raw/octeontx2_ep: remove driver

Removing the rawdev based octeontx2-ep driver as the dependent
common/octeontx2 will soon be going away. Moreover this driver is no
longer required as the net/octeontx_ep driver is sufficient.

Signed-off-by: Radha Mohan Chintakuntla <radhac@marvell.com>
This commit is contained in:
Radha Mohan Chintakuntla 2021-08-26 03:50:21 -07:00 committed by Thomas Monjalon
parent a59745ebcc
commit 821f60c7f4
14 changed files with 1 additions and 2521 deletions

View File

@ -1319,12 +1319,6 @@ M: Tomasz Duszynski <tduszynski@marvell.com>
F: doc/guides/rawdevs/cnxk_bphy.rst
F: drivers/raw/cnxk_bphy/
Marvell OCTEON TX2 EP
M: Radha Mohan Chintakuntla <radhac@marvell.com>
M: Veerasenareddy Burru <vburru@marvell.com>
F: drivers/raw/octeontx2_ep/
F: doc/guides/rawdevs/octeontx2_ep.rst
NTB
M: Xiaoyun Li <xiaoyun.li@intel.com>
M: Jingjing Wu <jingjing.wu@intel.com>

View File

@ -17,4 +17,3 @@ application through rawdev API.
ifpga
ioat
ntb
octeontx2_ep

View File

@ -1,82 +0,0 @@
.. SPDX-License-Identifier: BSD-3-Clause
Copyright(c) 2019 Marvell International Ltd.
Marvell OCTEON TX2 End Point Rawdev Driver
==========================================
OCTEON TX2 has an internal SDP unit which provides End Point mode of operation
by exposing its IOQs to Host, IOQs are used for packet I/O between Host and
OCTEON TX2. Each OCTEON TX2 SDP PF supports a max of 128 VFs and Each VF is
associated with a set of IOQ pairs.
Features
--------
This OCTEON TX2 End Point mode PMD supports
#. Packet Input - Host to OCTEON TX2 with direct data instruction mode.
#. Packet Output - OCTEON TX2 to Host with info pointer mode.
Initialization
--------------
The number of SDP VFs enabled, can be controlled by setting sysfs
entry `sriov_numvfs` for the corresponding PF driver.
.. code-block:: console
echo <num_vfs> > /sys/bus/pci/drivers/octeontx2-ep/0000\:04\:00.0/sriov_numvfs
Once the required VFs are enabled, to be accessible from DPDK, VFs need to be
bound to vfio-pci driver.
Device Setup
------------
The OCTEON TX2 SDP End Point VF devices will need to be bound to a
user-space IO driver for use. The script ``dpdk-devbind.py`` script
included with DPDK can be used to view the state of the devices and to bind
them to a suitable DPDK-supported kernel driver. When querying the status
of the devices, they will appear under the category of "Misc (rawdev)
devices", i.e. the command ``dpdk-devbind.py --status-dev misc`` can be
used to see the state of those devices alone.
Device Configuration
--------------------
Configuring SDP EP rawdev device is done using the ``rte_rawdev_configure()``
API, which takes the mempool as parameter. PMD uses this pool to send/receive
packets to/from the HW.
The following code shows how the device is configured
.. code-block:: c
struct sdp_rawdev_info config = {0};
struct rte_rawdev_info rdev_info = {.dev_private = &config};
config.enqdeq_mpool = (void *)rte_mempool_create(...);
rte_rawdev_configure(dev_id, (rte_rawdev_obj_t)&rdev_info,
sizeof(config));
Performing Data Transfer
------------------------
To perform data transfer using SDP VF EP rawdev devices use standard
``rte_rawdev_enqueue_buffers()`` and ``rte_rawdev_dequeue_buffers()`` APIs.
Self test
---------
On EAL initialization, SDP VF devices will be probed and populated into the
raw devices. The rawdev ID of the device can be obtained using
* Invoke ``rte_rawdev_get_dev_id("SDPEP:x")`` from the test application
where x is the VF device's bus id specified in "bus:device.func"(BDF)
format. Use this index for further rawdev function calls.
* The driver's selftest rawdev API can be used to verify the SDP EP mode
functional tests which can send/receive the raw data packets to/from the
EP device.

