW_AUTH_ALGO_SNOW_3G_UIA2:
case ICP_QAT_HW_AUTH_ALGO_KASUMI_F9:
case ICP_QAT_HW_AUTH_ALGO_ZUC_3G_128_EIA3:
auth_param->u1.aad_adr = auth_iv->iova;
if (unlikely(n_data_vecs > 1)) {
int auth_end_get = 0, i = n_data_vecs - 1;
struct rte_crypto_vec *cvec = &data[0];
uint32_t len;
len = data_len - ofs.ofs.auth.tail;
while (i >= 0 && len > 0) {
if (cvec->len >= len) {
auth_iova_end = cvec->iova +
(cvec->len - len);
len = 0;
auth_end_get = 1;
break;
}
len -= cvec->len;
i--;
cvec++;
}
if (unlikely(auth_end_get == 0))
return -1;
} else
auth_iova_end = data[0].iova + auth_param->auth_off +
auth_param->auth_len;
/* Then check if digest-encrypted conditions are met */
if ((auth_param->auth_off + auth_param->auth_len <
cipher_param->cipher_offset +
cipher_param->cipher_length) &&
(digest->iova == auth_iova_end)) {
/* Handle partial digest encryption */
if (cipher_param->cipher_offset +
cipher_param->cipher_length <
auth_param->auth_off +
auth_param->auth_len +
ctx->digest_length)
req->comn_mid.dst_length =
req->comn_mid.src_length =
auth_param->auth_off +
auth_param->auth_len +
ctx->digest_length;
struct icp_qat_fw_comn_req_hdr *header =
&req->comn_hdr;
ICP_QAT_FW_LA_DIGEST_IN_BUFFER_SET(
header->serv_specif_flags,
ICP_QAT_FW_LA_DIGEST_IN_BUFFER);
}
break;
case ICP_QAT_HW_AUTH_ALGO_GALOIS_128:
case ICP_QAT_HW_AUTH_ALGO_GALOIS_64:
break;
default:
break;
}
return 0;
}
static __rte_always_inline int
qat_sym_dp_enqueue_single_chain(void *qp_data, uint8_t *drv_ctx,
struct rte_crypto_vec *data, uint16_t n_data_vecs,
union rte_crypto_sym_ofs ofs,
struct rte_crypto_va_iova_ptr *cipher_iv,
struct rte_crypto_va_iova_ptr *digest,
struct rte_crypto_va_iova_ptr *auth_iv,
void *user_data)
{
struct qat_qp *qp = qp_data;
struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
struct qat_queue *tx_queue = &qp->tx_q;
struct qat_sym_session *ctx = dp_ctx->session;
struct icp_qat_fw_la_bulk_req *req;
int32_t data_len;
uint32_t tail = dp_ctx->tail;
req = (struct icp_qat_fw_la_bulk_req *)(
(uint8_t *)tx_queue->base_addr + tail);
tail = (tail + tx_queue->msg_size) & tx_queue->modulo_mask;
rte_mov128((uint8_t *)req, (const uint8_t *)&(ctx->fw_req));
rte_prefetch0((uint8_t *)tx_queue->base_addr + tail);
data_len = qat_sym_dp_parse_data_vec(qp, req, data, n_data_vecs);
if (unlikely(data_len < 0))
return -1;
req->comn_mid.opaque_data = (uint64_t)(uintptr_t)user_data;
if (unlikely(enqueue_one_chain_job(ctx, req, data, n_data_vecs,
cipher_iv, digest, auth_iv, ofs, (uint32_t)data_len)))
return -1;
dp_ctx->tail = tail;
dp_ctx->cached_enqueue++;
return 0;
}
static __rte_always_inline uint32_t
qat_sym_dp_enqueue_chain_jobs(void *qp_data, uint8_t *drv_ctx,
struct rte_crypto_sym_vec *vec, union rte_crypto_sym_ofs ofs,
void *user_data[], int *status)
{
struct qat_qp *qp = qp_data;
struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
struct qat_queue *tx_queue = &qp->tx_q;
