net/ice: add AVX512 vector path

Add AVX512 support for ice PMD. This patch adds ice_rxtx_vec_avx512.c
to support ice AVX512 vPMD.

This patch aims to enable AVX512 on ice vPMD. Main changes are focus
on Rx path compared with AVX2 vPMD.

Signed-off-by: Leyi Rong <leyi.rong@intel.com>
Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: Qi Zhang <qi.z.zhang@intel.com>
This commit is contained in:
Leyi Rong 2020-10-23 12:14:05 +08:00 committed by Ferruh Yigit
parent 7966fcd39b
commit 7f85d5ebcf
4 changed files with 935 additions and 18 deletions

View File

@ -1930,6 +1930,10 @@ ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
#ifdef RTE_ARCH_X86
if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
#ifdef CC_AVX512_SUPPORT
dev->rx_pkt_burst == ice_recv_pkts_vec_avx512 ||
dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx512 ||
#endif
dev->rx_pkt_burst == ice_recv_pkts_vec_avx2 ||
dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2)
return ptypes;
@ -2987,6 +2991,7 @@ ice_set_rx_function(struct rte_eth_dev *dev)
#ifdef RTE_ARCH_X86
struct ice_rx_queue *rxq;
int i;
bool use_avx512 = false;
bool use_avx2 = false;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
@ -3001,9 +3006,19 @@ ice_set_rx_function(struct rte_eth_dev *dev)
}
}
if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
#ifdef CC_AVX512_SUPPORT
use_avx512 = true;
#else
PMD_DRV_LOG(NOTICE,
"AVX512 is not supported in build env");
#endif
if (!use_avx512 &&
(rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
use_avx2 = true;
} else {
@ -3013,20 +3028,41 @@ ice_set_rx_function(struct rte_eth_dev *dev)
if (ad->rx_vec_allowed) {
if (dev->data->scattered_rx) {
PMD_DRV_LOG(DEBUG,
if (use_avx512) {
#ifdef CC_AVX512_SUPPORT
PMD_DRV_LOG(NOTICE,
"Using AVX512 Vector Scattered Rx (port %d).",
dev->data->port_id);
dev->rx_pkt_burst =
ice_recv_scattered_pkts_vec_avx512;
#endif
} else {
PMD_DRV_LOG(DEBUG,
"Using %sVector Scattered Rx (port %d).",
use_avx2 ? "avx2 " : "",
dev->data->port_id);
dev->rx_pkt_burst = use_avx2 ?
dev->rx_pkt_burst = use_avx2 ?
ice_recv_scattered_pkts_vec_avx2 :
ice_recv_scattered_pkts_vec;
}
} else {
PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
if (use_avx512) {
#ifdef CC_AVX512_SUPPORT
PMD_DRV_LOG(NOTICE,
"Using AVX512 Vector Rx (port %d).",
dev->data->port_id);
dev->rx_pkt_burst =
ice_recv_pkts_vec_avx512;
#endif
} else {
PMD_DRV_LOG(DEBUG,
"Using %sVector Rx (port %d).",
use_avx2 ? "avx2 " : "",
dev->data->port_id);
dev->rx_pkt_burst = use_avx2 ?
ice_recv_pkts_vec_avx2 :
ice_recv_pkts_vec;
dev->rx_pkt_burst = use_avx2 ?
ice_recv_pkts_vec_avx2 :
ice_recv_pkts_vec;
}
}
return;
}
@ -3063,6 +3099,10 @@ static const struct {
{ ice_recv_pkts_bulk_alloc, "Scalar Bulk Alloc" },
{ ice_recv_pkts, "Scalar" },
#ifdef RTE_ARCH_X86
#ifdef CC_AVX512_SUPPORT
{ ice_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" },
{ ice_recv_pkts_vec_avx512, "Vector AVX512" },
#endif
{ ice_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" },
{ ice_recv_pkts_vec_avx2, "Vector AVX2" },
{ ice_recv_scattered_pkts_vec, "Vector SSE Scattered" },
@ -3167,6 +3207,7 @@ ice_set_tx_function(struct rte_eth_dev *dev)
#ifdef RTE_ARCH_X86
struct ice_tx_queue *txq;
int i;
bool use_avx512 = false;
bool use_avx2 = false;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
@ -3181,9 +3222,19 @@ ice_set_tx_function(struct rte_eth_dev *dev)
}
}
if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_512 &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1)
#ifdef CC_AVX512_SUPPORT
use_avx512 = true;
#else
PMD_DRV_LOG(NOTICE,
"AVX512 is not supported in build env");
#endif
if (!use_avx512 &&
(rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
use_avx2 = true;
} else {
@ -3192,12 +3243,20 @@ ice_set_tx_function(struct rte_eth_dev *dev)
}
if (ad->tx_vec_allowed) {
PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
use_avx2 ? "avx2 " : "",
dev->data->port_id);
dev->tx_pkt_burst = use_avx2 ?