View File

@ -187,7 +187,7 @@ New Features
* **Added Marvell OCTEON TX2 End Point rawdev PMD.**
Added a new OCTEON TX2 rawdev PMD for End Point mode of operation.
See the :doc:`../rawdevs/octeontx2_ep` for more details on this new PMD.
See ``rawdevs/octeontx2_ep`` for more details on this new PMD.
* **Added event mode to l3fwd sample application.**

View File

@ -12,7 +12,6 @@ drivers = [
'ifpga',
'ioat',
'ntb',
'octeontx2_ep',
'skeleton',
]
std_deps = ['rawdev']

View File

@ -1,11 +0,0 @@
# SPDX-License-Identifier: BSD-3-Clause
# Copyright(C) 2019 Marvell International Ltd.
#
deps += ['bus_pci', 'common_octeontx2', 'rawdev']
sources = files(
'otx2_ep_enqdeq.c',
'otx2_ep_rawdev.c',
'otx2_ep_test.c',
'otx2_ep_vf.c',
)

View File

@ -1,846 +0,0 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#include <string.h>
#include <unistd.h>
#include <dirent.h>
#include <fcntl.h>
#include <rte_bus.h>
#include <rte_bus_pci.h>
#include <rte_eal.h>
#include <rte_lcore.h>
#include <rte_mempool.h>
#include <rte_pci.h>
#include <rte_common.h>
#include <rte_rawdev.h>
#include <rte_rawdev_pmd.h>
#include "otx2_common.h"
#include "otx2_ep_enqdeq.h"
static void
sdp_dmazone_free(const struct rte_memzone *mz)
{
const struct rte_memzone *mz_tmp;
int ret = 0;
if (mz == NULL) {
otx2_err("Memzone %s : NULL", mz->name);
return;
}
mz_tmp = rte_memzone_lookup(mz->name);
if (mz_tmp == NULL) {
otx2_err("Memzone %s Not Found", mz->name);
return;
}
ret = rte_memzone_free(mz);
if (ret)
otx2_err("Memzone free failed : ret = %d", ret);
}
/* Free IQ resources */
int
sdp_delete_iqs(struct sdp_device *sdpvf, uint32_t iq_no)
{
struct sdp_instr_queue *iq;
iq = sdpvf->instr_queue[iq_no];
if (iq == NULL) {
otx2_err("Invalid IQ[%d]\n", iq_no);
return -ENOMEM;
}
rte_free(iq->req_list);
iq->req_list = NULL;
if (iq->iq_mz) {
sdp_dmazone_free(iq->iq_mz);
iq->iq_mz = NULL;
}
rte_free(sdpvf->instr_queue[iq_no]);
sdpvf->instr_queue[iq_no] = NULL;
sdpvf->num_iqs--;
otx2_info("IQ[%d] is deleted", iq_no);
return 0;
}
/* IQ initialization */
static int
sdp_init_instr_queue(struct sdp_device *sdpvf, int iq_no)
{
const struct sdp_config *conf;
struct sdp_instr_queue *iq;
uint32_t q_size;
conf = sdpvf->conf;
iq = sdpvf->instr_queue[iq_no];
q_size = conf->iq.instr_type * conf->num_iqdef_descs;
/* IQ memory creation for Instruction submission to OCTEON TX2 */
iq->iq_mz = rte_memzone_reserve_aligned("iqmz",
q_size,
rte_socket_id(),
RTE_MEMZONE_IOVA_CONTIG,
RTE_CACHE_LINE_SIZE);
if (iq->iq_mz == NULL) {
otx2_err("IQ[%d] memzone alloc failed", iq_no);
goto iq_init_fail;
}
iq->base_addr_dma = iq->iq_mz->iova;
iq->base_addr = (uint8_t *)iq->iq_mz->addr;
if (conf->num_iqdef_descs & (conf->num_iqdef_descs - 1)) {
otx2_err("IQ[%d] descs not in power of 2", iq_no);
goto iq_init_fail;
}
iq->nb_desc = conf->num_iqdef_descs;
/* Create a IQ request list to hold requests that have been
* posted to OCTEON TX2. This list will be used for freeing the IQ