struct qat_sym_session *ctx = dp_ctx->session;
uint32_t i, n;
uint32_t tail;
struct icp_qat_fw_la_bulk_req *req;
int32_t data_len;
n = QAT_SYM_DP_GET_MAX_ENQ(qp, dp_ctx->cached_enqueue, vec->num);
if (unlikely(n == 0)) {
qat_sym_dp_fill_vec_status(vec->status, -1, vec->num);
*status = 0;
return 0;
}
tail = dp_ctx->tail;
for (i = 0; i < n; i++) {
req = (struct icp_qat_fw_la_bulk_req *)(
(uint8_t *)tx_queue->base_addr + tail);
rte_mov128((uint8_t *)req, (const uint8_t *)&(ctx->fw_req));
data_len = qat_sym_dp_parse_data_vec(qp, req, vec->sgl[i].vec,
vec->sgl[i].num);
if (unlikely(data_len < 0))
break;
req->comn_mid.opaque_data = (uint64_t)(uintptr_t)user_data[i];
if (unlikely(enqueue_one_chain_job(ctx, req, vec->sgl[i].vec,
vec->sgl[i].num, &vec->iv[i], &vec->digest[i],
&vec->auth_iv[i], ofs, (uint32_t)data_len)))
break;
tail = (tail + tx_queue->msg_size) & tx_queue->modulo_mask;
}
if (unlikely(i < n))
qat_sym_dp_fill_vec_status(vec->status + i, -1, n - i);
dp_ctx->tail = tail;
dp_ctx->cached_enqueue += i;
*status = 0;
return i;
}
static __rte_always_inline uint32_t
qat_sym_dp_dequeue_burst(void *qp_data, uint8_t *drv_ctx,
rte_cryptodev_raw_get_dequeue_count_t get_dequeue_count,
rte_cryptodev_raw_post_dequeue_t post_dequeue,
void **out_user_data, uint8_t is_user_data_array,
uint32_t *n_success_jobs, int *return_status)
{
struct qat_qp *qp = qp_data;
struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
struct qat_queue *rx_queue = &qp->rx_q;
struct icp_qat_fw_comn_resp *resp;
void *resp_opaque;
uint32_t i, n, inflight;
uint32_t head;
uint8_t status;
*n_success_jobs = 0;
*return_status = 0;
head = dp_ctx->head;
inflight = qp->enqueued - qp->dequeued;
if (unlikely(inflight == 0))
return 0;
resp = (struct icp_qat_fw_comn_resp *)((uint8_t *)rx_queue->base_addr +
head);
/* no operation ready */
if (unlikely(*(uint32_t *)resp == ADF_RING_EMPTY_SIG))
return 0;
resp_opaque = (void *)(uintptr_t)resp->opaque_data;
/* get the dequeue count */
n = get_dequeue_count(resp_opaque);
if (unlikely(n == 0))
return 0;
out_user_data[0] = resp_opaque;
status = QAT_SYM_DP_IS_RESP_SUCCESS(resp);
post_dequeue(resp_opaque, 0, status);
*n_success_jobs += status;
head = (head + rx_queue->msg_size) & rx_queue->modulo_mask;
/* we already finished dequeue when n == 1 */
if (unlikely(n == 1)) {
i = 1;
goto end_deq;
}
if (is_user_data_array) {
for (i = 1; i < n; i++) {
resp = (struct icp_qat_fw_comn_resp *)(
(uint8_t *)rx_queue->base_addr + head);
if (unlikely(*(uint32_t *)resp ==
ADF_RING_EMPTY_SIG))
goto end_deq;
out_user_data[i] = (void *)(uintptr_t)resp->opaque_data;
status = QAT_SYM_DP_IS_RESP_SUCCESS(resp);
*n_success_jobs += status;
post_dequeue(out_user_data[i], i, status);
head = (head + rx_queue->msg_size) &
rx_queue->modulo_mask;
}
goto end_deq;
}
/* opaque is not array */
for (i = 1; i < n; i++) {
resp = (struct icp_qat_fw_comn_resp *)(
(uint8_t *)rx_queue->base_addr + head);