ice_xmit_pkts_vec_avx2 :
ice_xmit_pkts_vec;
if (use_avx512) {
#ifdef CC_AVX512_SUPPORT
PMD_DRV_LOG(NOTICE, "Using AVX512 Vector Tx (port %d).",
dev->data->port_id);
dev->tx_pkt_burst = ice_xmit_pkts_vec_avx512;
#endif
} else {
PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
use_avx2 ? "avx2 " : "",
dev->data->port_id);
dev->tx_pkt_burst = use_avx2 ?
ice_xmit_pkts_vec_avx2 :
ice_xmit_pkts_vec;
}
dev->tx_pkt_prepare = NULL;
return;
@ -3222,6 +3281,9 @@ static const struct {
{ ice_xmit_pkts_simple, "Scalar Simple" },
{ ice_xmit_pkts, "Scalar" },
#ifdef RTE_ARCH_X86
#ifdef CC_AVX512_SUPPORT
{ ice_xmit_pkts_vec_avx512, "Vector AVX512" },
#endif
{ ice_xmit_pkts_vec_avx2, "Vector AVX2" },
{ ice_xmit_pkts_vec, "Vector SSE" },
#endif

View File

@ -248,6 +248,13 @@ uint16_t ice_recv_scattered_pkts_vec_avx2(void *rx_queue,
uint16_t nb_pkts);
uint16_t ice_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
uint16_t ice_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
uint16_t ice_recv_scattered_pkts_vec_avx512(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
uint16_t ice_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
int ice_fdir_programming(struct ice_pf *pf, struct ice_fltr_desc *fdir_desc);
int ice_tx_done_cleanup(void *txq, uint32_t free_cnt);

View File

@ -0,0 +1,824 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Intel Corporation
*/
#include "ice_rxtx_vec_common.h"
#include <x86intrin.h>
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
#define ICE_DESCS_PER_LOOP_AVX 8
static inline void
ice_rxq_rearm(struct ice_rx_queue *rxq)
{
int i;
uint16_t rx_id;
volatile union ice_rx_flex_desc *rxdp;
struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
struct rte_mempool_cache *cache = rte_mempool_default_cache(rxq->mp,
rte_lcore_id());
rxdp = rxq->rx_ring + rxq->rxrearm_start;
/* We need to pull 'n' more MBUFs into the software ring */
if (cache->len < ICE_RXQ_REARM_THRESH) {
uint32_t req = ICE_RXQ_REARM_THRESH + (cache->size -
cache->len);
int ret = rte_mempool_ops_dequeue_bulk(rxq->mp,
&cache->objs[cache->len], req);
if (ret == 0) {
cache->len += req;
} else {
if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
rxq->nb_rx_desc) {
__m128i dma_addr0;
dma_addr0 = _mm_setzero_si128();
for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
rxep[i].mbuf = &rxq->fake_mbuf;
_mm_store_si128
((__m128i *)&rxdp[i].read,
dma_addr0);
}
}
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
ICE_RXQ_REARM_THRESH;
return;
}
}
const __m512i iova_offsets = _mm512_set1_epi64
(offsetof(struct rte_mbuf, buf_iova));
const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
/* shuffle the iova into correct slots. Values 4-7 will contain
* zeros, so use 7 for a zero-value.