* data buffer(s) later once the OCTEON TX2 fetched the requests.
*/
iq->req_list = rte_zmalloc_socket("request_list",
(iq->nb_desc * SDP_IQREQ_LIST_SIZE),
RTE_CACHE_LINE_SIZE,
rte_socket_id());
if (iq->req_list == NULL) {
otx2_err("IQ[%d] req_list alloc failed", iq_no);
goto iq_init_fail;
}
otx2_info("IQ[%d]: base: %p basedma: %lx count: %d",
iq_no, iq->base_addr, (unsigned long)iq->base_addr_dma,
iq->nb_desc);
iq->sdp_dev = sdpvf;
iq->q_no = iq_no;
iq->fill_cnt = 0;
iq->host_write_index = 0;
iq->otx_read_index = 0;
iq->flush_index = 0;
/* Initialize the spinlock for this instruction queue */
rte_spinlock_init(&iq->lock);
rte_spinlock_init(&iq->post_lock);
rte_atomic64_clear(&iq->iq_flush_running);
sdpvf->io_qmask.iq |= (1ull << iq_no);
/* Set 32B/64B mode for each input queue */
if (conf->iq.instr_type == 64)
sdpvf->io_qmask.iq64B |= (1ull << iq_no);
iq->iqcmd_64B = (conf->iq.instr_type == 64);
/* Set up IQ registers */
sdpvf->fn_list.setup_iq_regs(sdpvf, iq_no);
return 0;
iq_init_fail:
return -ENOMEM;
}
int
sdp_setup_iqs(struct sdp_device *sdpvf, uint32_t iq_no)
{
struct sdp_instr_queue *iq;
iq = (struct sdp_instr_queue *)rte_zmalloc("sdp_IQ", sizeof(*iq),
RTE_CACHE_LINE_SIZE);
if (iq == NULL)
return -ENOMEM;
sdpvf->instr_queue[iq_no] = iq;
if (sdp_init_instr_queue(sdpvf, iq_no)) {
otx2_err("IQ init is failed");
goto delete_IQ;
}
otx2_info("IQ[%d] is created.", sdpvf->num_iqs);
sdpvf->num_iqs++;
return 0;
delete_IQ:
sdp_delete_iqs(sdpvf, iq_no);
return -ENOMEM;
}
static void
sdp_droq_reset_indices(struct sdp_droq *droq)
{
droq->read_idx = 0;
droq->write_idx = 0;
droq->refill_idx = 0;
droq->refill_count = 0;
rte_atomic64_set(&droq->pkts_pending, 0);
}
static void
sdp_droq_destroy_ring_buffers(struct sdp_device *sdpvf,
struct sdp_droq *droq)
{
uint32_t idx;
for (idx = 0; idx < droq->nb_desc; idx++) {
if (droq->recv_buf_list[idx].buffer) {
rte_mempool_put(sdpvf->enqdeq_mpool,
droq->recv_buf_list[idx].buffer);
droq->recv_buf_list[idx].buffer = NULL;
}
}
sdp_droq_reset_indices(droq);
}
/* Free OQs resources */
int
sdp_delete_oqs(struct sdp_device *sdpvf, uint32_t oq_no)
{
struct sdp_droq *droq;
droq = sdpvf->droq[oq_no];
if (droq == NULL) {
otx2_err("Invalid droq[%d]", oq_no);
return -ENOMEM;
}
sdp_droq_destroy_ring_buffers(sdpvf, droq);
rte_free(droq->recv_buf_list);
droq->recv_buf_list = NULL;
if (droq->info_mz) {
sdp_dmazone_free(droq->info_mz);
droq->info_mz = NULL;
}
if (droq->desc_ring_mz) {
sdp_dmazone_free(droq->desc_ring_mz);
droq->desc_ring_mz = NULL;
}
memset(droq, 0, SDP_DROQ_SIZE);
rte_free(sdpvf->droq[oq_no]);
sdpvf->droq[oq_no] = NULL;
sdpvf->num_oqs--;
otx2_info("OQ[%d] is deleted", oq_no);
return 0;
}
static int
sdp_droq_setup_ring_buffers(struct sdp_device *sdpvf,
struct sdp_droq *droq)
{
struct sdp_droq_desc *desc_ring = droq->desc_ring;
uint32_t idx;
void *buf;
for (idx = 0; idx < droq->nb_desc; idx++) {
if (rte_mempool_get(sdpvf->enqdeq_mpool, &buf) ||