status = QAT_SYM_DP_IS_RESP_SUCCESS(resp);
if (unlikely(*(uint32_t *)resp == ADF_RING_EMPTY_SIG))
goto end_deq;
head = (head + rx_queue->msg_size) &
rx_queue->modulo_mask;
post_dequeue(resp_opaque, i, status);
*n_success_jobs += status;
}
end_deq:
dp_ctx->head = head;
dp_ctx->cached_dequeue += i;
return i;
}
static __rte_always_inline void *
qat_sym_dp_dequeue(void *qp_data, uint8_t *drv_ctx, int *dequeue_status,
enum rte_crypto_op_status *op_status)
{
struct qat_qp *qp = qp_data;
struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
struct qat_queue *rx_queue = &qp->rx_q;
register struct icp_qat_fw_comn_resp *resp;
resp = (struct icp_qat_fw_comn_resp *)((uint8_t *)rx_queue->base_addr +
dp_ctx->head);
if (unlikely(*(uint32_t *)resp == ADF_RING_EMPTY_SIG))
return NULL;
dp_ctx->head = (dp_ctx->head + rx_queue->msg_size) &
rx_queue->modulo_mask;
dp_ctx->cached_dequeue++;
*op_status = QAT_SYM_DP_IS_RESP_SUCCESS(resp) ?
RTE_CRYPTO_OP_STATUS_SUCCESS :
RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
*dequeue_status = 0;
return (void *)(uintptr_t)resp->opaque_data;
}
static __rte_always_inline int
qat_sym_dp_kick_tail(void *qp_data, uint8_t *drv_ctx, uint32_t n)
{
struct qat_qp *qp = qp_data;
struct qat_queue *tx_queue = &qp->tx_q;
struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
if (unlikely(dp_ctx->cached_enqueue != n))
return -1;
qp->enqueued += n;
qp->stats.enqueued_count += n;
tx_queue->tail = dp_ctx->tail;
WRITE_CSR_RING_TAIL(qp->mmap_bar_addr,
tx_queue->hw_bundle_number,
tx_queue->hw_queue_number, tx_queue->tail);
tx_queue->csr_tail = tx_queue->tail;
dp_ctx->cached_enqueue = 0;
return 0;
}
static __rte_always_inline int
qat_sym_dp_update_head(void *qp_data, uint8_t *drv_ctx, uint32_t n)
{
struct qat_qp *qp = qp_data;
struct qat_queue *rx_queue = &qp->rx_q;
struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
if (unlikely(dp_ctx->cached_dequeue != n))
return -1;
rx_queue->head = dp_ctx->head;
rx_queue->nb_processed_responses += n;
qp->dequeued += n;
qp->stats.dequeued_count += n;
if (rx_queue->nb_processed_responses > QAT_CSR_HEAD_WRITE_THRESH) {
uint32_t old_head, new_head;
uint32_t max_head;
old_head = rx_queue->csr_head;
new_head = rx_queue->head;
max_head = qp->nb_descriptors * rx_queue->msg_size;
/* write out free descriptors */
void *cur_desc = (uint8_t *)rx_queue->base_addr + old_head;
if (new_head < old_head) {
memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE,
max_head - old_head);
memset(rx_queue->base_addr, ADF_RING_EMPTY_SIG_BYTE,
new_head);
} else {
memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, new_head -
old_head);
}
rx_queue->nb_processed_responses = 0;
rx_queue->csr_head = new_head;
/* write current head to CSR */
WRITE_CSR_RING_HEAD(qp->mmap_bar_addr,
rx_queue->hw_bundle_number, rx_queue->hw_queue_number,
new_head);
}
dp_ctx->cached_dequeue = 0;
return 0;
}
int
qat_sym_configure_dp_ctx(struct rte_cryptodev *dev, uint16_t qp_id,
