raw/octeontx2_ep: add device configuration

Register "dev_configure" API to configure/initialize the SDP
VF PCIe devices.

Signed-off-by: Mahipal Challa <mchalla@marvell.com>
Reviewed-by: Gavin Hu <gavin.hu@arm.com>
This commit is contained in:
Mahipal Challa 2020-01-13 11:30:37 +05:30 committed by Thomas Monjalon
parent 56d46d13f7
commit 81fd15a2ac
13 changed files with 1540 additions and 2 deletions

View File

@ -39,3 +39,31 @@ entry `sriov_numvfs` for the corresponding PF driver.
Once the required VFs are enabled, to be accessible from DPDK, VFs need to be
bound to vfio-pci driver.
Device Setup
------------
The OCTEON TX2 SDP End Point VF devices will need to be bound to a
user-space IO driver for use. The script ``dpdk-devbind.py`` script
included with DPDK can be used to view the state of the devices and to bind
them to a suitable DPDK-supported kernel driver. When querying the status
of the devices, they will appear under the category of "Misc (rawdev)
devices", i.e. the command ``dpdk-devbind.py --status-dev misc`` can be
used to see the state of those devices alone.
Device Configuration
--------------------
Configuring SDP EP rawdev device is done using the ``rte_rawdev_configure()``
API, which takes the mempool as parameter. PMD uses this pool to send/receive
packets to/from the HW.
The following code shows how the device is configured
.. code-block:: c
struct sdp_rawdev_info config = {0};
struct rte_rawdev_info rdev_info = {.dev_private = &config};
config.enqdeq_mpool = (void *)rte_mempool_create(...);
rte_rawdev_configure(dev_id, (rte_rawdev_obj_t)&rdev_info);

View File

@ -0,0 +1,184 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#ifndef __OTX2_SDP_HW_H_
#define __OTX2_SDP_HW_H_
/* SDP VF IOQs */
#define SDP_MIN_RINGS_PER_VF (1)
#define SDP_MAX_RINGS_PER_VF (8)
/* SDP VF IQ configuration */
#define SDP_VF_MAX_IQ_DESCRIPTORS (512)
#define SDP_VF_MIN_IQ_DESCRIPTORS (128)
#define SDP_VF_DB_MIN (1)
#define SDP_VF_DB_TIMEOUT (1)
#define SDP_VF_INTR_THRESHOLD (0xFFFFFFFF)
#define SDP_VF_64BYTE_INSTR (64)
#define SDP_VF_32BYTE_INSTR (32)
/* SDP VF OQ configuration */
#define SDP_VF_MAX_OQ_DESCRIPTORS (512)
#define SDP_VF_MIN_OQ_DESCRIPTORS (128)
#define SDP_VF_OQ_BUF_SIZE (2048)
#define SDP_VF_OQ_REFIL_THRESHOLD (16)
#define SDP_VF_OQ_INFOPTR_MODE (1)
#define SDP_VF_OQ_BUFPTR_MODE (0)
#define SDP_VF_OQ_INTR_PKT (1)
#define SDP_VF_OQ_INTR_TIME (10)
#define SDP_VF_CFG_IO_QUEUES SDP_MAX_RINGS_PER_VF
/* Wait time in milliseconds for FLR */
#define SDP_VF_PCI_FLR_WAIT (100)
#define SDP_VF_BUSY_LOOP_COUNT (10000)
#define SDP_VF_MAX_IO_QUEUES SDP_MAX_RINGS_PER_VF
#define SDP_VF_MIN_IO_QUEUES SDP_MIN_RINGS_PER_VF
/* SDP VF IOQs per rawdev */
#define SDP_VF_MAX_IOQS_PER_RAWDEV SDP_VF_MAX_IO_QUEUES
#define SDP_VF_DEFAULT_IOQS_PER_RAWDEV SDP_VF_MIN_IO_QUEUES
/* SDP VF Register definitions */
#define SDP_VF_RING_OFFSET (0x1ull << 17)
/* SDP VF IQ Registers */
#define SDP_VF_R_IN_CONTROL_START (0x10000)
#define SDP_VF_R_IN_ENABLE_START (0x10010)
#define SDP_VF_R_IN_INSTR_BADDR_START (0x10020)
#define SDP_VF_R_IN_INSTR_RSIZE_START (0x10030)
#define SDP_VF_R_IN_INSTR_DBELL_START (0x10040)
#define SDP_VF_R_IN_CNTS_START (0x10050)
#define SDP_VF_R_IN_INT_LEVELS_START (0x10060)
#define SDP_VF_R_IN_PKT_CNT_START (0x10080)
#define SDP_VF_R_IN_BYTE_CNT_START (0x10090)
#define SDP_VF_R_IN_CONTROL(ring) \
(SDP_VF_R_IN_CONTROL_START + ((ring) * SDP_VF_RING_OFFSET))
#define SDP_VF_R_IN_ENABLE(ring) \
(SDP_VF_R_IN_ENABLE_START + ((ring) * SDP_VF_RING_OFFSET))
#define SDP_VF_R_IN_INSTR_BADDR(ring) \
(SDP_VF_R_IN_INSTR_BADDR_START + ((ring) * SDP_VF_RING_OFFSET))
#define SDP_VF_R_IN_INSTR_RSIZE(ring) \
(SDP_VF_R_IN_INSTR_RSIZE_START + ((ring) * SDP_VF_RING_OFFSET))
#define SDP_VF_R_IN_INSTR_DBELL(ring) \
(SDP_VF_R_IN_INSTR_DBELL_START + ((ring) * SDP_VF_RING_OFFSET))
#define SDP_VF_R_IN_CNTS(ring) \
(SDP_VF_R_IN_CNTS_START + ((ring) * SDP_VF_RING_OFFSET))
#define SDP_VF_R_IN_INT_LEVELS(ring) \
(SDP_VF_R_IN_INT_LEVELS_START + ((ring) * SDP_VF_RING_OFFSET))
#define SDP_VF_R_IN_PKT_CNT(ring) \
(SDP_VF_R_IN_PKT_CNT_START + ((ring) * SDP_VF_RING_OFFSET))
#define SDP_VF_R_IN_BYTE_CNT(ring) \
(SDP_VF_R_IN_BYTE_CNT_START + ((ring) * SDP_VF_RING_OFFSET))
/* SDP VF IQ Masks */
#define SDP_VF_R_IN_CTL_RPVF_MASK (0xF)
#define SDP_VF_R_IN_CTL_RPVF_POS (48)
#define SDP_VF_R_IN_CTL_IDLE (0x1ull << 28)
#define SDP_VF_R_IN_CTL_RDSIZE (0x3ull << 25) /* Setting to max(4) */
#define SDP_VF_R_IN_CTL_IS_64B (0x1ull << 24)
#define SDP_VF_R_IN_CTL_D_NSR (0x1ull << 8)
#define SDP_VF_R_IN_CTL_D_ESR (0x1ull << 6)
#define SDP_VF_R_IN_CTL_D_ROR (0x1ull << 5)
#define SDP_VF_R_IN_CTL_NSR (0x1ull << 3)
#define SDP_VF_R_IN_CTL_ESR (0x1ull << 1)
#define SDP_VF_R_IN_CTL_ROR (0x1ull << 0)
#define SDP_VF_R_IN_CTL_MASK \
(SDP_VF_R_IN_CTL_RDSIZE | SDP_VF_R_IN_CTL_IS_64B)
/* SDP VF OQ Registers */
#define SDP_VF_R_OUT_CNTS_START (0x10100)
#define SDP_VF_R_OUT_INT_LEVELS_START (0x10110)
#define SDP_VF_R_OUT_SLIST_BADDR_START (0x10120)
#define SDP_VF_R_OUT_SLIST_RSIZE_START (0x10130)
#define SDP_VF_R_OUT_SLIST_DBELL_START (0x10140)
#define SDP_VF_R_OUT_CONTROL_START (0x10150)
#define SDP_VF_R_OUT_ENABLE_START (0x10160)
#define SDP_VF_R_OUT_PKT_CNT_START (0x10180)
#define SDP_VF_R_OUT_BYTE_CNT_START (0x10190)
#define SDP_VF_R_OUT_CONTROL(ring) \
(SDP_VF_R_OUT_CONTROL_START + ((ring) * SDP_VF_RING_OFFSET))
#define SDP_VF_R_OUT_ENABLE(ring) \
(SDP_VF_R_OUT_ENABLE_START + ((ring) * SDP_VF_RING_OFFSET))
#define SDP_VF_R_OUT_SLIST_BADDR(ring) \
(SDP_VF_R_OUT_SLIST_BADDR_START + ((ring) * SDP_VF_RING_OFFSET))
#define SDP_VF_R_OUT_SLIST_RSIZE(ring) \
(SDP_VF_R_OUT_SLIST_RSIZE_START + ((ring) * SDP_VF_RING_OFFSET))
#define SDP_VF_R_OUT_SLIST_DBELL(ring) \
(SDP_VF_R_OUT_SLIST_DBELL_START + ((ring) * SDP_VF_RING_OFFSET))
#define SDP_VF_R_OUT_CNTS(ring) \
(SDP_VF_R_OUT_CNTS_START + ((ring) * SDP_VF_RING_OFFSET))
#define SDP_VF_R_OUT_INT_LEVELS(ring) \
(SDP_VF_R_OUT_INT_LEVELS_START + ((ring) * SDP_VF_RING_OFFSET))
#define SDP_VF_R_OUT_PKT_CNT(ring) \
(SDP_VF_R_OUT_PKT_CNT_START + ((ring) * SDP_VF_RING_OFFSET))
#define SDP_VF_R_OUT_BYTE_CNT(ring) \
(SDP_VF_R_OUT_BYTE_CNT_START + ((ring) * SDP_VF_RING_OFFSET))
/* SDP VF OQ Masks */
#define SDP_VF_R_OUT_CTL_IDLE (1ull << 40)
#define SDP_VF_R_OUT_CTL_ES_I (1ull << 34)
#define SDP_VF_R_OUT_CTL_NSR_I (1ull << 33)
#define SDP_VF_R_OUT_CTL_ROR_I (1ull << 32)
#define SDP_VF_R_OUT_CTL_ES_D (1ull << 30)
#define SDP_VF_R_OUT_CTL_NSR_D (1ull << 29)
#define SDP_VF_R_OUT_CTL_ROR_D (1ull << 28)
#define SDP_VF_R_OUT_CTL_ES_P (1ull << 26)
#define SDP_VF_R_OUT_CTL_NSR_P (1ull << 25)
#define SDP_VF_R_OUT_CTL_ROR_P (1ull << 24)
#define SDP_VF_R_OUT_CTL_IMODE (1ull << 23)
#define SDP_VF_R_OUT_INT_LEVELS_BMODE (1ull << 63)
#define SDP_VF_R_OUT_INT_LEVELS_TIMET (32)
/* SDP Instruction Header */
struct sdp_instr_ih {
/* Data Len */
uint64_t tlen:16;
/* Reserved1 */
uint64_t rsvd1:20;
/* PKIND for SDP */
uint64_t pkind:6;
/* Front Data size */
uint64_t fsz:6;
/* No. of entries in gather list */
uint64_t gsz:14;
/* Gather indicator */
uint64_t gather:1;
/* Reserved2 */
uint64_t rsvd2:1;
} __rte_packed;
#endif /* __OTX2_SDP_HW_H_ */