*/
const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0);
#else
const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0);
#endif
/* fill up the rxd in vector, process 8 mbufs in one loop */
for (i = 0; i < ICE_RXQ_REARM_THRESH / 8; i++) {
const __m512i mbuf_ptrs = _mm512_loadu_si512
(&cache->objs[cache->len - 8]);
_mm512_store_si512(rxep, mbuf_ptrs);
/* gather iova of mbuf0-7 into one zmm reg */
const __m512i iova_base_addrs = _mm512_i64gather_epi64
(_mm512_add_epi64(mbuf_ptrs, iova_offsets),
0, /* base */
1 /* scale */);
const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs,
headroom);
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
const __m512i iovas0 = _mm512_castsi256_si512
(_mm512_extracti64x4_epi64(iova_addrs, 0));
const __m512i iovas1 = _mm512_castsi256_si512
(_mm512_extracti64x4_epi64(iova_addrs, 1));
/* permute leaves iova 2-3 in hdr_addr of desc 0-1
* but these are ignored by driver since header split not
* enabled. Similarly for desc 4 & 5.
*/
const __m512i desc0_1 = _mm512_permutexvar_epi64
(permute_idx, iovas0);
const __m512i desc2_3 = _mm512_bsrli_epi128(desc0_1, 8);
const __m512i desc4_5 = _mm512_permutexvar_epi64
(permute_idx, iovas1);
const __m512i desc6_7 = _mm512_bsrli_epi128(desc4_5, 8);
_mm512_store_si512((void *)rxdp, desc0_1);
_mm512_store_si512((void *)(rxdp + 2), desc2_3);
_mm512_store_si512((void *)(rxdp + 4), desc4_5);
_mm512_store_si512((void *)(rxdp + 6), desc6_7);
#else
/* permute leaves iova 4-7 in hdr_addr of desc 0-3
* but these are ignored by driver since header split not
* enabled.
*/
const __m512i desc0_3 = _mm512_permutexvar_epi64
(permute_idx, iova_addrs);
const __m512i desc4_7 = _mm512_bsrli_epi128(desc0_3, 8);
_mm512_store_si512((void *)rxdp, desc0_3);
_mm512_store_si512((void *)(rxdp + 4), desc4_7);
#endif
rxep += 8, rxdp += 8, cache->len -= 8;
}
rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
/* Update the tail pointer on the NIC */
ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
}
static inline uint16_t
_ice_recv_raw_pkts_vec_avx512(struct ice_rx_queue *rxq,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, uint8_t *split_packet)
{
const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
0, rxq->mbuf_initializer);
struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
volatile union ice_rx_flex_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
rte_prefetch0(rxdp);
/* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
ice_rxq_rearm(rxq);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (!(rxdp->wb.status_error0 &
rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
return 0;
/* constants used in processing loop */
const __m512i crc_adjust =
_mm512_set4_epi32
(0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
-rxq->crc_len, /* sub crc on pkt_len */
0 /* ignore non-length fields */
);
/* 8 packets DD mask, LSB in each 32-bit value */
const __m256i dd_check = _mm256_set1_epi32(1);
/* 8 packets EOP mask, second-LSB in each 32-bit value */
const __m256i eop_check = _mm256_slli_epi32(dd_check,
ICE_RX_DESC_STATUS_EOF_S);
/* mask to shuffle from desc. to mbuf (4 descriptors)*/
const __m512i shuf_msk =
_mm512_set4_epi32
(/* octet 12~15, 32 bits rss */
15 << 24 | 14 << 16 | 13 << 8 | 12,
/* octet 10~11, 16 bits vlan_macip */
/* octet 4~5, 16 bits data_len */
11 << 24 | 10 << 16 | 5 << 8 | 4,
/* skip hi 16 bits pkt_len, zero out */
/* octet 4~5, 16 bits pkt_len */
0xFFFF << 16 | 5 << 8 | 4,
/* pkt_type set as unknown */
0xFFFFFFFF
);
/**
* compile-time check the above crc and shuffle layout is correct.
* NOTE: the first field (lowest address) is given last in set_epi
* calls above.
*/
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
/* Status/Error flag masks */
/**
* mask everything except Checksum Reports, RSS indication
* and VLAN indication.
* bit6:4 for IP/L4 checksum errors.
* bit12 is for RSS indication.
* bit13 is for VLAN indication.
*/
const __m256i flags_mask =
_mm256_set1_epi32((7 << 4) | (1 << 12) | (1 << 13));
/**
* data to be shuffled by the result of the flags mask shifted by 4
* bits. This gives use the l3_l4 flags.
