net/ice: rework for generic flow enabling

The patch reworks the generic flow API (rte_flow) implementation.
It introduces an abstract layer which provides a unified interface
for low-level filter engine (switch, fdir, hash) to register supported
patterns and actions and implement flow validate/create/destroy/flush/
query activities.

The patch also removes the existing switch filter implementation to
avoid compile error. Switch filter implementation for the new framework
will be added in the following patch.

Signed-off-by: Ying A Wang <ying.a.wang@intel.com>
Acked-by: Qi Zhang <qi.z.zhang@intel.com>
Reviewed-by: Xiaolong Ye <xiaolong.ye@intel.com>
This commit is contained in:
Ying A Wang 2019-10-17 02:33:54 +08:00 committed by Ferruh Yigit
parent 0998c89a85
commit 7615a68950
6 changed files with 622 additions and 1554 deletions

View File

@ -15,7 +15,7 @@
#include "base/ice_dcb.h"
#include "ice_ethdev.h"
#include "ice_rxtx.h"
#include "ice_switch_filter.h"
#include "ice_generic_flow.h"
/* devargs */
#define ICE_SAFE_MODE_SUPPORT_ARG "safe-mode-support"
@ -2009,7 +2009,11 @@ ice_dev_init(struct rte_eth_dev *dev)
/* get base queue pairs index in the device */
ice_base_queue_get(pf);
TAILQ_INIT(&pf->flow_list);
ret = ice_flow_init(ad);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to initialize flow");
return ret;
}
return 0;
@ -2131,7 +2135,8 @@ ice_dev_close(struct rte_eth_dev *dev)
struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct rte_flow *p_flow;
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
/* Since stop will make link down, then the link event will be
* triggered, disable the irq firstly to avoid the port_infoe etc
@ -2142,6 +2147,8 @@ ice_dev_close(struct rte_eth_dev *dev)
ice_dev_stop(dev);
ice_flow_uninit(ad);
/* release all queue resource */
ice_free_queues(dev);
@ -2167,13 +2174,6 @@ ice_dev_close(struct rte_eth_dev *dev)
/* unregister callback func from eal lib */
rte_intr_callback_unregister(intr_handle,
ice_interrupt_handler, dev);
/* Remove all flows */
while ((p_flow = TAILQ_FIRST(&pf->flow_list))) {
TAILQ_REMOVE(&pf->flow_list, p_flow, node);
ice_free_switch_filter_rule(p_flow->rule);
rte_free(p_flow);
}
}
static int

View File

@ -241,16 +241,12 @@ struct ice_vsi {
bool offset_loaded;
};
extern const struct rte_flow_ops ice_flow_ops;
/* Struct to store flow created. */
struct rte_flow {
TAILQ_ENTRY(rte_flow) node;
void *rule;
};
struct rte_flow;
TAILQ_HEAD(ice_flow_list, rte_flow);
struct ice_flow_parser_node;
TAILQ_HEAD(ice_parser_list, ice_flow_parser_node);
struct ice_pf {
struct ice_adapter *adapter; /* The adapter this PF associate to */
struct ice_vsi *main_vsi; /* pointer to main VSI structure */
@ -279,6 +275,9 @@ struct ice_pf {
bool offset_loaded;
bool adapter_stopped;
struct ice_flow_list flow_list;
struct ice_parser_list rss_parser_list;
struct ice_parser_list perm_parser_list;
struct ice_parser_list dist_parser_list;
};
#define ICE_MAX_QUEUE_NUM 2048