View File

@ -205,6 +205,10 @@ int otx2_logtype_tim;
* @internal
*/
int otx2_logtype_dpi;
/**
* @internal
*/
int otx2_logtype_ep;
RTE_INIT(otx2_log_init);
static void
@ -245,4 +249,9 @@ otx2_log_init(void)
otx2_logtype_dpi = rte_log_register("pmd.raw.octeontx2.dpi");
if (otx2_logtype_dpi >= 0)
rte_log_set_level(otx2_logtype_dpi, RTE_LOG_NOTICE);
otx2_logtype_ep = rte_log_register("pmd.raw.octeontx2.ep");
if (otx2_logtype_ep >= 0)
rte_log_set_level(otx2_logtype_ep, RTE_LOG_NOTICE);
}

View File

@ -16,6 +16,7 @@
#include "hw/otx2_nix.h"
#include "hw/otx2_npc.h"
#include "hw/otx2_npa.h"
#include "hw/otx2_sdp.h"
#include "hw/otx2_sso.h"
#include "hw/otx2_ssow.h"
#include "hw/otx2_tim.h"
@ -85,6 +86,7 @@ extern int otx2_logtype_npc;
extern int otx2_logtype_tm;
extern int otx2_logtype_tim;
extern int otx2_logtype_dpi;
extern int otx2_logtype_ep;
#define otx2_err(fmt, args...) \
RTE_LOG(ERR, PMD, "%s():%u " fmt "\n", \
@ -107,6 +109,7 @@ extern int otx2_logtype_dpi;
#define otx2_tm_dbg(fmt, ...) otx2_dbg(tm, fmt, ##__VA_ARGS__)
#define otx2_tim_dbg(fmt, ...) otx2_dbg(tim, fmt, ##__VA_ARGS__)
#define otx2_dpi_dbg(fmt, ...) otx2_dbg(dpi, fmt, ##__VA_ARGS__)
#define otx2_sdp_dbg(fmt, ...) otx2_dbg(ep, fmt, ##__VA_ARGS__)
/* PCI IDs */
#define PCI_VENDOR_ID_CAVIUM 0x177D
@ -121,6 +124,7 @@ extern int otx2_logtype_dpi;
#define PCI_DEVID_OCTEONTX2_RVU_CPT_VF 0xA0FE
#define PCI_DEVID_OCTEONTX2_RVU_AF_VF 0xA0f8
#define PCI_DEVID_OCTEONTX2_DPI_VF 0xA081
#define PCI_DEVID_OCTEONTX2_EP_VF 0xB203 /* OCTEON TX2 EP mode */
#define PCI_DEVID_OCTEONTX2_RVU_SDP_PF 0xA0f6
#define PCI_DEVID_OCTEONTX2_RVU_SDP_VF 0xA0f7

View File

@ -33,3 +33,9 @@ DPDK_20.0 {
local: *;
};
EXPERIMENTAL {
global:
otx2_logtype_ep;
};