*/
const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
/* shift right 1 bit to make sure it not exceed 255 */
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
/* 2nd 128-bits */
0, 0, 0, 0, 0, 0, 0, 0,
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
const __m256i cksum_mask =
_mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
PKT_RX_EIP_CKSUM_BAD);
/**
* data to be shuffled by result of flag mask, shifted down 12.
* If RSS(bit12)/VLAN(bit13) are set,
* shuffle moves appropriate flags in place.
*/
const __m256i rss_vlan_flags_shuf = _mm256_set_epi8(0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_RSS_HASH, 0,
/* 2nd 128-bits */
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_RSS_HASH, 0);
uint16_t i, received;
for (i = 0, received = 0; i < nb_pkts;
i += ICE_DESCS_PER_LOOP_AVX,
rxdp += ICE_DESCS_PER_LOOP_AVX) {
/* step 1, copy over 8 mbuf pointers to rx_pkts array */
_mm256_storeu_si256((void *)&rx_pkts[i],
_mm256_loadu_si256((void *)&sw_ring[i]));
#ifdef RTE_ARCH_X86_64
_mm256_storeu_si256
((void *)&rx_pkts[i + 4],
_mm256_loadu_si256((void *)&sw_ring[i + 4]));
#endif
__m512i raw_desc0_3, raw_desc4_7;
__m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
/* load in descriptors, in reverse order */
const __m128i raw_desc7 =
_mm_load_si128((void *)(rxdp + 7));
rte_compiler_barrier();
const __m128i raw_desc6 =
_mm_load_si128((void *)(rxdp + 6));
rte_compiler_barrier();
const __m128i raw_desc5 =
_mm_load_si128((void *)(rxdp + 5));
rte_compiler_barrier();
const __m128i raw_desc4 =
_mm_load_si128((void *)(rxdp + 4));
rte_compiler_barrier();
const __m128i raw_desc3 =
_mm_load_si128((void *)(rxdp + 3));
rte_compiler_barrier();
const __m128i raw_desc2 =
_mm_load_si128((void *)(rxdp + 2));
rte_compiler_barrier();
const __m128i raw_desc1 =
_mm_load_si128((void *)(rxdp + 1));
rte_compiler_barrier();
const __m128i raw_desc0 =
_mm_load_si128((void *)(rxdp + 0));
raw_desc6_7 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc6),
raw_desc7, 1);
raw_desc4_5 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc4),
raw_desc5, 1);
raw_desc2_3 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc2),
raw_desc3, 1);
raw_desc0_1 =
_mm256_inserti128_si256
(_mm256_castsi128_si256(raw_desc0),
raw_desc1, 1);
raw_desc4_7 =
_mm512_inserti64x4
(_mm512_castsi256_si512(raw_desc4_5),
raw_desc6_7, 1);
raw_desc0_3 =
_mm512_inserti64x4
(_mm512_castsi256_si512(raw_desc0_1),
raw_desc2_3, 1);
if (split_packet) {
int j;
for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
rte_mbuf_prefetch_part2(rx_pkts[i + j]);
}
/**
* convert descriptors 0-7 into mbufs, re-arrange fields.
* Then write into the mbuf.