View File

@ -17,7 +17,19 @@
#include "ice_ethdev.h"
#include "ice_generic_flow.h"
#include "ice_switch_filter.h"
/**
* Non-pipeline mode, fdir and switch both used as distributor,
* fdir used first, switch used as fdir's backup.
*/
#define ICE_FLOW_CLASSIFY_STAGE_DISTRIBUTOR_ONLY 0
/*Pipeline mode, switch used at permission stage*/
#define ICE_FLOW_CLASSIFY_STAGE_PERMISSION 1
/*Pipeline mode, fdir used at distributor stage*/
#define ICE_FLOW_CLASSIFY_STAGE_DISTRIBUTOR 2
static struct ice_engine_list engine_list =
TAILQ_HEAD_INITIALIZER(engine_list);
static int ice_flow_validate(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
@ -34,16 +46,175 @@ static int ice_flow_destroy(struct rte_eth_dev *dev,
struct rte_flow_error *error);
static int ice_flow_flush(struct rte_eth_dev *dev,
struct rte_flow_error *error);
static int ice_flow_query(struct rte_eth_dev *dev,
struct rte_flow *flow,
const struct rte_flow_action *actions,
void *data,
struct rte_flow_error *error);
const struct rte_flow_ops ice_flow_ops = {
.validate = ice_flow_validate,
.create = ice_flow_create,
.destroy = ice_flow_destroy,
.flush = ice_flow_flush,
.query = ice_flow_query,
};
void
ice_register_flow_engine(struct ice_flow_engine *engine)
{
TAILQ_INSERT_TAIL(&engine_list, engine, node);
}
int
ice_flow_init(struct ice_adapter *ad)
{
int ret;
struct ice_pf *pf = &ad->pf;
void *temp;
struct ice_flow_engine *engine;
TAILQ_INIT(&pf->flow_list);
TAILQ_INIT(&pf->rss_parser_list);
TAILQ_INIT(&pf->perm_parser_list);
TAILQ_INIT(&pf->dist_parser_list);
TAILQ_FOREACH_SAFE(engine, &engine_list, node, temp) {
if (engine->init == NULL) {
PMD_INIT_LOG(ERR, "Invalid engine type (%d)",
engine->type);
return -ENOTSUP;
}
ret = engine->init(ad);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to initialize engine %d",
engine->type);
return ret;
}
}
return 0;
}
void
ice_flow_uninit(struct ice_adapter *ad)
{
struct ice_pf *pf = &ad->pf;
struct ice_flow_engine *engine;
struct rte_flow *p_flow;
struct ice_flow_parser_node *p_parser;
void *temp;
TAILQ_FOREACH_SAFE(engine, &engine_list, node, temp) {
if (engine->uninit)
engine->uninit(ad);
}
/* Remove all flows */
while ((p_flow = TAILQ_FIRST(&pf->flow_list))) {
TAILQ_REMOVE(&pf->flow_list, p_flow, node);
if (p_flow->engine->free)
p_flow->engine->free(p_flow);
rte_free(p_flow);
}
/* Cleanup parser list */
while ((p_parser = TAILQ_FIRST(&pf->rss_parser_list))) {
TAILQ_REMOVE(&pf->rss_parser_list, p_parser, node);
rte_free(p_parser);
}
while ((p_parser = TAILQ_FIRST(&pf->perm_parser_list))) {
TAILQ_REMOVE(&pf->perm_parser_list, p_parser, node);
rte_free(p_parser);
}
while ((p_parser = TAILQ_FIRST(&pf->dist_parser_list))) {
TAILQ_REMOVE(&pf->dist_parser_list, p_parser, node);
rte_free(p_parser);
}
}
static struct ice_parser_list *
ice_get_parser_list(struct ice_flow_parser *parser,
struct ice_adapter *ad)
{
struct ice_parser_list *list;
struct ice_pf *pf = &ad->pf;
switch (parser->stage) {
case ICE_FLOW_STAGE_RSS:
list = &pf->rss_parser_list;
break;
case ICE_FLOW_STAGE_PERMISSION:
list = &pf->perm_parser_list;
break;
case ICE_FLOW_STAGE_DISTRIBUTOR:
list = &pf->dist_parser_list;
break;
default:
return NULL;
}
return list;
}
int
ice_register_parser(struct ice_flow_parser *parser,
struct ice_adapter *ad)
{
struct ice_parser_list *list;
struct ice_flow_parser_node *parser_node;
parser_node = rte_zmalloc("ice_parser", sizeof(*parser_node), 0);
if (parser_node == NULL) {
PMD_DRV_LOG(ERR, "Failed to allocate memory.");
return -ENOMEM;
}
parser_node->parser = parser;
list = ice_get_parser_list(parser, ad);
if (list == NULL)
return -EINVAL;
if (ad->devargs.pipe_mode_support) {
TAILQ_INSERT_TAIL(list, parser_node, node);
} else {
if (parser->engine->type == ICE_FLOW_ENGINE_SWITCH ||
parser->engine->type == ICE_FLOW_ENGINE_HASH)
TAILQ_INSERT_TAIL(list, parser_node, node);
else if (parser->engine->type == ICE_FLOW_ENGINE_FDIR)
TAILQ_INSERT_HEAD(list, parser_node, node);
else
return -EINVAL;
}
return 0;
}
void
ice_unregister_parser(struct ice_flow_parser *parser,
struct ice_adapter *ad)
{
struct ice_parser_list *list;
struct ice_flow_parser_node *p_parser;
void *temp;
list = ice_get_parser_list(parser, ad);
if (list == NULL)
return;
TAILQ_FOREACH_SAFE(p_parser, list, node, temp) {
if (p_parser->parser->engine->type == parser->engine->type) {
TAILQ_REMOVE(list, p_parser, node);
rte_free(p_parser);
}
}
}
static int
ice_flow_valid_attr(const struct rte_flow_attr *attr,
ice_flow_valid_attr(struct ice_adapter *ad,
const struct rte_flow_attr *attr,
int *ice_pipeline_stage,
struct rte_flow_error *error)
{
/* Must be input direction */
@ -62,12 +233,24 @@ ice_flow_valid_attr(const struct rte_flow_attr *attr,
return -rte_errno;
}
/* Not supported */
if (attr->priority) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Not support priority.");
return -rte_errno;
/* Check pipeline mode support to set classification stage */
if (ad->devargs.pipe_mode_support) {
if (attr->priority == 0)
*ice_pipeline_stage =
ICE_FLOW_CLASSIFY_STAGE_PERMISSION;
else
*ice_pipeline_stage =
ICE_FLOW_CLASSIFY_STAGE_DISTRIBUTOR;
} else {
*ice_pipeline_stage =
ICE_FLOW_CLASSIFY_STAGE_DISTRIBUTOR_ONLY;
/* Not supported */
if (attr->priority) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Not support priority.");
return -rte_errno;
}
}
/* Not supported */
@ -150,11 +333,15 @@ ice_match_pattern(enum rte_flow_item_type *item_array,
item->type == RTE_FLOW_ITEM_TYPE_END);
}
static uint64_t ice_flow_valid_pattern(const struct rte_flow_item pattern[],
struct ice_pattern_match_item *
ice_search_pattern_match_item(const struct rte_flow_item pattern[],
struct ice_pattern_match_item *array,
uint32_t array_len,
struct rte_flow_error *error)
{
uint16_t i = 0;
uint64_t inset;
struct ice_pattern_match_item *pattern_match_item;
/* need free by each filter */
struct rte_flow_item *items; /* used for pattern without VOID items */
uint32_t item_num = 0; /* non-void item number */
@ -171,401 +358,76 @@ static uint64_t ice_flow_valid_pattern(const struct rte_flow_item pattern[],
if (!items) {
rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "No memory for PMD internal items.");
return -ENOMEM;
return NULL;
}
pattern_match_item = rte_zmalloc("ice_pattern_match_item",
sizeof(struct ice_pattern_match_item), 0);
if (!pattern_match_item) {
rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Failed to allocate memory.");
return NULL;
}
ice_pattern_skip_void_item(items, pattern);
for (i = 0; i < RTE_DIM(ice_supported_patterns); i++)
if (ice_match_pattern(ice_supported_patterns[i].items,
items)) {
inset = ice_supported_patterns[i].sw_fields;
for (i = 0; i < array_len; i++)
if (ice_match_pattern(array[i].pattern_list,
items)) {
pattern_match_item->input_set_mask =
array[i].input_set_mask;
pattern_match_item->pattern_list =
array[i].pattern_list;
pattern_match_item->meta = array[i].meta;
rte_free(items);
return inset;
return pattern_match_item;
}
rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
pattern, "Unsupported pattern");
rte_free(items);
return 0;
rte_free(pattern_match_item);
return NULL;
}
static uint64_t ice_get_flow_field(const struct rte_flow_item pattern[],
struct rte_flow_error *error)
static struct ice_flow_engine *
ice_parse_engine(struct ice_adapter *ad,
struct ice_parser_list *parser_list,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
void **meta,
struct rte_flow_error *error)
{
const struct rte_flow_item *item = pattern;
const struct rte_flow_item_eth *eth_spec, *eth_mask;
const struct rte_flow_item_ipv4 *ipv4_spec, *ipv4_mask;
const struct rte_flow_item_ipv6 *ipv6_spec, *ipv6_mask;
const struct rte_flow_item_tcp *tcp_spec, *tcp_mask;
const struct rte_flow_item_udp *udp_spec, *udp_mask;
const struct rte_flow_item_sctp *sctp_spec, *sctp_mask;
const struct rte_flow_item_icmp *icmp_mask;
const struct rte_flow_item_icmp6 *icmp6_mask;
const struct rte_flow_item_vxlan *vxlan_spec, *vxlan_mask;
const struct rte_flow_item_nvgre *nvgre_spec, *nvgre_mask;
enum rte_flow_item_type item_type;
uint8_t ipv6_addr_mask[16] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
uint64_t input_set = ICE_INSET_NONE;
bool is_tunnel = false;
struct ice_flow_engine *engine = NULL;
struct ice_flow_parser_node *parser_node;
void *temp;
for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Not support range");
return 0;
}
item_type = item->type;
switch (item_type) {
case RTE_FLOW_ITEM_TYPE_ETH:
eth_spec = item->spec;
eth_mask = item->mask;
TAILQ_FOREACH_SAFE(parser_node, parser_list, node, temp) {
if (parser_node->parser->parse_pattern_action(ad,
parser_node->parser->array,
parser_node->parser->array_len,
pattern, actions, meta, error) < 0)
continue;
if (eth_spec && eth_mask) {
if (rte_is_broadcast_ether_addr(&eth_mask->src))
input_set |= ICE_INSET_SMAC;
if (rte_is_broadcast_ether_addr(&eth_mask->dst))
input_set |= ICE_INSET_DMAC;
if (eth_mask->type == RTE_BE16(0xffff))
input_set |= ICE_INSET_ETHERTYPE;
}
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
ipv4_spec = item->spec;
ipv4_mask = item->mask;
if (!(ipv4_spec && ipv4_mask))
break;
/* Check IPv4 mask and update input set */
if (ipv4_mask->hdr.version_ihl ||
ipv4_mask->hdr.total_length ||
ipv4_mask->hdr.packet_id ||
ipv4_mask->hdr.hdr_checksum) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid IPv4 mask.");
return 0;
}
if (is_tunnel) {
if (ipv4_mask->hdr.src_addr == UINT32_MAX)
input_set |= ICE_INSET_TUN_IPV4_SRC;
if (ipv4_mask->hdr.dst_addr == UINT32_MAX)
input_set |= ICE_INSET_TUN_IPV4_DST;
if (ipv4_mask->hdr.time_to_live == UINT8_MAX)
input_set |= ICE_INSET_TUN_IPV4_TTL;
if (ipv4_mask->hdr.next_proto_id == UINT8_MAX)
input_set |= ICE_INSET_TUN_IPV4_PROTO;
} else {
if (ipv4_mask->hdr.src_addr == UINT32_MAX)
input_set |= ICE_INSET_IPV4_SRC;
if (ipv4_mask->hdr.dst_addr == UINT32_MAX)
input_set |= ICE_INSET_IPV4_DST;
if (ipv4_mask->hdr.time_to_live == UINT8_MAX)
input_set |= ICE_INSET_IPV4_TTL;
if (ipv4_mask->hdr.next_proto_id == UINT8_MAX)
input_set |= ICE_INSET_IPV4_PROTO;
if (ipv4_mask->hdr.type_of_service == UINT8_MAX)
input_set |= ICE_INSET_IPV4_TOS;
}
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
ipv6_spec = item->spec;
ipv6_mask = item->mask;
if (!(ipv6_spec && ipv6_mask))
break;
if (ipv6_mask->hdr.payload_len) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid IPv6 mask");
return 0;
}
if (is_tunnel) {