(buf == NULL)) {
otx2_err("OQ buffer alloc failed");
droq->stats.rx_alloc_failure++;
/* sdp_droq_destroy_ring_buffers(droq);*/
return -ENOMEM;
}
droq->recv_buf_list[idx].buffer = buf;
droq->info_list[idx].length = 0;
/* Map ring buffers into memory */
desc_ring[idx].info_ptr = (uint64_t)(droq->info_list_dma +
(idx * SDP_DROQ_INFO_SIZE));
desc_ring[idx].buffer_ptr = rte_mem_virt2iova(buf);
}
sdp_droq_reset_indices(droq);
return 0;
}
static void *
sdp_alloc_info_buffer(struct sdp_device *sdpvf __rte_unused,
struct sdp_droq *droq)
{
droq->info_mz = rte_memzone_reserve_aligned("OQ_info_list",
(droq->nb_desc * SDP_DROQ_INFO_SIZE),
rte_socket_id(),
RTE_MEMZONE_IOVA_CONTIG,
RTE_CACHE_LINE_SIZE);
if (droq->info_mz == NULL)
return NULL;
droq->info_list_dma = droq->info_mz->iova;
droq->info_alloc_size = droq->info_mz->len;
droq->info_base_addr = (size_t)droq->info_mz->addr;
return droq->info_mz->addr;
}
/* OQ initialization */
static int
sdp_init_droq(struct sdp_device *sdpvf, uint32_t q_no)
{
const struct sdp_config *conf = sdpvf->conf;
uint32_t c_refill_threshold;
uint32_t desc_ring_size;
struct sdp_droq *droq;
otx2_info("OQ[%d] Init start", q_no);
droq = sdpvf->droq[q_no];
droq->sdp_dev = sdpvf;
droq->q_no = q_no;
c_refill_threshold = conf->oq.refill_threshold;
droq->nb_desc = conf->num_oqdef_descs;
droq->buffer_size = conf->oqdef_buf_size;
/* OQ desc_ring set up */
desc_ring_size = droq->nb_desc * SDP_DROQ_DESC_SIZE;
droq->desc_ring_mz = rte_memzone_reserve_aligned("sdp_oqmz",
desc_ring_size,
rte_socket_id(),
RTE_MEMZONE_IOVA_CONTIG,
RTE_CACHE_LINE_SIZE);
if (droq->desc_ring_mz == NULL) {
otx2_err("OQ:%d desc_ring allocation failed", q_no);
goto init_droq_fail;
}
droq->desc_ring_dma = droq->desc_ring_mz->iova;
droq->desc_ring = (struct sdp_droq_desc *)droq->desc_ring_mz->addr;
otx2_sdp_dbg("OQ[%d]: desc_ring: virt: 0x%p, dma: %lx",
q_no, droq->desc_ring, (unsigned long)droq->desc_ring_dma);
otx2_sdp_dbg("OQ[%d]: num_desc: %d", q_no, droq->nb_desc);
/* OQ info_list set up */
droq->info_list = sdp_alloc_info_buffer(sdpvf, droq);
if (droq->info_list == NULL) {
otx2_err("memory allocation failed for OQ[%d] info_list", q_no);
goto init_droq_fail;
}
/* OQ buf_list set up */
droq->recv_buf_list = rte_zmalloc_socket("recv_buf_list",
(droq->nb_desc * SDP_DROQ_RECVBUF_SIZE),
RTE_CACHE_LINE_SIZE, rte_socket_id());
if (droq->recv_buf_list == NULL) {
otx2_err("OQ recv_buf_list alloc failed");
goto init_droq_fail;
}
if (sdp_droq_setup_ring_buffers(sdpvf, droq))
goto init_droq_fail;
droq->refill_threshold = c_refill_threshold;
rte_spinlock_init(&droq->lock);
/* Set up OQ registers */
sdpvf->fn_list.setup_oq_regs(sdpvf, q_no);
sdpvf->io_qmask.oq |= (1ull << q_no);
return 0;
init_droq_fail:
return -ENOMEM;
}
/* OQ configuration and setup */
int
sdp_setup_oqs(struct sdp_device *sdpvf, uint32_t oq_no)
{
struct sdp_droq *droq;
/* Allocate new droq. */
droq = (struct sdp_droq *)rte_zmalloc("sdp_OQ",