*/
__m512i mb4_7 = _mm512_shuffle_epi8(raw_desc4_7, shuf_msk);
__m512i mb0_3 = _mm512_shuffle_epi8(raw_desc0_3, shuf_msk);
mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
/**
* to get packet types, ptype is located in bit16-25
* of each 128bits
*/
const __m512i ptype_mask =
_mm512_set1_epi16(ICE_RX_FLEX_DESC_PTYPE_M);
/**
* to get packet types, ptype is located in bit16-25
* of each 128bits
*/
const __m512i ptypes4_7 =
_mm512_and_si512(raw_desc4_7, ptype_mask);
const __m512i ptypes0_3 =
_mm512_and_si512(raw_desc0_3, ptype_mask);
const __m256i ptypes6_7 =
_mm512_extracti64x4_epi64(ptypes4_7, 1);
const __m256i ptypes4_5 =
_mm512_extracti64x4_epi64(ptypes4_7, 0);
const __m256i ptypes2_3 =
_mm512_extracti64x4_epi64(ptypes0_3, 1);
const __m256i ptypes0_1 =
_mm512_extracti64x4_epi64(ptypes0_3, 0);
const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9);
const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1);
const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9);
const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1);
const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9);
const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1);
const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9);
const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1);
const __m512i ptype4_7 = _mm512_set_epi32
(0, 0, 0, ptype_tbl[ptype7],
0, 0, 0, ptype_tbl[ptype6],
0, 0, 0, ptype_tbl[ptype5],
0, 0, 0, ptype_tbl[ptype4]);
const __m512i ptype0_3 = _mm512_set_epi32
(0, 0, 0, ptype_tbl[ptype3],
0, 0, 0, ptype_tbl[ptype2],
0, 0, 0, ptype_tbl[ptype1],
0, 0, 0, ptype_tbl[ptype0]);
mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
/**
* use permute/extract to get status content
* After the operations, the packets status flags are in the
* order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
*/
/* merge the status bits into one register */
const __m512i status_permute_msk = _mm512_set_epi32
(0, 0, 0, 0,
0, 0, 0, 0,
22, 30, 6, 14,
18, 26, 2, 10);
const __m512i raw_status0_7 = _mm512_permutex2var_epi32
(raw_desc4_7, status_permute_msk, raw_desc0_3);
__m256i status0_7 = _mm512_extracti64x4_epi64
(raw_status0_7, 0);
/* now do flag manipulation */
/* get only flag/error bits we want */
const __m256i flag_bits =
_mm256_and_si256(status0_7, flags_mask);
/**
* l3_l4_error flags, shuffle, then shift to correct adjustment
* of flags in flags_shuf, and finally mask out extra bits
*/
__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
_mm256_srli_epi32(flag_bits, 4));
l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
/* set rss and vlan flags */
const __m256i rss_vlan_flag_bits =
_mm256_srli_epi32(flag_bits, 12);
const __m256i rss_vlan_flags =
_mm256_shuffle_epi8(rss_vlan_flags_shuf,
rss_vlan_flag_bits);
/* merge flags */
const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
rss_vlan_flags);
/**
* At this point, we have the 8 sets of flags in the low 16-bits
* of each 32-bit value in vlan0.
* We want to extract these, and merge them with the mbuf init
* data so we can do a single write to the mbuf to set the flags
* and all the other initialization fields. Extracting the
* appropriate flags means that we have to do a shift and blend
* for each mbuf before we do the write. However, we can also
* add in the previously computed rx_descriptor fields to
* make a single 256-bit write per mbuf
*/
/* check the structure matches expectations */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
offsetof(struct rte_mbuf, rearm_data) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
RTE_ALIGN(offsetof(struct rte_mbuf,
rearm_data),
16));
/* build up data and do writes */
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
rearm6, rearm7;
rearm6 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 8),
0x04);
rearm4 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 4),
0x04);
rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
rearm0 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(mbuf_flags, 4),
0x04);
const __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0);
const __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1);
const __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
const __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
/* permute to add in the rx_descriptor e.g. rss fields */
rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
/* write to mbuf */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
rearm6);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
rearm4);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
rearm2);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
rearm0);
/* repeat for the odd mbufs */
const __m256i odd_flags =
_mm256_castsi128_si256
(_mm256_extracti128_si256(mbuf_flags, 1));
rearm7 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 8),
0x04);
rearm5 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 4),
0x04);
rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
rearm1 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(odd_flags, 4),
0x04);
/* since odd mbufs are already in hi 128-bits use blend */
rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
/* again write to mbufs */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
rearm7);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
rearm5);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
rearm3);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
rearm1);
/* extract and record EOP bit */
if (split_packet) {
const __m128i eop_mask =
_mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
const __m256i eop_bits256 = _mm256_and_si256(status0_7,
eop_check);
/* pack status bits into a single 128-bit register */
const __m128i eop_bits =
_mm_packus_epi32
(_mm256_castsi256_si128(eop_bits256),
_mm256_extractf128_si256(eop_bits256,
1));
/**
* flip bits, and mask out the EOP bit, which is now
* a split-packet bit i.e. !EOP, rather than EOP one.
*/
__m128i split_bits = _mm_andnot_si128(eop_bits,
eop_mask);
/**
* eop bits are out of order, so we need to shuffle them
* back into order again. In doing so, only use low 8
* bits, which acts like another pack instruction
* The original order is (hi->lo): 1,3,5,7,0,2,4,6
* [Since we use epi8, the 16-bit positions are
* multiplied by 2 in the eop_shuffle value.]