if (!memcmp(ipv6_mask->hdr.src_addr,
ipv6_addr_mask,
RTE_DIM(ipv6_mask->hdr.src_addr)))
input_set |= ICE_INSET_TUN_IPV6_SRC;
if (!memcmp(ipv6_mask->hdr.dst_addr,
ipv6_addr_mask,
RTE_DIM(ipv6_mask->hdr.dst_addr)))
input_set |= ICE_INSET_TUN_IPV6_DST;
if (ipv6_mask->hdr.proto == UINT8_MAX)
input_set |= ICE_INSET_TUN_IPV6_PROTO;
if (ipv6_mask->hdr.hop_limits == UINT8_MAX)
input_set |= ICE_INSET_TUN_IPV6_TTL;
} else {
if (!memcmp(ipv6_mask->hdr.src_addr,
ipv6_addr_mask,
RTE_DIM(ipv6_mask->hdr.src_addr)))
input_set |= ICE_INSET_IPV6_SRC;
if (!memcmp(ipv6_mask->hdr.dst_addr,
ipv6_addr_mask,
RTE_DIM(ipv6_mask->hdr.dst_addr)))
input_set |= ICE_INSET_IPV6_DST;
if (ipv6_mask->hdr.proto == UINT8_MAX)
input_set |= ICE_INSET_IPV6_PROTO;
if (ipv6_mask->hdr.hop_limits == UINT8_MAX)
input_set |= ICE_INSET_IPV6_HOP_LIMIT;
if ((ipv6_mask->hdr.vtc_flow &
rte_cpu_to_be_32(RTE_IPV6_HDR_TC_MASK))
== rte_cpu_to_be_32
(RTE_IPV6_HDR_TC_MASK))
input_set |= ICE_INSET_IPV6_TOS;
}
break;
case RTE_FLOW_ITEM_TYPE_UDP:
udp_spec = item->spec;
udp_mask = item->mask;
if (!(udp_spec && udp_mask))
break;
/* Check UDP mask and update input set*/
if (udp_mask->hdr.dgram_len ||
udp_mask->hdr.dgram_cksum) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid UDP mask");
return 0;
}
if (is_tunnel) {
if (udp_mask->hdr.src_port == UINT16_MAX)
input_set |= ICE_INSET_TUN_SRC_PORT;
if (udp_mask->hdr.dst_port == UINT16_MAX)
input_set |= ICE_INSET_TUN_DST_PORT;
} else {
if (udp_mask->hdr.src_port == UINT16_MAX)
input_set |= ICE_INSET_SRC_PORT;
if (udp_mask->hdr.dst_port == UINT16_MAX)
input_set |= ICE_INSET_DST_PORT;
}
break;
case RTE_FLOW_ITEM_TYPE_TCP:
tcp_spec = item->spec;
tcp_mask = item->mask;
if (!(tcp_spec && tcp_mask))
break;
/* Check TCP mask and update input set */
if (tcp_mask->hdr.sent_seq ||
tcp_mask->hdr.recv_ack ||
tcp_mask->hdr.data_off ||
tcp_mask->hdr.tcp_flags ||
tcp_mask->hdr.rx_win ||
tcp_mask->hdr.cksum ||
tcp_mask->hdr.tcp_urp) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid TCP mask");
return 0;
}
if (is_tunnel) {
if (tcp_mask->hdr.src_port == UINT16_MAX)
input_set |= ICE_INSET_TUN_SRC_PORT;
if (tcp_mask->hdr.dst_port == UINT16_MAX)
input_set |= ICE_INSET_TUN_DST_PORT;
} else {
if (tcp_mask->hdr.src_port == UINT16_MAX)
input_set |= ICE_INSET_SRC_PORT;
if (tcp_mask->hdr.dst_port == UINT16_MAX)
input_set |= ICE_INSET_DST_PORT;
}
break;
case RTE_FLOW_ITEM_TYPE_SCTP:
sctp_spec = item->spec;
sctp_mask = item->mask;
if (!(sctp_spec && sctp_mask))
break;
/* Check SCTP mask and update input set */
if (sctp_mask->hdr.cksum) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid SCTP mask");
return 0;
}
if (is_tunnel) {
if (sctp_mask->hdr.src_port == UINT16_MAX)
input_set |= ICE_INSET_TUN_SRC_PORT;
if (sctp_mask->hdr.dst_port == UINT16_MAX)
input_set |= ICE_INSET_TUN_DST_PORT;
} else {
if (sctp_mask->hdr.src_port == UINT16_MAX)
input_set |= ICE_INSET_SRC_PORT;
if (sctp_mask->hdr.dst_port == UINT16_MAX)
input_set |= ICE_INSET_DST_PORT;
}
break;
case RTE_FLOW_ITEM_TYPE_ICMP:
icmp_mask = item->mask;
if (icmp_mask->hdr.icmp_code ||
icmp_mask->hdr.icmp_cksum ||
icmp_mask->hdr.icmp_ident ||
icmp_mask->hdr.icmp_seq_nb) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid ICMP mask");
return 0;
}
if (icmp_mask->hdr.icmp_type == UINT8_MAX)
input_set |= ICE_INSET_ICMP;
break;
case RTE_FLOW_ITEM_TYPE_ICMP6:
icmp6_mask = item->mask;
if (icmp6_mask->code ||
icmp6_mask->checksum) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid ICMP6 mask");
return 0;
}
if (icmp6_mask->type == UINT8_MAX)
input_set |= ICE_INSET_ICMP6;
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
vxlan_spec = item->spec;
vxlan_mask = item->mask;
/* Check if VXLAN item is used to describe protocol.
* If yes, both spec and mask should be NULL.
* If no, both spec and mask shouldn't be NULL.
*/
if ((!vxlan_spec && vxlan_mask) ||
(vxlan_spec && !vxlan_mask)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid VXLAN item");
return 0;
}
if (vxlan_mask && vxlan_mask->vni[0] == UINT8_MAX &&
vxlan_mask->vni[1] == UINT8_MAX &&
vxlan_mask->vni[2] == UINT8_MAX)
input_set |= ICE_INSET_TUN_ID;
is_tunnel = 1;
break;
case RTE_FLOW_ITEM_TYPE_NVGRE:
nvgre_spec = item->spec;
nvgre_mask = item->mask;
/* Check if NVGRE item is used to describe protocol.
* If yes, both spec and mask should be NULL.
* If no, both spec and mask shouldn't be NULL.
*/
if ((!nvgre_spec && nvgre_mask) ||
(nvgre_spec && !nvgre_mask)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid NVGRE item");
return 0;
}
if (nvgre_mask && nvgre_mask->tni[0] == UINT8_MAX &&
nvgre_mask->tni[1] == UINT8_MAX &&
nvgre_mask->tni[2] == UINT8_MAX)
input_set |= ICE_INSET_TUN_ID;
is_tunnel = 1;
break;
case RTE_FLOW_ITEM_TYPE_VOID:
break;
default:
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid pattern");
break;
}
engine = parser_node->parser->engine;
break;
}
return input_set;
}
static int ice_flow_valid_inset(const struct rte_flow_item pattern[],
uint64_t inset, struct rte_flow_error *error)
{
uint64_t fields;
/* get valid field */
fields = ice_get_flow_field(pattern, error);
if (!fields || fields & (~inset)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
pattern,
"Invalid input set");
return -rte_errno;
}
return 0;
}
static int ice_flow_valid_action(struct rte_eth_dev *dev,
const struct rte_flow_action *actions,
struct rte_flow_error *error)
{
const struct rte_flow_action_queue *act_q;
uint16_t queue;
const struct rte_flow_action *action;
for (action = actions; action->type !=
RTE_FLOW_ACTION_TYPE_END; action++) {
switch (action->type) {
case RTE_FLOW_ACTION_TYPE_QUEUE:
act_q = action->conf;
queue = act_q->index;
if (queue >= dev->data->nb_rx_queues) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
actions, "Invalid queue ID for"
" switch filter.");
return -rte_errno;
}
break;
case RTE_FLOW_ACTION_TYPE_DROP:
case RTE_FLOW_ACTION_TYPE_VOID:
break;
default:
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"Invalid action.");
return -rte_errno;
}
}
return 0;
return engine;
}
static int
ice_flow_validate(struct rte_eth_dev *dev,
ice_flow_validate_filter(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct ice_flow_engine **engine,
void **meta,
struct rte_flow_error *error)
{
uint64_t inset = 0;
int ret = ICE_ERR_NOT_SUPPORTED;
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
int ice_pipeline_stage = 0;
if (!pattern) {
rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM,
@ -587,25 +449,49 @@ ice_flow_validate(struct rte_eth_dev *dev,
return -rte_errno;
}
ret = ice_flow_valid_attr(attr, error);
ret = ice_flow_valid_attr(ad, attr, &ice_pipeline_stage, error);
if (ret)
return ret;
inset = ice_flow_valid_pattern(pattern, error);
if (!inset)
return -rte_errno;
*engine = ice_parse_engine(ad, &pf->rss_parser_list, pattern, actions,
meta, error);
if (*engine != NULL)
return 0;
ret = ice_flow_valid_inset(pattern, inset, error);
if (ret)
return ret;
switch (ice_pipeline_stage) {
case ICE_FLOW_CLASSIFY_STAGE_DISTRIBUTOR_ONLY:
case ICE_FLOW_CLASSIFY_STAGE_DISTRIBUTOR:
*engine = ice_parse_engine(ad, &pf->dist_parser_list, pattern,
actions, meta, error);
break;
case ICE_FLOW_CLASSIFY_STAGE_PERMISSION:
*engine = ice_parse_engine(ad, &pf->perm_parser_list, pattern,
actions, meta, error);
break;
default:
return -EINVAL;
}
ret = ice_flow_valid_action(dev, actions, error);
if (ret)
return ret;
if (*engine == NULL)
return -EINVAL;
return 0;
}
static int
ice_flow_validate(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
void *meta;
struct ice_flow_engine *engine;
return ice_flow_validate_filter(dev, attr, pattern, actions,
&engine, &meta, error);
}
static struct rte_flow *
ice_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
@ -616,6 +502,10 @@ ice_flow_create(struct rte_eth_dev *dev,
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct rte_flow *flow = NULL;
int ret;
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct ice_flow_engine *engine = NULL;
void *meta;
flow = rte_zmalloc("ice_flow", sizeof(struct rte_flow), 0);
if (!flow) {
@ -625,21 +515,28 @@ ice_flow_create(struct rte_eth_dev *dev,
return flow;
}
ret = ice_flow_validate(dev, attr, pattern, actions, error);
ret = ice_flow_validate_filter(dev, attr, pattern, actions,
&engine, &meta, error);
if (ret < 0)
goto free_flow;
ret = ice_create_switch_filter(pf, pattern, actions, flow, error);
if (engine->create == NULL) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Invalid engine");
goto free_flow;
}
ret = engine->create(ad, flow, meta, error);
if (ret)
goto free_flow;
flow->engine = engine;
TAILQ_INSERT_TAIL(&pf->flow_list, flow, node);
return flow;
free_flow:
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to create flow.");
PMD_DRV_LOG(ERR, "Failed to create flow");
rte_free(flow);
return NULL;
}
@ -650,17 +547,24 @@ ice_flow_destroy(struct rte_eth_dev *dev,
struct rte_flow_error *error)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
int ret = 0;
ret = ice_destroy_switch_filter(pf, flow, error);
if (!flow || !flow->engine || !flow->engine->destroy) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Invalid flow");
return -rte_errno;
}
ret = flow->engine->destroy(ad, flow, error);
if (!ret) {
TAILQ_REMOVE(&pf->flow_list, flow, node);
rte_free(flow);
} else {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to destroy flow.");
PMD_DRV_LOG(ERR, "Failed to destroy flow");
}
return ret;
@ -678,12 +582,46 @@ ice_flow_flush(struct rte_eth_dev *dev,
TAILQ_FOREACH_SAFE(p_flow, &pf->flow_list, node, temp) {
ret = ice_flow_destroy(dev, p_flow, error);
if (ret) {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to flush SW flows.");
return -rte_errno;
PMD_DRV_LOG(ERR, "Failed to flush flows");
return -EINVAL;
}
}
return ret;
}
static int
ice_flow_query(struct rte_eth_dev *dev,
struct rte_flow *flow,
const struct rte_flow_action *actions,
void *data,
struct rte_flow_error *error)
{
int ret = -EINVAL;
struct ice_adapter *ad =
ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
struct rte_flow_query_count *count = data;
if (!flow || !flow->engine || !flow->engine->query_count) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE,
NULL, "Invalid flow");
return -rte_errno;
}
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
ret = flow->engine->query_count(ad, flow, count, error);
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"action not supported");
}
}
return ret;
}