View File

@ -36,5 +36,8 @@ LIBABIVER := 1
# All source are stored in SRCS-y
#
SRCS-$(CONFIG_RTE_LIBRTE_PMD_OCTEONTX2_EP_RAWDEV) += otx2_ep_rawdev.c
SRCS-$(CONFIG_RTE_LIBRTE_PMD_OCTEONTX2_EP_RAWDEV) += otx2_ep_enqdeq.c
SRCS-$(CONFIG_RTE_LIBRTE_PMD_OCTEONTX2_EP_RAWDEV) += otx2_ep_vf.c
include $(RTE_SDK)/mk/rte.lib.mk

View File

@ -3,4 +3,6 @@
#
deps += ['bus_pci', 'common_octeontx2', 'rawdev']
sources = files('otx2_ep_rawdev.c')
sources = files('otx2_ep_rawdev.c',
'otx2_ep_enqdeq.c',
'otx2_ep_vf.c')

View File

@ -0,0 +1,294 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#include <string.h>
#include <unistd.h>
#include <dirent.h>
#include <fcntl.h>
#include <rte_bus.h>
#include <rte_bus_pci.h>
#include <rte_eal.h>
#include <rte_lcore.h>
#include <rte_mempool.h>
#include <rte_pci.h>
#include <rte_common.h>
#include <rte_rawdev.h>
#include <rte_rawdev_pmd.h>
#include "otx2_common.h"
#include "otx2_ep_enqdeq.h"
/* IQ initialization */
static int
sdp_init_instr_queue(struct sdp_device *sdpvf, int iq_no)
{
const struct sdp_config *conf;
struct sdp_instr_queue *iq;
uint32_t q_size;
conf = sdpvf->conf;
iq = sdpvf->instr_queue[iq_no];
q_size = conf->iq.instr_type * conf->num_iqdef_descs;
/* IQ memory creation for Instruction submission to OCTEON TX2 */
iq->iq_mz = rte_memzone_reserve_aligned("iqmz",
q_size,
rte_socket_id(),
RTE_MEMZONE_IOVA_CONTIG,
RTE_CACHE_LINE_SIZE);
if (iq->iq_mz == NULL) {
otx2_err("IQ[%d] memzone alloc failed", iq_no);
goto iq_init_fail;
}
iq->base_addr_dma = iq->iq_mz->iova;
iq->base_addr = (uint8_t *)iq->iq_mz->addr;
if (conf->num_iqdef_descs & (conf->num_iqdef_descs - 1)) {
otx2_err("IQ[%d] descs not in power of 2", iq_no);
goto iq_init_fail;
}
iq->nb_desc = conf->num_iqdef_descs;
/* Create a IQ request list to hold requests that have been
* posted to OCTEON TX2. This list will be used for freeing the IQ
* data buffer(s) later once the OCTEON TX2 fetched the requests.
*/
iq->req_list = rte_zmalloc_socket("request_list",
(iq->nb_desc * SDP_IQREQ_LIST_SIZE),
RTE_CACHE_LINE_SIZE,
rte_socket_id());
if (iq->req_list == NULL) {
otx2_err("IQ[%d] req_list alloc failed", iq_no);
goto iq_init_fail;
}
otx2_info("IQ[%d]: base: %p basedma: %lx count: %d",
iq_no, iq->base_addr, (unsigned long)iq->base_addr_dma,
iq->nb_desc);
iq->sdp_dev = sdpvf;
iq->q_no = iq_no;
iq->fill_cnt = 0;
iq->host_write_index = 0;
iq->otx_read_index = 0;
iq->flush_index = 0;
/* Initialize the spinlock for this instruction queue */
rte_spinlock_init(&iq->lock);
rte_spinlock_init(&iq->post_lock);
rte_atomic64_clear(&iq->iq_flush_running);
sdpvf->io_qmask.iq |= (1ull << iq_no);
/* Set 32B/64B mode for each input queue */
if (conf->iq.instr_type == 64)
sdpvf->io_qmask.iq64B |= (1ull << iq_no);
iq->iqcmd_64B = (conf->iq.instr_type == 64);
/* Set up IQ registers */
sdpvf->fn_list.setup_iq_regs(sdpvf, iq_no);
return 0;
iq_init_fail:
return -ENOMEM;
}
int
sdp_setup_iqs(struct sdp_device *sdpvf, uint32_t iq_no)
{
struct sdp_instr_queue *iq;
iq = (struct sdp_instr_queue *)rte_zmalloc("sdp_IQ", sizeof(*iq),
RTE_CACHE_LINE_SIZE);
if (iq == NULL)
return -ENOMEM;
sdpvf->instr_queue[iq_no] = iq;
if (sdp_init_instr_queue(sdpvf, iq_no)) {
otx2_err("IQ init is failed");
goto delete_IQ;
}
otx2_info("IQ[%d] is created.", sdpvf->num_iqs);
sdpvf->num_iqs++;
return 0;
delete_IQ:
return -ENOMEM;
}
static void
sdp_droq_reset_indices(struct sdp_droq *droq)
{
droq->read_idx = 0;
droq->write_idx = 0;
droq->refill_idx = 0;
droq->refill_count = 0;
rte_atomic64_set(&droq->pkts_pending, 0);
}
static int
sdp_droq_setup_ring_buffers(struct sdp_device *sdpvf,
struct sdp_droq *droq)
{
struct sdp_droq_desc *desc_ring = droq->desc_ring;
uint32_t idx;
void *buf;
for (idx = 0; idx < droq->nb_desc; idx++) {
rte_mempool_get(sdpvf->enqdeq_mpool, &buf);
if (buf == NULL) {
otx2_err("OQ buffer alloc failed");
/* sdp_droq_destroy_ring_buffers(droq);*/
return -ENOMEM;
}
droq->recv_buf_list[idx].buffer = buf;
droq->info_list[idx].length = 0;
/* Map ring buffers into memory */
desc_ring[idx].info_ptr = (uint64_t)(droq->info_list_dma +
(idx * SDP_DROQ_INFO_SIZE));
desc_ring[idx].buffer_ptr = rte_mem_virt2iova(buf);
}
sdp_droq_reset_indices(droq);
return 0;
}
static void *
sdp_alloc_info_buffer(struct sdp_device *sdpvf __rte_unused,
struct sdp_droq *droq)
{
droq->info_mz = rte_memzone_reserve_aligned("OQ_info_list",
(droq->nb_desc * SDP_DROQ_INFO_SIZE),
rte_socket_id(),
RTE_MEMZONE_IOVA_CONTIG,
RTE_CACHE_LINE_SIZE);
if (droq->info_mz == NULL)
return NULL;
droq->info_list_dma = droq->info_mz->iova;
droq->info_alloc_size = droq->info_mz->len;
droq->info_base_addr = (size_t)droq->info_mz->addr;
return droq->info_mz->addr;
}
/* OQ initialization */
static int
sdp_init_droq(struct sdp_device *sdpvf, uint32_t q_no)
{
const struct sdp_config *conf = sdpvf->conf;
uint32_t c_refill_threshold;
uint32_t desc_ring_size;
struct sdp_droq *droq;
otx2_info("OQ[%d] Init start", q_no);
droq = sdpvf->droq[q_no];
droq->sdp_dev = sdpvf;
droq->q_no = q_no;
c_refill_threshold = conf->oq.refill_threshold;
droq->nb_desc = conf->num_oqdef_descs;
droq->buffer_size = conf->oqdef_buf_size;
/* OQ desc_ring set up */
desc_ring_size = droq->nb_desc * SDP_DROQ_DESC_SIZE;
droq->desc_ring_mz = rte_memzone_reserve_aligned("sdp_oqmz",
desc_ring_size,
rte_socket_id(),
RTE_MEMZONE_IOVA_CONTIG,
RTE_CACHE_LINE_SIZE);
if (droq->desc_ring_mz == NULL) {
otx2_err("OQ:%d desc_ring allocation failed", q_no);
goto init_droq_fail;
}
droq->desc_ring_dma = droq->desc_ring_mz->iova;
droq->desc_ring = (struct sdp_droq_desc *)droq->desc_ring_mz->addr;
otx2_sdp_dbg("OQ[%d]: desc_ring: virt: 0x%p, dma: %lx",
q_no, droq->desc_ring, (unsigned long)droq->desc_ring_dma);
otx2_sdp_dbg("OQ[%d]: num_desc: %d", q_no, droq->nb_desc);
/* OQ info_list set up */
droq->info_list = sdp_alloc_info_buffer(sdpvf, droq);
if (droq->info_list == NULL) {
otx2_err("memory allocation failed for OQ[%d] info_list", q_no);
goto init_droq_fail;
}
/* OQ buf_list set up */
droq->recv_buf_list = rte_zmalloc_socket("recv_buf_list",
(droq->nb_desc * SDP_DROQ_RECVBUF_SIZE),
RTE_CACHE_LINE_SIZE, rte_socket_id());
if (droq->recv_buf_list == NULL) {
otx2_err("OQ recv_buf_list alloc failed");
goto init_droq_fail;
}
if (sdp_droq_setup_ring_buffers(sdpvf, droq))
goto init_droq_fail;
droq->refill_threshold = c_refill_threshold;
rte_spinlock_init(&droq->lock);
/* Set up OQ registers */
sdpvf->fn_list.setup_oq_regs(sdpvf, q_no);
sdpvf->io_qmask.oq |= (1ull << q_no);
return 0;
init_droq_fail:
return -ENOMEM;
}
/* OQ configuration and setup */
int
sdp_setup_oqs(struct sdp_device *sdpvf, uint32_t oq_no)
{
struct sdp_droq *droq;
/* Allocate new droq. */
droq = (struct sdp_droq *)rte_zmalloc("sdp_OQ",
sizeof(*droq), RTE_CACHE_LINE_SIZE);
if (droq == NULL) {
otx2_err("Droq[%d] Creation Failed", oq_no);
return -ENOMEM;
}
sdpvf->droq[oq_no] = droq;
if (sdp_init_droq(sdpvf, oq_no)) {
otx2_err("Droq[%d] Initialization failed", oq_no);
goto delete_OQ;
}
otx2_info("OQ[%d] is created.", oq_no);
sdpvf->num_oqs++;
return 0;
delete_OQ:
return -ENOMEM;
}