*/
__m128i eop_shuffle =
_mm_set_epi8(/* zero hi 64b */
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF,
/* move values to lo 64b */
8, 0, 10, 2,
12, 4, 14, 6);
split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
*(uint64_t *)split_packet =
_mm_cvtsi128_si64(split_bits);
split_packet += ICE_DESCS_PER_LOOP_AVX;
}
/* perform dd_check */
status0_7 = _mm256_and_si256(status0_7, dd_check);
status0_7 = _mm256_packs_epi32(status0_7,
_mm256_setzero_si256());
uint64_t burst = __builtin_popcountll
(_mm_cvtsi128_si64
(_mm256_extracti128_si256
(status0_7, 1)));
burst += __builtin_popcountll
(_mm_cvtsi128_si64
(_mm256_castsi256_si128(status0_7)));
received += burst;
if (burst != ICE_DESCS_PER_LOOP_AVX)
break;
}
/* update tail pointers */
rxq->rx_tail += received;
rxq->rx_tail &= (rxq->nb_rx_desc - 1);
if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
rxq->rx_tail--;
received--;
}
rxq->rxrearm_nb += received;
return received;
}
/**
* Notice:
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
*/
uint16_t
ice_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _ice_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL);
}
/**
* vPMD receive routine that reassembles single burst of 32 scattered packets
* Notice:
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
*/
static uint16_t
ice_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct ice_rx_queue *rxq = rx_queue;
uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};
/* get some new buffers */
uint16_t nb_bufs = _ice_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
split_flags);
if (nb_bufs == 0)
return 0;
/* happy day case, full burst + no packets to be joined */
const uint64_t *split_fl64 = (uint64_t *)split_flags;
if (!rxq->pkt_first_seg &&
split_fl64[0] == 0 && split_fl64[1] == 0 &&
split_fl64[2] == 0 && split_fl64[3] == 0)
return nb_bufs;
/* reassemble any packets that need reassembly */
unsigned int i = 0;
if (!rxq->pkt_first_seg) {
/* find the first split flag, and only reassemble then */
while (i < nb_bufs && !split_flags[i])
i++;
if (i == nb_bufs)
return nb_bufs;
rxq->pkt_first_seg = rx_pkts[i];
}
return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
&split_flags[i]);
}
/**
* vPMD receive routine that reassembles scattered packets.
* Main receive routine that can handle arbitrary burst sizes
* Notice:
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
*/
uint16_t
ice_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t retval = 0;
while (nb_pkts > ICE_VPMD_RX_BURST) {
uint16_t burst = ice_recv_scattered_burst_vec_avx512(rx_queue,
rx_pkts + retval, ICE_VPMD_RX_BURST);
retval += burst;
nb_pkts -= burst;
if (burst < ICE_VPMD_RX_BURST)
return retval;
}
return retval + ice_recv_scattered_burst_vec_avx512(rx_queue,
rx_pkts + retval, nb_pkts);
}
static inline void
ice_vtx1(volatile struct ice_tx_desc *txdp,
struct rte_mbuf *pkt, uint64_t flags)
{
uint64_t high_qw =
(ICE_TX_DESC_DTYPE_DATA |
((uint64_t)flags << ICE_TXD_QW1_CMD_S) |
((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));
__m128i descriptor = _mm_set_epi64x(high_qw,
pkt->buf_iova + pkt->data_off);
_mm_store_si128((__m128i *)txdp, descriptor);
}
static inline void
ice_vtx(volatile struct ice_tx_desc *txdp,
struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
{
const uint64_t hi_qw_tmpl = (ICE_TX_DESC_DTYPE_DATA |
((uint64_t)flags << ICE_TXD_QW1_CMD_S));
/* if unaligned on 32-bit boundary, do one to align */
if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
ice_vtx1(txdp, *pkt, flags);
nb_pkts--, txdp++, pkt++;
}
/* do two at a time while possible, in bursts */