View File

@ -7,615 +7,278 @@
#include <rte_flow_driver.h>
struct ice_flow_pattern {
enum rte_flow_item_type *items;
uint64_t sw_fields;
/* protocol */
#define ICE_PROT_MAC_INNER (1ULL << 1)
#define ICE_PROT_MAC_OUTER (1ULL << 2)
#define ICE_PROT_VLAN_INNER (1ULL << 3)
#define ICE_PROT_VLAN_OUTER (1ULL << 4)
#define ICE_PROT_IPV4_INNER (1ULL << 5)
#define ICE_PROT_IPV4_OUTER (1ULL << 6)
#define ICE_PROT_IPV6_INNER (1ULL << 7)
#define ICE_PROT_IPV6_OUTER (1ULL << 8)
#define ICE_PROT_TCP_INNER (1ULL << 9)
#define ICE_PROT_TCP_OUTER (1ULL << 10)
#define ICE_PROT_UDP_INNER (1ULL << 11)
#define ICE_PROT_UDP_OUTER (1ULL << 12)
#define ICE_PROT_SCTP_INNER (1ULL << 13)
#define ICE_PROT_SCTP_OUTER (1ULL << 14)
#define ICE_PROT_ICMP4_INNER (1ULL << 15)
#define ICE_PROT_ICMP4_OUTER (1ULL << 16)
#define ICE_PROT_ICMP6_INNER (1ULL << 17)
#define ICE_PROT_ICMP6_OUTER (1ULL << 18)
#define ICE_PROT_VXLAN (1ULL << 19)
#define ICE_PROT_NVGRE (1ULL << 20)
#define ICE_PROT_GTPU (1ULL << 21)
/* field */
#define ICE_SMAC (1ULL << 63)
#define ICE_DMAC (1ULL << 62)
#define ICE_ETHERTYPE (1ULL << 61)
#define ICE_IP_SRC (1ULL << 60)
#define ICE_IP_DST (1ULL << 59)
#define ICE_IP_PROTO (1ULL << 58)
#define ICE_IP_TTL (1ULL << 57)
#define ICE_IP_TOS (1ULL << 56)
#define ICE_SPORT (1ULL << 55)
#define ICE_DPORT (1ULL << 54)
#define ICE_ICMP_TYPE (1ULL << 53)
#define ICE_ICMP_CODE (1ULL << 52)
#define ICE_VXLAN_VNI (1ULL << 51)
#define ICE_NVGRE_TNI (1ULL << 50)
#define ICE_GTPU_TEID (1ULL << 49)
#define ICE_GTPU_QFI (1ULL << 48)
/* input set */
#define ICE_INSET_NONE 0ULL
/* non-tunnel */
#define ICE_INSET_SMAC (ICE_PROT_MAC_OUTER | ICE_SMAC)
#define ICE_INSET_DMAC (ICE_PROT_MAC_OUTER | ICE_DMAC)
#define ICE_INSET_VLAN_INNER (ICE_PROT_VLAN_INNER)
#define ICE_INSET_VLAN_OUTER (ICE_PROT_VLAN_OUTER)
#define ICE_INSET_ETHERTYPE (ICE_ETHERTYPE)
#define ICE_INSET_IPV4_SRC \
(ICE_PROT_IPV4_OUTER | ICE_IP_SRC)
#define ICE_INSET_IPV4_DST \
(ICE_PROT_IPV4_OUTER | ICE_IP_DST)
#define ICE_INSET_IPV4_TOS \
(ICE_PROT_IPV4_OUTER | ICE_IP_TOS)
#define ICE_INSET_IPV4_PROTO \
(ICE_PROT_IPV4_OUTER | ICE_IP_PROTO)
#define ICE_INSET_IPV4_TTL \
(ICE_PROT_IPV4_OUTER | ICE_IP_TTL)
#define ICE_INSET_IPV6_SRC \
(ICE_PROT_IPV6_OUTER | ICE_IP_SRC)
#define ICE_INSET_IPV6_DST \
(ICE_PROT_IPV6_OUTER | ICE_IP_DST)
#define ICE_INSET_IPV6_NEXT_HDR \
(ICE_PROT_IPV6_OUTER | ICE_IP_PROTO)
#define ICE_INSET_IPV6_HOP_LIMIT \
(ICE_PROT_IPV6_OUTER | ICE_IP_TTL)
#define ICE_INSET_IPV6_TC \
(ICE_PROT_IPV6_OUTER | ICE_IP_TOS)
#define ICE_INSET_TCP_SRC_PORT \
(ICE_PROT_TCP_OUTER | ICE_SPORT)
#define ICE_INSET_TCP_DST_PORT \
(ICE_PROT_TCP_OUTER | ICE_DPORT)
#define ICE_INSET_UDP_SRC_PORT \
(ICE_PROT_UDP_OUTER | ICE_SPORT)
#define ICE_INSET_UDP_DST_PORT \
(ICE_PROT_UDP_OUTER | ICE_DPORT)
#define ICE_INSET_SCTP_SRC_PORT \
(ICE_PROT_SCTP_OUTER | ICE_SPORT)
#define ICE_INSET_SCTP_DST_PORT \
(ICE_PROT_SCTP_OUTER | ICE_DPORT)
#define ICE_INSET_ICMP4_SRC_PORT \
(ICE_PROT_ICMP4_OUTER | ICE_SPORT)
#define ICE_INSET_ICMP4_DST_PORT \
(ICE_PROT_ICMP4_OUTER | ICE_DPORT)
#define ICE_INSET_ICMP6_SRC_PORT \
(ICE_PROT_ICMP6_OUTER | ICE_SPORT)
#define ICE_INSET_ICMP6_DST_PORT \
(ICE_PROT_ICMP6_OUTER | ICE_DPORT)
#define ICE_INSET_ICMP4_TYPE \
(ICE_PROT_ICMP4_OUTER | ICE_ICMP_TYPE)
#define ICE_INSET_ICMP4_CODE \
(ICE_PROT_ICMP4_OUTER | ICE_ICMP_CODE)
#define ICE_INSET_ICMP6_TYPE \
(ICE_PROT_ICMP6_OUTER | ICE_ICMP_TYPE)
#define ICE_INSET_ICMP6_CODE \
(ICE_PROT_ICMP6_OUTER | ICE_ICMP_CODE)
/* tunnel */
#define ICE_INSET_TUN_SMAC \
(ICE_PROT_MAC_INNER | ICE_SMAC)
#define ICE_INSET_TUN_DMAC \
(ICE_PROT_MAC_INNER | ICE_DMAC)
#define ICE_INSET_TUN_IPV4_SRC \
(ICE_PROT_IPV4_INNER | ICE_IP_SRC)
#define ICE_INSET_TUN_IPV4_DST \
(ICE_PROT_IPV4_INNER | ICE_IP_DST)
#define ICE_INSET_TUN_IPV4_TTL \
(ICE_PROT_IPV4_INNER | ICE_IP_TTL)
#define ICE_INSET_TUN_IPV4_PROTO \
(ICE_PROT_IPV4_INNER | ICE_IP_PROTO)
#define ICE_INSET_TUN_IPV4_TOS \
(ICE_PROT_IPV4_INNER | ICE_IP_TOS)
#define ICE_INSET_TUN_IPV6_SRC \
(ICE_PROT_IPV6_INNER | ICE_IP_SRC)
#define ICE_INSET_TUN_IPV6_DST \
(ICE_PROT_IPV6_INNER | ICE_IP_DST)
#define ICE_INSET_TUN_IPV6_HOP_LIMIT \
(ICE_PROT_IPV6_INNER | ICE_IP_TTL)
#define ICE_INSET_TUN_IPV6_NEXT_HDR \
(ICE_PROT_IPV6_INNER | ICE_IP_PROTO)
#define ICE_INSET_TUN_IPV6_TC \
(ICE_PROT_IPV6_INNER | ICE_IP_TOS)
#define ICE_INSET_TUN_TCP_SRC_PORT \
(ICE_PROT_TCP_INNER | ICE_SPORT)
#define ICE_INSET_TUN_TCP_DST_PORT \
(ICE_PROT_TCP_INNER | ICE_DPORT)
#define ICE_INSET_TUN_UDP_SRC_PORT \
(ICE_PROT_UDP_INNER | ICE_SPORT)
#define ICE_INSET_TUN_UDP_DST_PORT \
(ICE_PROT_UDP_INNER | ICE_DPORT)
#define ICE_INSET_TUN_SCTP_SRC_PORT \
(ICE_PROT_SCTP_INNER | ICE_SPORT)
#define ICE_INSET_TUN_SCTP_DST_PORT \
(ICE_PROT_SCTP_INNER | ICE_DPORT)
#define ICE_INSET_TUN_ICMP4_SRC_PORT \
(ICE_PROT_ICMP4_INNER | ICE_SPORT)
#define ICE_INSET_TUN_ICMP4_DST_PORT \
(ICE_PROT_ICMP4_INNER | ICE_DPORT)
#define ICE_INSET_TUN_ICMP6_SRC_PORT \
(ICE_PROT_ICMP6_INNER | ICE_SPORT)
#define ICE_INSET_TUN_ICMP6_DST_PORT \
(ICE_PROT_ICMP6_INNER | ICE_DPORT)
#define ICE_INSET_TUN_ICMP4_TYPE \
(ICE_PROT_ICMP4_INNER | ICE_ICMP_TYPE)
#define ICE_INSET_TUN_ICMP4_CODE \
(ICE_PROT_ICMP4_INNER | ICE_ICMP_CODE)
#define ICE_INSET_TUN_ICMP6_TYPE \
(ICE_PROT_ICMP6_INNER | ICE_ICMP_TYPE)
#define ICE_INSET_TUN_ICMP6_CODE \
(ICE_PROT_ICMP6_INNER | ICE_ICMP_CODE)
#define ICE_INSET_TUN_VXLAN_VNI \
(ICE_PROT_VXLAN | ICE_VXLAN_VNI)
#define ICE_INSET_TUN_NVGRE_TNI \
(ICE_PROT_NVGRE | ICE_NVGRE_TNI)
#define ICE_INSET_GTPU_TEID \
(ICE_PROT_GTPU | ICE_GTPU_TEID)
#define ICE_INSET_GTPU_QFI \
(ICE_PROT_GTPU | ICE_GTPU_QFI)
struct ice_adapter;
extern const struct rte_flow_ops ice_flow_ops;
/* engine types. */
enum ice_flow_engine_type {
ICE_FLOW_ENGINE_NONE = 0,
ICE_FLOW_ENGINE_FDIR,
ICE_FLOW_ENGINE_SWITCH,
ICE_FLOW_ENGINE_HASH,
ICE_FLOW_ENGINE_ACL,
ICE_FLOW_ENGINE_MAX,
};
#define ICE_INSET_NONE 0x00000000000000000ULL
/* bit0 ~ bit 7 */
#define ICE_INSET_SMAC 0x0000000000000001ULL
#define ICE_INSET_DMAC 0x0000000000000002ULL
#define ICE_INSET_ETHERTYPE 0x0000000000000020ULL
/* bit 8 ~ bit 15 */
#define ICE_INSET_IPV4_SRC 0x0000000000000100ULL
#define ICE_INSET_IPV4_DST 0x0000000000000200ULL
#define ICE_INSET_IPV6_SRC 0x0000000000000400ULL
#define ICE_INSET_IPV6_DST 0x0000000000000800ULL
#define ICE_INSET_SRC_PORT 0x0000000000001000ULL
#define ICE_INSET_DST_PORT 0x0000000000002000ULL
#define ICE_INSET_ARP 0x0000000000004000ULL
/* bit 16 ~ bit 31 */
#define ICE_INSET_IPV4_TOS 0x0000000000010000ULL
#define ICE_INSET_IPV4_PROTO 0x0000000000020000ULL
#define ICE_INSET_IPV4_TTL 0x0000000000040000ULL