View File

@ -0,0 +1,11 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#ifndef _OTX2_EP_ENQDEQ_H_
#define _OTX2_EP_ENQDEQ_H_
#include <rte_byteorder.h>
#include "otx2_ep_rawdev.h"
#endif /* _OTX2_EP_ENQDEQ_H_ */

View File

@ -17,6 +17,7 @@
#include "otx2_common.h"
#include "otx2_ep_rawdev.h"
#include "otx2_ep_vf.h"
static const struct rte_pci_id pci_sdp_vf_map[] = {
{
@ -28,6 +29,152 @@ static const struct rte_pci_id pci_sdp_vf_map[] = {
},
};
/* SDP_VF default configuration */
const struct sdp_config default_sdp_conf = {
/* IQ attributes */
.iq = {
.max_iqs = SDP_VF_CFG_IO_QUEUES,
.instr_type = SDP_VF_64BYTE_INSTR,
.pending_list_size = (SDP_VF_MAX_IQ_DESCRIPTORS *
SDP_VF_CFG_IO_QUEUES),
},
/* OQ attributes */
.oq = {
.max_oqs = SDP_VF_CFG_IO_QUEUES,
.info_ptr = SDP_VF_OQ_INFOPTR_MODE,
.refill_threshold = SDP_VF_OQ_REFIL_THRESHOLD,
},
.num_iqdef_descs = SDP_VF_MAX_IQ_DESCRIPTORS,
.num_oqdef_descs = SDP_VF_MAX_OQ_DESCRIPTORS,
.oqdef_buf_size = SDP_VF_OQ_BUF_SIZE,
};
const struct sdp_config*
sdp_get_defconf(struct sdp_device *sdp_dev __rte_unused)
{
const struct sdp_config *default_conf = NULL;
default_conf = &default_sdp_conf;
return default_conf;
}
static int
sdp_chip_specific_setup(struct sdp_device *sdpvf)
{
struct rte_pci_device *pdev = sdpvf->pci_dev;
uint32_t dev_id = pdev->id.device_id;
int ret;
switch (dev_id) {
case PCI_DEVID_OCTEONTX2_EP_VF:
sdpvf->chip_id = PCI_DEVID_OCTEONTX2_EP_VF;
ret = sdp_vf_setup_device(sdpvf);
break;
default:
otx2_err("Unsupported device");
ret = -EINVAL;
}
if (!ret)
otx2_info("SDP dev_id[%d]", dev_id);
return ret;
}
/* SDP VF device initialization */
static int
sdp_vfdev_init(struct sdp_device *sdpvf)
{
uint32_t rawdev_queues, q;
if (sdp_chip_specific_setup(sdpvf)) {
otx2_err("Chip specific setup failed");
goto setup_fail;
}
if (sdpvf->fn_list.setup_device_regs(sdpvf)) {
otx2_err("Failed to configure device registers");
goto setup_fail;
}
rawdev_queues = (uint32_t)(sdpvf->sriov_info.rings_per_vf);
/* Rawdev queues setup for enqueue/dequeue */
for (q = 0; q < rawdev_queues; q++) {
if (sdp_setup_iqs(sdpvf, q)) {
otx2_err("Failed to setup IQs");
goto iq_fail;
}
}
otx2_info("Total[%d] IQs setup", sdpvf->num_iqs);
for (q = 0; q < rawdev_queues; q++) {
if (sdp_setup_oqs(sdpvf, q)) {
otx2_err("Failed to setup OQs");
goto oq_fail;
}
}
otx2_info("Total [%d] OQs setup", sdpvf->num_oqs);
/* Enable IQ/OQ for this device */
sdpvf->fn_list.enable_io_queues(sdpvf);
/* Send OQ desc credits for OQs, credits are always
* sent after the OQs are enabled.
*/
for (q = 0; q < rawdev_queues; q++) {
rte_write32(sdpvf->droq[q]->nb_desc,
sdpvf->droq[q]->pkts_credit_reg);
rte_io_mb();
otx2_info("OQ[%d] dbells [%d]", q,
rte_read32(sdpvf->droq[q]->pkts_credit_reg));
}
rte_wmb();
otx2_info("SDP Device is Ready");
return 0;
oq_fail:
iq_fail:
setup_fail:
return -ENOMEM;
}
static int
sdp_rawdev_configure(const struct rte_rawdev *dev, rte_rawdev_obj_t config)
{
struct sdp_rawdev_info *app_info = (struct sdp_rawdev_info *)config;
struct sdp_device *sdpvf;
if (app_info == NULL) {
otx2_err("Application config info [NULL]");
return -EINVAL;
}
sdpvf = (struct sdp_device *)dev->dev_private;
sdpvf->conf = app_info->app_conf;
sdpvf->enqdeq_mpool = app_info->enqdeq_mpool;
sdp_vfdev_init(sdpvf);
return 0;
}
/* SDP VF endpoint rawdev ops */
static const struct rte_rawdev_ops sdp_rawdev_ops = {
.dev_configure = sdp_rawdev_configure,
};
static int
otx2_sdp_rawdev_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
@ -66,6 +213,7 @@ otx2_sdp_rawdev_probe(struct rte_pci_driver *pci_drv __rte_unused,
return -ENOMEM;
}
sdp_rawdev->dev_ops = &sdp_rawdev_ops;
sdp_rawdev->device = &pci_dev->device;
sdp_rawdev->driver_name = pci_dev->driver->driver.name;