struct rte_crypto_raw_dp_ctx *raw_dp_ctx,
enum rte_crypto_op_sess_type sess_type,
union rte_cryptodev_session_ctx session_ctx, uint8_t is_update)
{
struct qat_qp *qp;
struct qat_sym_session *ctx;
struct qat_sym_dp_ctx *dp_ctx;
qp = dev->data->queue_pairs[qp_id];
dp_ctx = (struct qat_sym_dp_ctx *)raw_dp_ctx->drv_ctx_data;
if (!is_update) {
memset(raw_dp_ctx, 0, sizeof(*raw_dp_ctx) +
sizeof(struct qat_sym_dp_ctx));
raw_dp_ctx->qp_data = dev->data->queue_pairs[qp_id];
dp_ctx->tail = qp->tx_q.tail;
dp_ctx->head = qp->rx_q.head;
dp_ctx->cached_enqueue = dp_ctx->cached_dequeue = 0;
}
if (sess_type != RTE_CRYPTO_OP_WITH_SESSION)
return -EINVAL;
ctx = (struct qat_sym_session *)get_sym_session_private_data(
session_ctx.crypto_sess, qat_sym_driver_id);
dp_ctx->session = ctx;
raw_dp_ctx->enqueue_done = qat_sym_dp_kick_tail;
raw_dp_ctx->dequeue_burst = qat_sym_dp_dequeue_burst;
raw_dp_ctx->dequeue = qat_sym_dp_dequeue;
raw_dp_ctx->dequeue_done = qat_sym_dp_update_head;
if (ctx->qat_cmd == ICP_QAT_FW_LA_CMD_HASH_CIPHER ||
ctx->qat_cmd == ICP_QAT_FW_LA_CMD_CIPHER_HASH) {
/* AES-GCM or AES-CCM */
if (ctx->qat_hash_alg == ICP_QAT_HW_AUTH_ALGO_GALOIS_128 ||
ctx->qat_hash_alg == ICP_QAT_HW_AUTH_ALGO_GALOIS_64 ||
(ctx->qat_cipher_alg == ICP_QAT_HW_CIPHER_ALGO_AES128
&& ctx->qat_mode == ICP_QAT_HW_CIPHER_CTR_MODE
&& ctx->qat_hash_alg ==
ICP_QAT_HW_AUTH_ALGO_AES_CBC_MAC)) {
raw_dp_ctx->enqueue_burst =
qat_sym_dp_enqueue_aead_jobs;
raw_dp_ctx->enqueue = qat_sym_dp_enqueue_single_aead;
} else {
raw_dp_ctx->enqueue_burst =
qat_sym_dp_enqueue_chain_jobs;
raw_dp_ctx->enqueue = qat_sym_dp_enqueue_single_chain;
}
} else if (ctx->qat_cmd == ICP_QAT_FW_LA_CMD_AUTH) {
raw_dp_ctx->enqueue_burst = qat_sym_dp_enqueue_auth_jobs;
raw_dp_ctx->enqueue = qat_sym_dp_enqueue_single_auth;
} else if (ctx->qat_cmd == ICP_QAT_FW_LA_CMD_CIPHER) {
raw_dp_ctx->enqueue_burst = qat_sym_dp_enqueue_cipher_jobs;
raw_dp_ctx->enqueue = qat_sym_dp_enqueue_single_cipher;
} else
return -1;
return 0;
}
int
qat_sym_get_dp_ctx_size(__rte_unused struct rte_cryptodev *dev)
{
return sizeof(struct qat_sym_dp_ctx);
}

View File

@ -258,7 +258,11 @@ static struct rte_cryptodev_ops crypto_qat_ops = {
/* Crypto related operations */
.sym_session_get_size = qat_sym_session_get_private_size,
.sym_session_configure = qat_sym_session_configure,
.sym_session_clear = qat_sym_session_clear
.sym_session_clear = qat_sym_session_clear,
/* Raw data-path API related operations */
.sym_get_raw_dp_ctx_size = qat_sym_get_dp_ctx_size,
.sym_configure_raw_dp_ctx = qat_sym_configure_dp_ctx,
};
#ifdef RTE_LIBRTE_SECURITY
@ -376,7 +380,8 @@ qat_sym_dev_create(struct qat_pci_device *qat_pci_dev,
RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT |
RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED;
RTE_CRYPTODEV_FF_DIGEST_ENCRYPTED |
RTE_CRYPTODEV_FF_SYM_RAW_DP;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;