#define ICE_INSET_IPV6_TOS 0x0000000000100000ULL
#define ICE_INSET_IPV6_PROTO 0x0000000000200000ULL
#define ICE_INSET_IPV6_HOP_LIMIT 0x0000000000400000ULL
#define ICE_INSET_ICMP 0x0000000001000000ULL
#define ICE_INSET_ICMP6 0x0000000002000000ULL
/* bit 32 ~ bit 47, tunnel fields */
#define ICE_INSET_TUN_SMAC 0x0000000100000000ULL
#define ICE_INSET_TUN_DMAC 0x0000000200000000ULL
#define ICE_INSET_TUN_IPV4_SRC 0x0000000400000000ULL
#define ICE_INSET_TUN_IPV4_DST 0x0000000800000000ULL
#define ICE_INSET_TUN_IPV4_TTL 0x0000001000000000ULL
#define ICE_INSET_TUN_IPV4_PROTO 0x0000002000000000ULL
#define ICE_INSET_TUN_IPV6_SRC 0x0000004000000000ULL
#define ICE_INSET_TUN_IPV6_DST 0x0000008000000000ULL
#define ICE_INSET_TUN_IPV6_TTL 0x0000010000000000ULL
#define ICE_INSET_TUN_IPV6_PROTO 0x0000020000000000ULL
#define ICE_INSET_TUN_SRC_PORT 0x0000040000000000ULL
#define ICE_INSET_TUN_DST_PORT 0x0000080000000000ULL
#define ICE_INSET_TUN_ID 0x0000100000000000ULL
/* bit 48 ~ bit 55 */
#define ICE_INSET_LAST_ETHER_TYPE 0x0001000000000000ULL
#define ICE_FLAG_VLAN_INNER 0x00000001ULL
#define ICE_FLAG_VLAN_OUTER 0x00000002ULL
#define INSET_ETHER ( \
ICE_INSET_DMAC | ICE_INSET_SMAC | ICE_INSET_ETHERTYPE)
#define INSET_MAC_IPV4 ( \
ICE_INSET_DMAC | ICE_INSET_IPV4_DST | ICE_INSET_IPV4_SRC | \
ICE_INSET_IPV4_TTL | ICE_INSET_IPV4_TOS)
#define INSET_MAC_IPV4_L4 ( \
ICE_INSET_DMAC | ICE_INSET_IPV4_DST | ICE_INSET_IPV4_SRC | \
ICE_INSET_IPV4_TTL | ICE_INSET_IPV4_TOS | ICE_INSET_DST_PORT | \
ICE_INSET_SRC_PORT)
#define INSET_MAC_IPV4_ICMP ( \
ICE_INSET_DMAC | ICE_INSET_IPV4_DST | ICE_INSET_IPV4_SRC | \
ICE_INSET_IPV4_TTL | ICE_INSET_IPV4_TOS | ICE_INSET_ICMP)
#define INSET_MAC_IPV6 ( \
ICE_INSET_DMAC | ICE_INSET_IPV6_DST | ICE_INSET_IPV6_SRC | \
ICE_INSET_IPV6_TOS | ICE_INSET_IPV6_HOP_LIMIT)
#define INSET_MAC_IPV6_L4 ( \
ICE_INSET_DMAC | ICE_INSET_IPV6_DST | ICE_INSET_IPV6_SRC | \
ICE_INSET_IPV6_HOP_LIMIT | ICE_INSET_IPV6_TOS | \
ICE_INSET_DST_PORT | ICE_INSET_SRC_PORT)
#define INSET_MAC_IPV6_ICMP ( \
ICE_INSET_DMAC | ICE_INSET_IPV6_DST | ICE_INSET_IPV6_SRC | \
ICE_INSET_IPV6_HOP_LIMIT | ICE_INSET_IPV6_TOS | ICE_INSET_ICMP6)
#define INSET_TUNNEL_IPV4_TYPE1 ( \
ICE_INSET_TUN_IPV4_SRC | ICE_INSET_TUN_IPV4_DST | \
ICE_INSET_TUN_IPV4_TTL | ICE_INSET_TUN_IPV4_PROTO | \
ICE_INSET_TUN_ID)
#define INSET_TUNNEL_IPV4_TYPE2 ( \
ICE_INSET_TUN_IPV4_SRC | ICE_INSET_TUN_IPV4_DST | \
ICE_INSET_TUN_IPV4_TTL | ICE_INSET_TUN_IPV4_PROTO | \
ICE_INSET_TUN_SRC_PORT | ICE_INSET_TUN_DST_PORT | \
ICE_INSET_TUN_ID)
#define INSET_TUNNEL_IPV4_TYPE3 ( \
ICE_INSET_TUN_IPV4_SRC | ICE_INSET_TUN_IPV4_DST | \
ICE_INSET_TUN_IPV4_TTL | ICE_INSET_ICMP | \
ICE_INSET_TUN_ID)
#define INSET_TUNNEL_IPV6_TYPE1 ( \
ICE_INSET_TUN_IPV6_SRC | ICE_INSET_TUN_IPV6_DST | \
ICE_INSET_TUN_IPV6_TTL | ICE_INSET_TUN_IPV6_PROTO | \
ICE_INSET_TUN_ID)
#define INSET_TUNNEL_IPV6_TYPE2 ( \
ICE_INSET_TUN_IPV6_SRC | ICE_INSET_TUN_IPV6_DST | \
ICE_INSET_TUN_IPV6_TTL | ICE_INSET_TUN_IPV6_PROTO | \
ICE_INSET_TUN_SRC_PORT | ICE_INSET_TUN_DST_PORT | \
ICE_INSET_TUN_ID)
#define INSET_TUNNEL_IPV6_TYPE3 ( \
ICE_INSET_TUN_IPV6_SRC | ICE_INSET_TUN_IPV6_DST | \
ICE_INSET_TUN_IPV6_TTL | ICE_INSET_ICMP6 | \
ICE_INSET_TUN_ID)
/* L2 */
static enum rte_flow_item_type pattern_ethertype[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_END,
/**
* classification stages.
* for non-pipeline mode, we have two classification stages: Distributor/RSS
* for pipeline-mode we have three classification stages:
* Permission/Distributor/RSS
*/
enum ice_flow_classification_stage {
ICE_FLOW_STAGE_NONE = 0,
ICE_FLOW_STAGE_RSS,
ICE_FLOW_STAGE_PERMISSION,
ICE_FLOW_STAGE_DISTRIBUTOR,
ICE_FLOW_STAGE_MAX,
};
/* pattern structure */
struct ice_pattern_match_item {
enum rte_flow_item_type *pattern_list;
/* pattern_list must end with RTE_FLOW_ITEM_TYPE_END */
uint64_t input_set_mask;
void *meta;
};
/* non-tunnel IPv4 */
static enum rte_flow_item_type pattern_ipv4[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_END,
typedef int (*engine_init_t)(struct ice_adapter *ad);
typedef void (*engine_uninit_t)(struct ice_adapter *ad);
typedef int (*engine_create_t)(struct ice_adapter *ad,
struct rte_flow *flow,
void *meta,
struct rte_flow_error *error);
typedef int (*engine_destroy_t)(struct ice_adapter *ad,
struct rte_flow *flow,
struct rte_flow_error *error);
typedef int (*engine_query_t)(struct ice_adapter *ad,
struct rte_flow *flow,
struct rte_flow_query_count *count,
struct rte_flow_error *error);
typedef void (*engine_free_t) (struct rte_flow *flow);
typedef int (*parse_pattern_action_t)(struct ice_adapter *ad,
struct ice_pattern_match_item *array,
uint32_t array_len,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
void **meta,
struct rte_flow_error *error);
/* Struct to store engine created. */
struct ice_flow_engine {
TAILQ_ENTRY(ice_flow_engine) node;
engine_init_t init;
engine_uninit_t uninit;
engine_create_t create;
engine_destroy_t destroy;
engine_query_t query_count;
engine_free_t free;
enum ice_flow_engine_type type;
};
TAILQ_HEAD(ice_engine_list, ice_flow_engine);
/* Struct to store flow created. */
struct rte_flow {
TAILQ_ENTRY(rte_flow) node;
struct ice_flow_engine *engine;
void *rule;
};
static enum rte_flow_item_type pattern_ipv4_udp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
struct ice_flow_parser {
struct ice_flow_engine *engine;
struct ice_pattern_match_item *array;
uint32_t array_len;
parse_pattern_action_t parse_pattern_action;
enum ice_flow_classification_stage stage;
};
static enum rte_flow_item_type pattern_ipv4_tcp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_sctp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_icmp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_ICMP,
RTE_FLOW_ITEM_TYPE_END,
};
/* non-tunnel IPv6 */
static enum rte_flow_item_type pattern_ipv6[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv6_udp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv6_tcp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv6_sctp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv6_icmp6[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_ICMP6,
RTE_FLOW_ITEM_TYPE_END,
};
/* IPv4 VXLAN IPv4 */
static enum rte_flow_item_type pattern_ipv4_vxlan_ipv4[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_vxlan_ipv4_udp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_vxlan_ipv4_tcp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_vxlan_ipv4_sctp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_vxlan_ipv4_icmp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_ICMP,