View File

@ -5,17 +5,449 @@
#ifndef _OTX2_EP_RAWDEV_H_
#define _OTX2_EP_RAWDEV_H_
#define PCI_DEVID_OCTEONTX2_EP_VF 0xB203 /* OCTEON TX2 EP mode */
#include <rte_byteorder.h>
#include <rte_spinlock.h>
/* Input Request Header format */
struct sdp_instr_irh {
/* Request ID */
uint64_t rid:16;
/* PCIe port to use for response */
uint64_t pcie_port:3;
/* Scatter indicator 1=scatter */
uint64_t scatter:1;
/* Size of Expected result OR no. of entries in scatter list */
uint64_t rlenssz:14;
/* Desired destination port for result */
uint64_t dport:6;
/* Opcode Specific parameters */
uint64_t param:8;
/* Opcode for the return packet */
uint64_t opcode:16;
};
/* SDP 32B instruction format */
struct sdp_instr_32B {
/* Pointer where the input data is available. */
uint64_t dptr;
/* SDP Instruction Header. */
uint64_t ih;
/** Pointer where the response for a RAW mode packet
* will be written by OCTEON TX2.
*/
uint64_t rptr;
/* Input Request Header. Additional info about the input. */
uint64_t irh;
};
#define SDP_32B_INSTR_SIZE (sizeof(sdp_instr_32B))
/* SDP 64B instruction format */
struct sdp_instr_64B {
/* Pointer where the input data is available. */
uint64_t dptr;
/* SDP Instruction Header. */
uint64_t ih;
/** Pointer where the response for a RAW mode packet
* will be written by OCTEON TX2.
*/
uint64_t rptr;
/* Input Request Header. */
uint64_t irh;
/* Additional headers available in a 64-byte instruction. */
uint64_t exhdr[4];
};
#define SDP_64B_INSTR_SIZE (sizeof(sdp_instr_64B))
struct sdp_soft_instr {
/** Input data pointer. It is either pointing directly to input data
* or to a gather list.
*/
void *dptr;
/** Response from OCTEON TX2 comes at this address. It is either
* directlty pointing to output data buffer or to a scatter list.
*/
void *rptr;
/* The instruction header. All input commands have this field. */
struct sdp_instr_ih ih;
/* Input request header. */
struct sdp_instr_irh irh;
/** The PCI instruction to be sent to OCTEON TX2. This is stored in the
* instr to retrieve the physical address of buffers when instr is
* freed.
*/
struct sdp_instr_64B command;
/** If a gather list was allocated, this ptr points to the buffer used
* for the gather list. The gather list has to be 8B aligned, so this
* value may be different from dptr.
*/
void *gather_ptr;
/* Total data bytes transferred in the gather mode request. */
uint64_t gather_bytes;
/** If a scatter list was allocated, this ptr points to the buffer used
* for the scatter list. The scatter list has to be 8B aligned, so
* this value may be different from rptr.
*/
void *scatter_ptr;
/* Total data bytes to be received in the scatter mode request. */
uint64_t scatter_bytes;
/* IQ number to which this instruction has to be submitted. */
uint32_t q_no;
/* IQ instruction request type. */
uint32_t reqtype;
};
#define SDP_SOFT_INSTR_SIZE (sizeof(sdp_soft_instr))
/* SDP IQ request list */
struct sdp_instr_list {
void *buf;
uint32_t reqtype;
};
#define SDP_IQREQ_LIST_SIZE (sizeof(struct sdp_instr_list))
/* Structure to define the configuration attributes for each Input queue. */
struct sdp_iq_config {
/* Max number of IQs available */
uint16_t max_iqs;
/* Command size - 32 or 64 bytes */
uint16_t instr_type;
/* Pending list size, usually set to the sum of the size of all IQs */
uint32_t pending_list_size;
};
/** The instruction (input) queue.
* The input queue is used to post raw (instruction) mode data or packet data
* to OCTEON TX2 device from the host. Each IQ of a SDP EP VF device has one
* such structure to represent it.
*/
struct sdp_instr_queue {
/* A spinlock to protect access to the input ring. */
rte_spinlock_t lock;
rte_spinlock_t post_lock;
struct sdp_device *sdp_dev;
rte_atomic64_t iq_flush_running;
uint32_t q_no;
uint32_t pkt_in_done;
/* Flag for 64 byte commands. */
uint32_t iqcmd_64B:1;
uint32_t rsvd:17;
uint32_t status:8;
/* Number of descriptors in this ring. */
uint32_t nb_desc;
/* Input ring index, where the driver should write the next packet */
uint32_t host_write_index;
/* Input ring index, where the OCTEON TX2 should read the next packet */
uint32_t otx_read_index;
/** This index aids in finding the window in the queue where OCTEON TX2
* has read the commands.
*/
uint32_t flush_index;
/* This keeps track of the instructions pending in this queue. */
rte_atomic64_t instr_pending;
uint32_t reset_instr_cnt;
/* Pointer to the Virtual Base addr of the input ring. */
uint8_t *base_addr;
/* This IQ request list */
struct sdp_instr_list *req_list;
/* SDP doorbell register for the ring. */
void *doorbell_reg;
/* SDP instruction count register for this ring. */
void *inst_cnt_reg;
/* Number of instructions pending to be posted to OCTEON TX2. */
uint32_t fill_cnt;
/* DMA mapped base address of the input descriptor ring. */
uint64_t base_addr_dma;
/* Memory zone */
const struct rte_memzone *iq_mz;
};
/* DROQ packet format for application i/f. */
struct sdp_droq_pkt {
/* DROQ packet data buffer pointer. */
uint8_t *data;
/* DROQ packet data length */
uint32_t len;
uint32_t misc;
};
/** Descriptor format.
* The descriptor ring is made of descriptors which have 2 64-bit values:
* -# Physical (bus) address of the data buffer.
* -# Physical (bus) address of a sdp_droq_info structure.
* The device DMA's incoming packets and its information at the address
* given by these descriptor fields.
*/
struct sdp_droq_desc {
/* The buffer pointer */
uint64_t buffer_ptr;
/* The Info pointer */
uint64_t info_ptr;
};
#define SDP_DROQ_DESC_SIZE (sizeof(struct sdp_droq_desc))