for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
uint64_t hi_qw3 =
hi_qw_tmpl |
((uint64_t)pkt[3]->data_len <<
ICE_TXD_QW1_TX_BUF_SZ_S);
uint64_t hi_qw2 =
hi_qw_tmpl |
((uint64_t)pkt[2]->data_len <<
ICE_TXD_QW1_TX_BUF_SZ_S);
uint64_t hi_qw1 =
hi_qw_tmpl |
((uint64_t)pkt[1]->data_len <<
ICE_TXD_QW1_TX_BUF_SZ_S);
uint64_t hi_qw0 =
hi_qw_tmpl |
((uint64_t)pkt[0]->data_len <<
ICE_TXD_QW1_TX_BUF_SZ_S);
__m256i desc2_3 =
_mm256_set_epi64x
(hi_qw3,
pkt[3]->buf_iova + pkt[3]->data_off,
hi_qw2,
pkt[2]->buf_iova + pkt[2]->data_off);
__m256i desc0_1 =
_mm256_set_epi64x
(hi_qw1,
pkt[1]->buf_iova + pkt[1]->data_off,
hi_qw0,
pkt[0]->buf_iova + pkt[0]->data_off);
_mm256_store_si256((void *)(txdp + 2), desc2_3);
_mm256_store_si256((void *)txdp, desc0_1);
}
/* do any last ones */
while (nb_pkts) {
ice_vtx1(txdp, *pkt, flags);
txdp++, pkt++, nb_pkts--;
}
}
static inline uint16_t
ice_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
volatile struct ice_tx_desc *txdp;
struct ice_tx_entry *txep;
uint16_t n, nb_commit, tx_id;
uint64_t flags = ICE_TD_CMD;
uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
/* cross rx_thresh boundary is not allowed */
nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
if (txq->nb_tx_free < txq->tx_free_thresh)
ice_tx_free_bufs(txq);
nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
if (unlikely(nb_pkts == 0))
return 0;
tx_id = txq->tx_tail;
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
n = (uint16_t)(txq->nb_tx_desc - tx_id);
if (nb_commit >= n) {
ice_tx_backlog_entry(txep, tx_pkts, n);
ice_vtx(txdp, tx_pkts, n - 1, flags);
tx_pkts += (n - 1);
txdp += (n - 1);
ice_vtx1(txdp, *tx_pkts++, rs);
nb_commit = (uint16_t)(nb_commit - n);
tx_id = 0;
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
/* avoid reach the end of ring */
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
}
ice_tx_backlog_entry(txep, tx_pkts, nb_commit);
ice_vtx(txdp, tx_pkts, nb_commit, flags);
tx_id = (uint16_t)(tx_id + nb_commit);
if (tx_id > txq->tx_next_rs) {
txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
ICE_TXD_QW1_CMD_S);
txq->tx_next_rs =
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
}
txq->tx_tail = tx_id;
ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
return nb_pkts;
}
uint16_t
ice_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx = 0;
struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
while (nb_pkts) {
uint16_t ret, num;
num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
ret = ice_xmit_fixed_burst_vec_avx512(tx_queue,
&tx_pkts[nb_tx], num);
nb_tx += ret;
nb_pkts -= ret;
if (ret < num)
break;
}
return nb_tx;
}

View File

@ -34,6 +34,30 @@ if arch_subdir == 'x86'
c_args: [cflags, '-mavx2'])
objs += ice_avx2_lib.extract_objects('ice_rxtx_vec_avx2.c')
endif
ice_avx512_cpu_support = (
cc.get_define('__AVX512F__', args: machine_args) != '' and
cc.get_define('__AVX512BW__', args: machine_args) != '')
ice_avx512_cc_support = (
not machine_args.contains('-mno-avx512f') and
cc.has_argument('-mavx512f') and
cc.has_argument('-mavx512bw'))
if ice_avx512_cpu_support == true or ice_avx512_cc_support == true
cflags += ['-DCC_AVX512_SUPPORT']
avx512_args = [cflags, '-mavx512f', '-mavx512bw']
if cc.has_argument('-march=skylake-avx512')
avx512_args += '-march=skylake-avx512'
endif
ice_avx512_lib = static_library('ice_avx512_lib',
'ice_rxtx_vec_avx512.c',
dependencies: [static_rte_ethdev,
static_rte_kvargs, static_rte_hash],
include_directories: includes,
c_args: avx512_args)
objs += ice_avx512_lib.extract_objects('ice_rxtx_vec_avx512.c')
endif
endif
sources += files('ice_dcf.c',