RTE_FLOW_ITEM_TYPE_END,
};
/* IPv4 VXLAN MAC IPv4 */
static enum rte_flow_item_type pattern_ipv4_vxlan_eth_ipv4[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_vxlan_eth_ipv4_udp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_vxlan_eth_ipv4_tcp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_vxlan_eth_ipv4_sctp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_vxlan_eth_ipv4_icmp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_ICMP,
RTE_FLOW_ITEM_TYPE_END,
};
/* IPv4 VXLAN IPv6 */
static enum rte_flow_item_type pattern_ipv4_vxlan_ipv6[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_vxlan_ipv6_udp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_vxlan_ipv6_tcp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_vxlan_ipv6_sctp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_vxlan_ipv6_icmp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_ICMP,
RTE_FLOW_ITEM_TYPE_END,
};
/* IPv4 VXLAN MAC IPv6 */
static enum rte_flow_item_type pattern_ipv4_vxlan_eth_ipv6[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_vxlan_eth_ipv6_udp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_vxlan_eth_ipv6_tcp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_vxlan_eth_ipv6_sctp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_vxlan_eth_ipv6_icmp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_VXLAN,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_ICMP,
RTE_FLOW_ITEM_TYPE_END,
};
/* IPv4 NVGRE IPv4 */
static enum rte_flow_item_type pattern_ipv4_nvgre_ipv4[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_nvgre_ipv4_udp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_nvgre_ipv4_tcp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_nvgre_ipv4_sctp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_nvgre_ipv4_icmp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_ICMP,
RTE_FLOW_ITEM_TYPE_END,
};
/* IPv4 NVGRE MAC IPv4 */
static enum rte_flow_item_type pattern_ipv4_nvgre_eth_ipv4[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_nvgre_eth_ipv4_udp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_nvgre_eth_ipv4_tcp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_nvgre_eth_ipv4_sctp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_nvgre_eth_ipv4_icmp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_ICMP,
RTE_FLOW_ITEM_TYPE_END,
};
/* IPv4 NVGRE IPv6 */
static enum rte_flow_item_type pattern_ipv4_nvgre_ipv6[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_nvgre_ipv6_udp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_nvgre_ipv6_tcp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_nvgre_ipv6_sctp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,
};
/* IPv4 NVGRE MAC IPv6 */
static enum rte_flow_item_type pattern_ipv4_nvgre_eth_ipv6[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_nvgre_eth_ipv6_udp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_nvgre_eth_ipv6_tcp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
static enum rte_flow_item_type pattern_ipv4_nvgre_eth_ipv6_sctp[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_NVGRE,
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV6,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,
};
static struct ice_flow_pattern ice_supported_patterns[] = {
{pattern_ethertype, INSET_ETHER},
{pattern_ipv4, INSET_MAC_IPV4},
{pattern_ipv4_udp, INSET_MAC_IPV4_L4},
{pattern_ipv4_sctp, INSET_MAC_IPV4_L4},
{pattern_ipv4_tcp, INSET_MAC_IPV4_L4},
{pattern_ipv4_icmp, INSET_MAC_IPV4_ICMP},
{pattern_ipv6, INSET_MAC_IPV6},
{pattern_ipv6_udp, INSET_MAC_IPV6_L4},
{pattern_ipv6_sctp, INSET_MAC_IPV6_L4},
{pattern_ipv6_tcp, INSET_MAC_IPV6_L4},
{pattern_ipv6_icmp6, INSET_MAC_IPV6_ICMP},
{pattern_ipv4_vxlan_ipv4, INSET_TUNNEL_IPV4_TYPE1},
{pattern_ipv4_vxlan_ipv4_udp, INSET_TUNNEL_IPV4_TYPE2},
{pattern_ipv4_vxlan_ipv4_tcp, INSET_TUNNEL_IPV4_TYPE2},
{pattern_ipv4_vxlan_ipv4_sctp, INSET_TUNNEL_IPV4_TYPE2},
{pattern_ipv4_vxlan_ipv4_icmp, INSET_TUNNEL_IPV4_TYPE3},
{pattern_ipv4_vxlan_eth_ipv4, INSET_TUNNEL_IPV4_TYPE1},
{pattern_ipv4_vxlan_eth_ipv4_udp, INSET_TUNNEL_IPV4_TYPE2},
{pattern_ipv4_vxlan_eth_ipv4_tcp, INSET_TUNNEL_IPV4_TYPE2},
{pattern_ipv4_vxlan_eth_ipv4_sctp, INSET_TUNNEL_IPV4_TYPE2},
{pattern_ipv4_vxlan_eth_ipv4_icmp, INSET_TUNNEL_IPV4_TYPE3},
{pattern_ipv4_vxlan_ipv6, INSET_TUNNEL_IPV6_TYPE1},
{pattern_ipv4_vxlan_ipv6_udp, INSET_TUNNEL_IPV6_TYPE2},
{pattern_ipv4_vxlan_ipv6_tcp, INSET_TUNNEL_IPV6_TYPE2},
{pattern_ipv4_vxlan_ipv6_sctp, INSET_TUNNEL_IPV6_TYPE2},
{pattern_ipv4_vxlan_ipv6_icmp, INSET_TUNNEL_IPV6_TYPE3},
{pattern_ipv4_vxlan_eth_ipv6, INSET_TUNNEL_IPV6_TYPE1},
{pattern_ipv4_vxlan_eth_ipv6_udp, INSET_TUNNEL_IPV6_TYPE2},
{pattern_ipv4_vxlan_eth_ipv6_tcp, INSET_TUNNEL_IPV6_TYPE2},
{pattern_ipv4_vxlan_eth_ipv6_sctp, INSET_TUNNEL_IPV6_TYPE2},
{pattern_ipv4_vxlan_eth_ipv6_icmp, INSET_TUNNEL_IPV6_TYPE3},
{pattern_ipv4_nvgre_ipv4, INSET_TUNNEL_IPV4_TYPE1},
{pattern_ipv4_nvgre_ipv4_udp, INSET_TUNNEL_IPV4_TYPE2},
{pattern_ipv4_nvgre_ipv4_tcp, INSET_TUNNEL_IPV4_TYPE2},
{pattern_ipv4_nvgre_ipv4_sctp, INSET_TUNNEL_IPV4_TYPE2},
{pattern_ipv4_nvgre_ipv4_icmp, INSET_TUNNEL_IPV4_TYPE3},
{pattern_ipv4_nvgre_eth_ipv4, INSET_TUNNEL_IPV4_TYPE1},
{pattern_ipv4_nvgre_eth_ipv4_udp, INSET_TUNNEL_IPV4_TYPE2},
{pattern_ipv4_nvgre_eth_ipv4_tcp, INSET_TUNNEL_IPV4_TYPE2},
{pattern_ipv4_nvgre_eth_ipv4_sctp, INSET_TUNNEL_IPV4_TYPE2},
{pattern_ipv4_nvgre_eth_ipv4_icmp, INSET_TUNNEL_IPV4_TYPE3},
{pattern_ipv4_nvgre_ipv6, INSET_TUNNEL_IPV6_TYPE1},
{pattern_ipv4_nvgre_ipv6_udp, INSET_TUNNEL_IPV6_TYPE2},
{pattern_ipv4_nvgre_ipv6_tcp, INSET_TUNNEL_IPV6_TYPE2},
{pattern_ipv4_nvgre_ipv6_sctp, INSET_TUNNEL_IPV6_TYPE2},
{pattern_ipv4_nvgre_eth_ipv6, INSET_TUNNEL_IPV6_TYPE1},
{pattern_ipv4_nvgre_eth_ipv6_udp, INSET_TUNNEL_IPV6_TYPE2},
{pattern_ipv4_nvgre_eth_ipv6_tcp, INSET_TUNNEL_IPV6_TYPE2},
{pattern_ipv4_nvgre_eth_ipv6_sctp, INSET_TUNNEL_IPV6_TYPE2},
/* Struct to store parser created. */
struct ice_flow_parser_node {
TAILQ_ENTRY(ice_flow_parser_node) node;
struct ice_flow_parser *parser;
};
void ice_register_flow_engine(struct ice_flow_engine *engine);
int ice_flow_init(struct ice_adapter *ad);
void ice_flow_uninit(struct ice_adapter *ad);
int ice_register_parser(struct ice_flow_parser *parser,
struct ice_adapter *ad);
void ice_unregister_parser(struct ice_flow_parser *parser,
struct ice_adapter *ad);
struct ice_pattern_match_item *
ice_search_pattern_match_item(const struct rte_flow_item pattern[],
struct ice_pattern_match_item *array,
uint32_t array_len,
struct rte_flow_error *error);
#endif