/* Receive Header */
union sdp_rh {
uint64_t rh64;
};
#define SDP_RH_SIZE (sizeof(union sdp_rh))
/** Information about packet DMA'ed by OCTEON TX2.
* The format of the information available at Info Pointer after OCTEON TX2
* has posted a packet. Not all descriptors have valid information. Only
* the Info field of the first descriptor for a packet has information
* about the packet.
*/
struct sdp_droq_info {
/* The Output Receive Header. */
union sdp_rh rh;
/* The Length of the packet. */
uint64_t length;
};
#define SDP_DROQ_INFO_SIZE (sizeof(struct sdp_droq_info))
/** Pointer to data buffer.
* Driver keeps a pointer to the data buffer that it made available to
* the OCTEON TX2 device. Since the descriptor ring keeps physical (bus)
* addresses, this field is required for the driver to keep track of
* the virtual address pointers.
*/
struct sdp_recv_buffer {
/* Packet buffer, including meta data. */
void *buffer;
/* Data in the packet buffer. */
/* uint8_t *data; */
};
#define SDP_DROQ_RECVBUF_SIZE (sizeof(struct sdp_recv_buffer))
/* Structure to define the configuration attributes for each Output queue. */
struct sdp_oq_config {
/* Max number of OQs available */
uint16_t max_oqs;
/* If set, the Output queue uses info-pointer mode. (Default: 1 ) */
uint16_t info_ptr;
/** The number of buffers that were consumed during packet processing by
* the driver on this Output queue before the driver attempts to
* replenish the descriptor ring with new buffers.
*/
uint32_t refill_threshold;
};
/* The Descriptor Ring Output Queue(DROQ) structure. */
struct sdp_droq {
/* A spinlock to protect access to this ring. */
rte_spinlock_t lock;
struct sdp_device *sdp_dev;
/* The 8B aligned descriptor ring starts at this address. */
struct sdp_droq_desc *desc_ring;
uint32_t q_no;
uint32_t last_pkt_count;
/* Driver should read the next packet at this index */
uint32_t read_idx;
/* OCTEON TX2 will write the next packet at this index */
uint32_t write_idx;
/* At this index, the driver will refill the descriptor's buffer */
uint32_t refill_idx;
/* Packets pending to be processed */
rte_atomic64_t pkts_pending;
/* Number of descriptors in this ring. */
uint32_t nb_desc;
/* The number of descriptors pending to refill. */
uint32_t refill_count;
uint32_t refill_threshold;
/* The 8B aligned info ptrs begin from this address. */
struct sdp_droq_info *info_list;
/* receive buffer list contains virtual addresses of the buffers. */
struct sdp_recv_buffer *recv_buf_list;
/* The size of each buffer pointed by the buffer pointer. */
uint32_t buffer_size;
/** Pointer to the mapped packet credit register.
* Host writes number of info/buffer ptrs available to this register
*/
void *pkts_credit_reg;
/** Pointer to the mapped packet sent register. OCTEON TX2 writes the
* number of packets DMA'ed to host memory in this register.
*/
void *pkts_sent_reg;
/* DMA mapped address of the DROQ descriptor ring. */
size_t desc_ring_dma;
/* Info_ptr list is allocated at this virtual address. */
size_t info_base_addr;
/* DMA mapped address of the info list */
size_t info_list_dma;
/* Allocated size of info list. */
uint32_t info_alloc_size;
/* Memory zone **/
const struct rte_memzone *desc_ring_mz;
const struct rte_memzone *info_mz;
};
#define SDP_DROQ_SIZE (sizeof(struct sdp_droq))
/* IQ/OQ mask */
struct sdp_io_enable {
uint64_t iq;
uint64_t oq;
uint64_t iq64B;
};
/* Structure to define the configuration. */
struct sdp_config {
/* Input Queue attributes. */
struct sdp_iq_config iq;
/* Output Queue attributes. */
struct sdp_oq_config oq;
/* Num of desc for IQ rings */
uint32_t num_iqdef_descs;
/* Num of desc for OQ rings */
uint32_t num_oqdef_descs;
/* OQ buffer size */
uint32_t oqdef_buf_size;
};
/* Required functions for each VF device */
struct sdp_fn_list {
void (*setup_iq_regs)(struct sdp_device *sdpvf, uint32_t q_no);
void (*setup_oq_regs)(struct sdp_device *sdpvf, uint32_t q_no);
int (*setup_device_regs)(struct sdp_device *sdpvf);
void (*enable_io_queues)(struct sdp_device *sdpvf);
void (*enable_iq)(struct sdp_device *sdpvf, uint32_t q_no);
void (*enable_oq)(struct sdp_device *sdpvf, uint32_t q_no);
};
/* SRIOV information */
struct sdp_sriov_info {
/* Number of rings assigned to VF */
uint32_t rings_per_vf;
/* Number of VF devices enabled */
uint32_t num_vfs;
};
/* Information to be passed from application */
struct sdp_rawdev_info {
struct rte_mempool *enqdeq_mpool;
const struct sdp_config *app_conf;
};
/* SDP EP VF device */
struct sdp_device {
/* PCI device pointer */
struct rte_pci_device *pci_dev;
uint16_t chip_id;
uint16_t pf_num;
uint16_t vf_num;
/* This device's PCIe port used for traffic. */
uint16_t pcie_port;
uint32_t pkind;
/* The state of this device */
rte_atomic64_t status;
/* Memory mapped h/w address */
uint8_t *hw_addr;
struct sdp_fn_list fn_list;
/* Num IQs */
uint32_t num_iqs;
/* The input instruction queues */
struct sdp_instr_queue *instr_queue[SDP_VF_MAX_IOQS_PER_RAWDEV];
/* Num OQs */
uint32_t num_oqs;
/* The DROQ output queues */
struct sdp_droq *droq[SDP_VF_MAX_IOQS_PER_RAWDEV];
/* IOQ data buffer pool */
struct rte_mempool *enqdeq_mpool;
/* IOQ mask */
struct sdp_io_enable io_qmask;
/* SR-IOV info */
struct sdp_sriov_info sriov_info;
/* Device configuration */
const struct sdp_config *conf;
};
const struct sdp_config *sdp_get_defconf(struct sdp_device *sdp_dev);
int sdp_setup_iqs(struct sdp_device *sdpvf, uint32_t iq_no);
int sdp_setup_oqs(struct sdp_device *sdpvf, uint32_t oq_no);
#endif /* _OTX2_EP_RAWDEV_H_ */