View File

@ -2,515 +2,3 @@
* Copyright(c) 2019 Intel Corporation
*/
#include <sys/queue.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <stdarg.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_log.h>
#include <rte_malloc.h>
#include <rte_eth_ctrl.h>
#include <rte_tailq.h>
#include <rte_flow_driver.h>
#include "ice_logs.h"
#include "base/ice_type.h"
#include "ice_switch_filter.h"
static int
ice_parse_switch_filter(const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error,
struct ice_adv_lkup_elem *list,
uint16_t *lkups_num,
enum ice_sw_tunnel_type tun_type)
{
const struct rte_flow_item *item = pattern;
enum rte_flow_item_type item_type;
const struct rte_flow_item_eth *eth_spec, *eth_mask;
const struct rte_flow_item_ipv4 *ipv4_spec, *ipv4_mask;
const struct rte_flow_item_ipv6 *ipv6_spec, *ipv6_mask;
const struct rte_flow_item_tcp *tcp_spec, *tcp_mask;
const struct rte_flow_item_udp *udp_spec, *udp_mask;
const struct rte_flow_item_sctp *sctp_spec, *sctp_mask;
const struct rte_flow_item_nvgre *nvgre_spec, *nvgre_mask;
const struct rte_flow_item_vxlan *vxlan_spec, *vxlan_mask;
uint16_t j, t = 0;
uint16_t tunnel_valid = 0;
for (item = pattern; item->type !=
RTE_FLOW_ITEM_TYPE_END; item++) {
item_type = item->type;
switch (item_type) {
case RTE_FLOW_ITEM_TYPE_ETH:
eth_spec = item->spec;
eth_mask = item->mask;
if (eth_spec && eth_mask) {
list[t].type = (tun_type == ICE_NON_TUN) ?
ICE_MAC_OFOS : ICE_MAC_IL;
struct ice_ether_hdr *h;
struct ice_ether_hdr *m;
uint16_t i = 0;
h = &list[t].h_u.eth_hdr;
m = &list[t].m_u.eth_hdr;
for (j = 0; j < RTE_ETHER_ADDR_LEN; j++) {
if (eth_mask->src.addr_bytes[j] ==
UINT8_MAX) {
h->src_addr[j] =
eth_spec->src.addr_bytes[j];
m->src_addr[j] =
eth_mask->src.addr_bytes[j];
i = 1;
}
if (eth_mask->dst.addr_bytes[j] ==
UINT8_MAX) {
h->dst_addr[j] =
eth_spec->dst.addr_bytes[j];
m->dst_addr[j] =
eth_mask->dst.addr_bytes[j];
i = 1;
}
}
if (i)
t++;
if (eth_mask->type == UINT16_MAX) {
list[t].type = ICE_ETYPE_OL;
list[t].h_u.ethertype.ethtype_id =
eth_spec->type;
list[t].m_u.ethertype.ethtype_id =
UINT16_MAX;
t++;
}
} else if (!eth_spec && !eth_mask) {
list[t].type = (tun_type == ICE_NON_TUN) ?
ICE_MAC_OFOS : ICE_MAC_IL;
}
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
ipv4_spec = item->spec;
ipv4_mask = item->mask;
if (ipv4_spec && ipv4_mask) {
list[t].type = (tun_type == ICE_NON_TUN) ?
ICE_IPV4_OFOS : ICE_IPV4_IL;
if (ipv4_mask->hdr.src_addr == UINT32_MAX) {
list[t].h_u.ipv4_hdr.src_addr =
ipv4_spec->hdr.src_addr;
list[t].m_u.ipv4_hdr.src_addr =
UINT32_MAX;
}
if (ipv4_mask->hdr.dst_addr == UINT32_MAX) {
list[t].h_u.ipv4_hdr.dst_addr =
ipv4_spec->hdr.dst_addr;
list[t].m_u.ipv4_hdr.dst_addr =
UINT32_MAX;
}
if (ipv4_mask->hdr.time_to_live == UINT8_MAX) {
list[t].h_u.ipv4_hdr.time_to_live =
ipv4_spec->hdr.time_to_live;
list[t].m_u.ipv4_hdr.time_to_live =
UINT8_MAX;
}
if (ipv4_mask->hdr.next_proto_id == UINT8_MAX) {
list[t].h_u.ipv4_hdr.protocol =
ipv4_spec->hdr.next_proto_id;
list[t].m_u.ipv4_hdr.protocol =
UINT8_MAX;
}
if (ipv4_mask->hdr.type_of_service ==
UINT8_MAX) {
list[t].h_u.ipv4_hdr.tos =
ipv4_spec->hdr.type_of_service;
list[t].m_u.ipv4_hdr.tos = UINT8_MAX;
}
t++;
} else if (!ipv4_spec && !ipv4_mask) {
list[t].type = (tun_type == ICE_NON_TUN) ?
ICE_IPV4_OFOS : ICE_IPV4_IL;
}
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
ipv6_spec = item->spec;
ipv6_mask = item->mask;
if (ipv6_spec && ipv6_mask) {
list[t].type = (tun_type == ICE_NON_TUN) ?
ICE_IPV6_OFOS : ICE_IPV6_IL;
struct ice_ipv6_hdr *f;
struct ice_ipv6_hdr *s;
f = &list[t].h_u.ipv6_hdr;
s = &list[t].m_u.ipv6_hdr;
for (j = 0; j < ICE_IPV6_ADDR_LENGTH; j++) {
if (ipv6_mask->hdr.src_addr[j] ==
UINT8_MAX) {
f->src_addr[j] =
ipv6_spec->hdr.src_addr[j];
s->src_addr[j] =
ipv6_mask->hdr.src_addr[j];
}
if (ipv6_mask->hdr.dst_addr[j] ==
UINT8_MAX) {
f->dst_addr[j] =
ipv6_spec->hdr.dst_addr[j];
s->dst_addr[j] =
ipv6_mask->hdr.dst_addr[j];
}
}
if (ipv6_mask->hdr.proto == UINT8_MAX) {
f->next_hdr =
ipv6_spec->hdr.proto;
s->next_hdr = UINT8_MAX;
}
if (ipv6_mask->hdr.hop_limits == UINT8_MAX) {
f->hop_limit =
ipv6_spec->hdr.hop_limits;
s->hop_limit = UINT8_MAX;
}
t++;
} else if (!ipv6_spec && !ipv6_mask) {
list[t].type = (tun_type == ICE_NON_TUN) ?
ICE_IPV4_OFOS : ICE_IPV4_IL;
}
break;
case RTE_FLOW_ITEM_TYPE_UDP:
udp_spec = item->spec;
udp_mask = item->mask;
if (udp_spec && udp_mask) {
if (tun_type == ICE_SW_TUN_VXLAN &&
tunnel_valid == 0)
list[t].type = ICE_UDP_OF;
else
list[t].type = ICE_UDP_ILOS;
if (udp_mask->hdr.src_port == UINT16_MAX) {
list[t].h_u.l4_hdr.src_port =
udp_spec->hdr.src_port;
list[t].m_u.l4_hdr.src_port =
udp_mask->hdr.src_port;
}
if (udp_mask->hdr.dst_port == UINT16_MAX) {
list[t].h_u.l4_hdr.dst_port =
udp_spec->hdr.dst_port;
list[t].m_u.l4_hdr.dst_port =
udp_mask->hdr.dst_port;
}
t++;
} else if (!udp_spec && !udp_mask) {
list[t].type = ICE_UDP_ILOS;
}
break;
case RTE_FLOW_ITEM_TYPE_TCP:
tcp_spec = item->spec;
tcp_mask = item->mask;
if (tcp_spec && tcp_mask) {
list[t].type = ICE_TCP_IL;
if (tcp_mask->hdr.src_port == UINT16_MAX) {
list[t].h_u.l4_hdr.src_port =
tcp_spec->hdr.src_port;
list[t].m_u.l4_hdr.src_port =
tcp_mask->hdr.src_port;
}
if (tcp_mask->hdr.dst_port == UINT16_MAX) {
list[t].h_u.l4_hdr.dst_port =
tcp_spec->hdr.dst_port;
list[t].m_u.l4_hdr.dst_port =
tcp_mask->hdr.dst_port;
}
t++;
} else if (!tcp_spec && !tcp_mask) {
list[t].type = ICE_TCP_IL;
}
break;
case RTE_FLOW_ITEM_TYPE_SCTP:
sctp_spec = item->spec;
sctp_mask = item->mask;
if (sctp_spec && sctp_mask) {
list[t].type = ICE_SCTP_IL;
if (sctp_mask->hdr.src_port == UINT16_MAX) {
list[t].h_u.sctp_hdr.src_port =
sctp_spec->hdr.src_port;
list[t].m_u.sctp_hdr.src_port =
sctp_mask->hdr.src_port;
}
if (sctp_mask->hdr.dst_port == UINT16_MAX) {
list[t].h_u.sctp_hdr.dst_port =
sctp_spec->hdr.dst_port;
list[t].m_u.sctp_hdr.dst_port =
sctp_mask->hdr.dst_port;
}
t++;
} else if (!sctp_spec && !sctp_mask) {
list[t].type = ICE_SCTP_IL;
}
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
vxlan_spec = item->spec;
vxlan_mask = item->mask;
tunnel_valid = 1;
if (vxlan_spec && vxlan_mask) {
list[t].type = ICE_VXLAN;
if (vxlan_mask->vni[0] == UINT8_MAX &&
vxlan_mask->vni[1] == UINT8_MAX &&
vxlan_mask->vni[2] == UINT8_MAX) {
list[t].h_u.tnl_hdr.vni =
(vxlan_spec->vni[2] << 16) |
(vxlan_spec->vni[1] << 8) |
vxlan_spec->vni[0];
list[t].m_u.tnl_hdr.vni =
UINT32_MAX;
}
t++;
} else if (!vxlan_spec && !vxlan_mask) {
list[t].type = ICE_VXLAN;
}
break;
case RTE_FLOW_ITEM_TYPE_NVGRE:
nvgre_spec = item->spec;
nvgre_mask = item->mask;
tunnel_valid = 1;
if (nvgre_spec && nvgre_mask) {
list[t].type = ICE_NVGRE;
if (nvgre_mask->tni[0] == UINT8_MAX &&
nvgre_mask->tni[1] == UINT8_MAX &&
nvgre_mask->tni[2] == UINT8_MAX) {
list[t].h_u.nvgre_hdr.tni_flow =
(nvgre_spec->tni[2] << 16) |
(nvgre_spec->tni[1] << 8) |
nvgre_spec->tni[0];
list[t].m_u.nvgre_hdr.tni_flow =
UINT32_MAX;
}
t++;
} else if (!nvgre_spec && !nvgre_mask) {
list[t].type = ICE_NVGRE;
}
break;
case RTE_FLOW_ITEM_TYPE_VOID:
case RTE_FLOW_ITEM_TYPE_END:
break;
default:
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, actions,
"Invalid pattern item.");
goto out;
}
}
*lkups_num = t;
return 0;
out:
return -rte_errno;
}
/* By now ice switch filter action code implement only
* supports QUEUE or DROP.
*/
static int
ice_parse_switch_action(struct ice_pf *pf,
const struct rte_flow_action *actions,
struct rte_flow_error *error,
struct ice_adv_rule_info *rule_info)
{
struct ice_vsi *vsi = pf->main_vsi;
const struct rte_flow_action_queue *act_q;
uint16_t base_queue;
const struct rte_flow_action *action;
enum rte_flow_action_type action_type;
base_queue = pf->base_queue;
for (action = actions; action->type !=
RTE_FLOW_ACTION_TYPE_END; action++) {
action_type = action->type;
switch (action_type) {
case RTE_FLOW_ACTION_TYPE_QUEUE:
act_q = action->conf;
rule_info->sw_act.fltr_act =
ICE_FWD_TO_Q;
rule_info->sw_act.fwd_id.q_id =
base_queue + act_q->index;
break;
case RTE_FLOW_ACTION_TYPE_DROP:
rule_info->sw_act.fltr_act =
ICE_DROP_PACKET;
break;
case RTE_FLOW_ACTION_TYPE_VOID:
break;
default:
rte_flow_error_set(error,
EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
actions,
"Invalid action type");
return -rte_errno;
}
}
rule_info->sw_act.vsi_handle = vsi->idx;
rule_info->rx = 1;
rule_info->sw_act.src = vsi->idx;
rule_info->priority = 5;
return 0;
}
static int
ice_switch_rule_set(struct ice_pf *pf,
struct ice_adv_lkup_elem *list,
uint16_t lkups_cnt,
struct ice_adv_rule_info *rule_info,
struct rte_flow *flow,
struct rte_flow_error *error)
{
struct ice_hw *hw = ICE_PF_TO_HW(pf);
int ret;
struct ice_rule_query_data rule_added = {0};
struct ice_rule_query_data *filter_ptr;
if (lkups_cnt > ICE_MAX_CHAIN_WORDS) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
"item number too large for rule");
return -rte_errno;
}
if (!list) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, NULL,
"lookup list should not be NULL");
return -rte_errno;
}
ret = ice_add_adv_rule(hw, list, lkups_cnt, rule_info, &rule_added);
if (!ret) {
filter_ptr = rte_zmalloc("ice_switch_filter",
sizeof(struct ice_rule_query_data), 0);
if (!filter_ptr) {
PMD_DRV_LOG(ERR, "failed to allocate memory");
return -EINVAL;
}
flow->rule = filter_ptr;
rte_memcpy(filter_ptr,
&rule_added,
sizeof(struct ice_rule_query_data));
}
return ret;
}
int
ice_create_switch_filter(struct ice_pf *pf,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow *flow,
struct rte_flow_error *error)
{
int ret = 0;
struct ice_adv_rule_info rule_info = {0};
struct ice_adv_lkup_elem *list = NULL;
uint16_t lkups_num = 0;
const struct rte_flow_item *item = pattern;
uint16_t item_num = 0;
enum ice_sw_tunnel_type tun_type = ICE_NON_TUN;
for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
item_num++;
if (item->type == RTE_FLOW_ITEM_TYPE_VXLAN)
tun_type = ICE_SW_TUN_VXLAN;
if (item->type == RTE_FLOW_ITEM_TYPE_NVGRE)
tun_type = ICE_SW_TUN_NVGRE;
/* reserve one more memory slot for ETH which may
* consume 2 lookup items.
*/
if (item->type == RTE_FLOW_ITEM_TYPE_ETH)
item_num++;
}
rule_info.tun_type = tun_type;
list = rte_zmalloc(NULL, item_num * sizeof(*list), 0);
if (!list) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"No memory for PMD internal items");
return -rte_errno;
}
ret = ice_parse_switch_filter(pattern, actions, error,
list, &lkups_num, tun_type);
if (ret)
goto error;
ret = ice_parse_switch_action(pf, actions, error, &rule_info);
if (ret)
goto error;
ret = ice_switch_rule_set(pf, list, lkups_num, &rule_info, flow, error);
if (ret)
goto error;
rte_free(list);
return 0;
error:
rte_free(list);
return -rte_errno;
}
int
ice_destroy_switch_filter(struct ice_pf *pf,
struct rte_flow *flow,
struct rte_flow_error *error)
{
struct ice_hw *hw = ICE_PF_TO_HW(pf);
int ret;
struct ice_rule_query_data *filter_ptr;
filter_ptr = (struct ice_rule_query_data *)
flow->rule;
if (!filter_ptr) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"no such flow"
" create by switch filter");
return -rte_errno;
}
ret = ice_rem_adv_rule_by_id(hw, filter_ptr);
if (ret) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"fail to destroy switch filter rule");
return -rte_errno;
}
rte_free(filter_ptr);
return ret;
}
void
ice_free_switch_filter_rule(void *rule)
{
struct ice_rule_query_data *filter_ptr;
filter_ptr = (struct ice_rule_query_data *)rule;
rte_free(filter_ptr);
}

View File

@ -2,23 +2,3 @@
* Copyright(c) 2019 Intel Corporation
*/
#ifndef _ICE_SWITCH_FILTER_H_
#define _ICE_SWITCH_FILTER_H_
#include "base/ice_switch.h"
#include "base/ice_type.h"
#include "ice_ethdev.h"
int
ice_create_switch_filter(struct ice_pf *pf,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow *flow,
struct rte_flow_error *error);
int
ice_destroy_switch_filter(struct ice_pf *pf,
struct rte_flow *flow,
struct rte_flow_error *error);
void
ice_free_switch_filter_rule(void *rule);
#endif /* _ICE_SWITCH_FILTER_H_ */