View File

@ -0,0 +1,407 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#include <rte_common.h>
#include <rte_rawdev.h>
#include <rte_rawdev_pmd.h>
#include "otx2_common.h"
#include "otx2_ep_rawdev.h"
#include "otx2_ep_vf.h"
static int
sdp_vf_reset_iq(struct sdp_device *sdpvf, int q_no)
{
uint64_t loop = SDP_VF_BUSY_LOOP_COUNT;
volatile uint64_t d64 = 0ull;
/* There is no RST for a ring.
* Clear all registers one by one after disabling the ring
*/
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_IN_ENABLE(q_no));
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_IN_INSTR_BADDR(q_no));
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_IN_INSTR_RSIZE(q_no));
d64 = 0xFFFFFFFF; /* ~0ull */
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_IN_INSTR_DBELL(q_no));
d64 = otx2_read64(sdpvf->hw_addr + SDP_VF_R_IN_INSTR_DBELL(q_no));
while ((d64 != 0) && loop--) {
otx2_write64(d64, sdpvf->hw_addr +
SDP_VF_R_IN_INSTR_DBELL(q_no));
rte_delay_ms(1);
d64 = otx2_read64(sdpvf->hw_addr +
SDP_VF_R_IN_INSTR_DBELL(q_no));
}
loop = SDP_VF_BUSY_LOOP_COUNT;
d64 = otx2_read64(sdpvf->hw_addr + SDP_VF_R_IN_CNTS(q_no));
while ((d64 != 0) && loop--) {
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_IN_CNTS(q_no));
rte_delay_ms(1);
d64 = otx2_read64(sdpvf->hw_addr + SDP_VF_R_IN_CNTS(q_no));
}
d64 = 0ull;
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_IN_INT_LEVELS(q_no));
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_IN_PKT_CNT(q_no));
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_IN_BYTE_CNT(q_no));
return 0;
}
static int
sdp_vf_reset_oq(struct sdp_device *sdpvf, int q_no)
{
uint64_t loop = SDP_VF_BUSY_LOOP_COUNT;
volatile uint64_t d64 = 0ull;
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_OUT_ENABLE(q_no));
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_OUT_SLIST_BADDR(q_no));
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_OUT_SLIST_RSIZE(q_no));
d64 = 0xFFFFFFFF;
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_OUT_SLIST_DBELL(q_no));
d64 = otx2_read64(sdpvf->hw_addr + SDP_VF_R_OUT_SLIST_DBELL(q_no));
while ((d64 != 0) && loop--) {
otx2_write64(d64, sdpvf->hw_addr +
SDP_VF_R_OUT_SLIST_DBELL(q_no));
rte_delay_ms(1);
d64 = otx2_read64(sdpvf->hw_addr +
SDP_VF_R_OUT_SLIST_DBELL(q_no));
}
loop = SDP_VF_BUSY_LOOP_COUNT;
d64 = otx2_read64(sdpvf->hw_addr + SDP_VF_R_OUT_CNTS(q_no));
while ((d64 != 0) && (loop--)) {
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_OUT_CNTS(q_no));
rte_delay_ms(1);
d64 = otx2_read64(sdpvf->hw_addr + SDP_VF_R_OUT_CNTS(q_no));
}
d64 = 0ull;
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_OUT_INT_LEVELS(q_no));
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_OUT_PKT_CNT(q_no));
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_OUT_BYTE_CNT(q_no));
return 0;
}
static void
sdp_vf_setup_global_iq_reg(struct sdp_device *sdpvf, int q_no)
{
volatile uint64_t reg_val = 0ull;
/* Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for IQs
* IS_64B is by default enabled.
*/
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_IN_CONTROL(q_no));
reg_val |= SDP_VF_R_IN_CTL_RDSIZE;
reg_val |= SDP_VF_R_IN_CTL_IS_64B;
reg_val |= SDP_VF_R_IN_CTL_ESR;
otx2_write64(reg_val, sdpvf->hw_addr + SDP_VF_R_IN_CONTROL(q_no));
}
static void
sdp_vf_setup_global_oq_reg(struct sdp_device *sdpvf, int q_no)
{
volatile uint64_t reg_val = 0ull;
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_OUT_CONTROL(q_no));
reg_val |= (SDP_VF_R_OUT_CTL_IMODE);
reg_val &= ~(SDP_VF_R_OUT_CTL_ROR_P);
reg_val &= ~(SDP_VF_R_OUT_CTL_NSR_P);
reg_val &= ~(SDP_VF_R_OUT_CTL_ROR_I);
reg_val &= ~(SDP_VF_R_OUT_CTL_NSR_I);
reg_val &= ~(SDP_VF_R_OUT_CTL_ES_I);
reg_val &= ~(SDP_VF_R_OUT_CTL_ROR_D);
reg_val &= ~(SDP_VF_R_OUT_CTL_NSR_D);
reg_val &= ~(SDP_VF_R_OUT_CTL_ES_D);
/* INFO/DATA ptr swap is required */
reg_val |= (SDP_VF_R_OUT_CTL_ES_P);
otx2_write64(reg_val, sdpvf->hw_addr + SDP_VF_R_OUT_CONTROL(q_no));
}
static int
sdp_vf_reset_input_queues(struct sdp_device *sdpvf)
{
uint32_t q_no = 0;
otx2_sdp_dbg("%s :", __func__);
for (q_no = 0; q_no < sdpvf->sriov_info.rings_per_vf; q_no++)
sdp_vf_reset_iq(sdpvf, q_no);
return 0;
}
static int
sdp_vf_reset_output_queues(struct sdp_device *sdpvf)
{
uint64_t q_no = 0ull;
otx2_sdp_dbg(" %s :", __func__);
for (q_no = 0; q_no < sdpvf->sriov_info.rings_per_vf; q_no++)
sdp_vf_reset_oq(sdpvf, q_no);
return 0;
}
static void
sdp_vf_setup_global_input_regs(struct sdp_device *sdpvf)
{
uint64_t q_no = 0ull;
sdp_vf_reset_input_queues(sdpvf);
for (q_no = 0; q_no < (sdpvf->sriov_info.rings_per_vf); q_no++)
sdp_vf_setup_global_iq_reg(sdpvf, q_no);
}
static void
sdp_vf_setup_global_output_regs(struct sdp_device *sdpvf)
{
uint32_t q_no;
sdp_vf_reset_output_queues(sdpvf);
for (q_no = 0; q_no < (sdpvf->sriov_info.rings_per_vf); q_no++)
sdp_vf_setup_global_oq_reg(sdpvf, q_no);
}
static int
sdp_vf_setup_device_regs(struct sdp_device *sdpvf)
{
sdp_vf_setup_global_input_regs(sdpvf);
sdp_vf_setup_global_output_regs(sdpvf);
return 0;
}
static void
sdp_vf_setup_iq_regs(struct sdp_device *sdpvf, uint32_t iq_no)
{
struct sdp_instr_queue *iq = sdpvf->instr_queue[iq_no];
volatile uint64_t reg_val = 0ull;
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_IN_CONTROL(iq_no));
/* Wait till IDLE to set to 1, not supposed to configure BADDR
* as long as IDLE is 0
*/
if (!(reg_val & SDP_VF_R_IN_CTL_IDLE)) {
do {
reg_val = otx2_read64(sdpvf->hw_addr +
SDP_VF_R_IN_CONTROL(iq_no));
} while (!(reg_val & SDP_VF_R_IN_CTL_IDLE));
}
/* Write the start of the input queue's ring and its size */
otx2_write64(iq->base_addr_dma, sdpvf->hw_addr +
SDP_VF_R_IN_INSTR_BADDR(iq_no));
otx2_write64(iq->nb_desc, sdpvf->hw_addr +
SDP_VF_R_IN_INSTR_RSIZE(iq_no));
/* Remember the doorbell & instruction count register addr
* for this queue
*/
iq->doorbell_reg = (uint8_t *) sdpvf->hw_addr +
SDP_VF_R_IN_INSTR_DBELL(iq_no);
iq->inst_cnt_reg = (uint8_t *) sdpvf->hw_addr +
SDP_VF_R_IN_CNTS(iq_no);
otx2_sdp_dbg("InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p",
iq_no, iq->doorbell_reg, iq->inst_cnt_reg);
/* Store the current instrn counter(used in flush_iq calculation) */
iq->reset_instr_cnt = rte_read32(iq->inst_cnt_reg);
/* IN INTR_THRESHOLD is set to max(FFFFFFFF) which disable the IN INTR
* to raise
*/
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_IN_INT_LEVELS(iq_no));
reg_val = 0xffffffff;
otx2_write64(reg_val, sdpvf->hw_addr + SDP_VF_R_IN_INT_LEVELS(iq_no));
}
static void
sdp_vf_setup_oq_regs(struct sdp_device *sdpvf, uint32_t oq_no)
{
volatile uint64_t reg_val = 0ull;
uint64_t oq_ctl = 0ull;
struct sdp_droq *droq = sdpvf->droq[oq_no];
/* Wait on IDLE to set to 1, supposed to configure BADDR
* as log as IDLE is 0
*/
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_OUT_CONTROL(oq_no));
while (!(reg_val & SDP_VF_R_OUT_CTL_IDLE)) {
reg_val = otx2_read64(sdpvf->hw_addr +
SDP_VF_R_OUT_CONTROL(oq_no));
}
otx2_write64(droq->desc_ring_dma, sdpvf->hw_addr +
SDP_VF_R_OUT_SLIST_BADDR(oq_no));
otx2_write64(droq->nb_desc, sdpvf->hw_addr +
SDP_VF_R_OUT_SLIST_RSIZE(oq_no));
oq_ctl = otx2_read64(sdpvf->hw_addr + SDP_VF_R_OUT_CONTROL(oq_no));
/* Clear the ISIZE and BSIZE (22-0) */
oq_ctl &= ~(0x7fffffull);
/* Populate the BSIZE (15-0) */
oq_ctl |= (droq->buffer_size & 0xffff);
/* Populate ISIZE(22-16) */
oq_ctl |= ((SDP_RH_SIZE << 16) & 0x7fffff);
otx2_write64(oq_ctl, sdpvf->hw_addr + SDP_VF_R_OUT_CONTROL(oq_no));
/* Mapped address of the pkt_sent and pkts_credit regs */
droq->pkts_sent_reg = (uint8_t *) sdpvf->hw_addr +
SDP_VF_R_OUT_CNTS(oq_no);
droq->pkts_credit_reg = (uint8_t *) sdpvf->hw_addr +
SDP_VF_R_OUT_SLIST_DBELL(oq_no);
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_OUT_INT_LEVELS(oq_no));
/* Clear PKT_CNT register */
rte_write64(0xFFFFFFFFF, (uint8_t *)sdpvf->hw_addr +
SDP_VF_R_OUT_PKT_CNT(oq_no));
/* Clear the OQ doorbell */
rte_write32(0xFFFFFFFF, droq->pkts_credit_reg);
while ((rte_read32(droq->pkts_credit_reg) != 0ull)) {
rte_write32(0xFFFFFFFF, droq->pkts_credit_reg);
rte_delay_ms(1);
}
otx2_sdp_dbg("SDP_R[%d]_credit:%x", oq_no,
rte_read32(droq->pkts_credit_reg));
/* Clear the OQ_OUT_CNTS doorbell */
reg_val = rte_read32(droq->pkts_sent_reg);
rte_write32((uint32_t)reg_val, droq->pkts_sent_reg);
otx2_sdp_dbg("SDP_R[%d]_sent: %x", oq_no,
rte_read32(droq->pkts_sent_reg));
while (((rte_read32(droq->pkts_sent_reg)) != 0ull)) {
reg_val = rte_read32(droq->pkts_sent_reg);
rte_write32((uint32_t)reg_val, droq->pkts_sent_reg);
rte_delay_ms(1);
}
}
static void
sdp_vf_enable_iq(struct sdp_device *sdpvf, uint32_t q_no)
{
volatile uint64_t reg_val = 0ull;
uint64_t loop = SDP_VF_BUSY_LOOP_COUNT;
/* Resetting doorbells during IQ enabling also to handle abrupt
* guest reboot. IQ reset does not clear the doorbells.
*/
otx2_write64(0xFFFFFFFF, sdpvf->hw_addr +
SDP_VF_R_IN_INSTR_DBELL(q_no));
while (((otx2_read64(sdpvf->hw_addr +
SDP_VF_R_IN_INSTR_DBELL(q_no))) != 0ull) && loop--) {
rte_delay_ms(1);
}
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_IN_ENABLE(q_no));
reg_val |= 0x1ull;
otx2_write64(reg_val, sdpvf->hw_addr + SDP_VF_R_IN_ENABLE(q_no));
otx2_info("IQ[%d] enable done", q_no);
}
static void
sdp_vf_enable_oq(struct sdp_device *sdpvf, uint32_t q_no)
{
volatile uint64_t reg_val = 0ull;
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_OUT_ENABLE(q_no));
reg_val |= 0x1ull;
otx2_write64(reg_val, sdpvf->hw_addr + SDP_VF_R_OUT_ENABLE(q_no));
otx2_info("OQ[%d] enable done", q_no);
}
static void
sdp_vf_enable_io_queues(struct sdp_device *sdpvf)
{
uint32_t q_no = 0;
for (q_no = 0; q_no < sdpvf->num_iqs; q_no++)
sdp_vf_enable_iq(sdpvf, q_no);
for (q_no = 0; q_no < sdpvf->num_oqs; q_no++)
sdp_vf_enable_oq(sdpvf, q_no);
}
int
sdp_vf_setup_device(struct sdp_device *sdpvf)
{
uint64_t reg_val = 0ull;
/* If application doesn't provide its conf, use driver default conf */
if (sdpvf->conf == NULL) {
sdpvf->conf = sdp_get_defconf(sdpvf);
if (sdpvf->conf == NULL) {
otx2_err("SDP VF default config not found");
return -ENOMEM;
}
otx2_info("Default config is used");
}
/* Get IOQs (RPVF] count */
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_IN_CONTROL(0));
sdpvf->sriov_info.rings_per_vf = ((reg_val >> SDP_VF_R_IN_CTL_RPVF_POS)
& SDP_VF_R_IN_CTL_RPVF_MASK);
otx2_info("SDP RPVF: %d", sdpvf->sriov_info.rings_per_vf);
sdpvf->fn_list.setup_iq_regs = sdp_vf_setup_iq_regs;
sdpvf->fn_list.setup_oq_regs = sdp_vf_setup_oq_regs;
sdpvf->fn_list.setup_device_regs = sdp_vf_setup_device_regs;
sdpvf->fn_list.enable_io_queues = sdp_vf_enable_io_queues;
sdpvf->fn_list.enable_iq = sdp_vf_enable_iq;
sdpvf->fn_list.enable_oq = sdp_vf_enable_oq;
return 0;
}

View File

@ -0,0 +1,10 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#ifndef _OTX2_EP_VF_H_
#define _OTX2_EP_VF_H_
int
sdp_vf_setup_device(struct sdp_device *sdpvf);
#endif /*_OTX2_EP_VF_H_ */