sizeof(*droq), RTE_CACHE_LINE_SIZE);
if (droq == NULL) {
otx2_err("Droq[%d] Creation Failed", oq_no);
return -ENOMEM;
}
sdpvf->droq[oq_no] = droq;
if (sdp_init_droq(sdpvf, oq_no)) {
otx2_err("Droq[%d] Initialization failed", oq_no);
goto delete_OQ;
}
otx2_info("OQ[%d] is created.", oq_no);
sdpvf->num_oqs++;
return 0;
delete_OQ:
sdp_delete_oqs(sdpvf, oq_no);
return -ENOMEM;
}
static inline void
sdp_iqreq_delete(struct sdp_device *sdpvf,
struct sdp_instr_queue *iq, uint32_t idx)
{
uint32_t reqtype;
void *buf;
buf = iq->req_list[idx].buf;
reqtype = iq->req_list[idx].reqtype;
switch (reqtype) {
case SDP_REQTYPE_NORESP:
rte_mempool_put(sdpvf->enqdeq_mpool, buf);
otx2_sdp_dbg("IQ buffer freed at idx[%d]", idx);
break;
case SDP_REQTYPE_NORESP_GATHER:
case SDP_REQTYPE_NONE:
default:
otx2_info("This iqreq mode is not supported:%d", reqtype);
}
/* Reset the request list at this index */
iq->req_list[idx].buf = NULL;
iq->req_list[idx].reqtype = 0;
}
static inline void
sdp_iqreq_add(struct sdp_instr_queue *iq, void *buf,
uint32_t reqtype)
{
iq->req_list[iq->host_write_index].buf = buf;
iq->req_list[iq->host_write_index].reqtype = reqtype;
otx2_sdp_dbg("IQ buffer added at idx[%d]", iq->host_write_index);
}
static void
sdp_flush_iq(struct sdp_device *sdpvf,
struct sdp_instr_queue *iq,
uint32_t pending_thresh __rte_unused)
{
uint32_t instr_processed = 0;
rte_spinlock_lock(&iq->lock);
iq->otx_read_index = sdpvf->fn_list.update_iq_read_idx(iq);
while (iq->flush_index != iq->otx_read_index) {
/* Free the IQ data buffer to the pool */
sdp_iqreq_delete(sdpvf, iq, iq->flush_index);
iq->flush_index =
sdp_incr_index(iq->flush_index, 1, iq->nb_desc);
instr_processed++;
}
iq->stats.instr_processed = instr_processed;
rte_atomic64_sub(&iq->instr_pending, instr_processed);
rte_spinlock_unlock(&iq->lock);
}
static inline void
sdp_ring_doorbell(struct sdp_device *sdpvf __rte_unused,
struct sdp_instr_queue *iq)
{
otx2_write64(iq->fill_cnt, iq->doorbell_reg);
/* Make sure doorbell writes observed by HW */
rte_io_wmb();
iq->fill_cnt = 0;
}
static inline int
post_iqcmd(struct sdp_instr_queue *iq, uint8_t *iqcmd)
{
uint8_t *iqptr, cmdsize;
/* This ensures that the read index does not wrap around to
* the same position if queue gets full before OCTEON TX2 could
* fetch any instr.
*/
if (rte_atomic64_read(&iq->instr_pending) >=
(int32_t)(iq->nb_desc - 1)) {
otx2_err("IQ is full, pending:%ld",
(long)rte_atomic64_read(&iq->instr_pending));
return SDP_IQ_SEND_FAILED;
}
/* Copy cmd into iq */
cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
rte_memcpy(iqptr, iqcmd, cmdsize);
otx2_sdp_dbg("IQ cmd posted @ index:%d", iq->host_write_index);
/* Increment the host write index */
iq->host_write_index =
sdp_incr_index(iq->host_write_index, 1, iq->nb_desc);
iq->fill_cnt++;
/* Flush the command into memory. We need to be sure the data
* is in memory before indicating that the instruction is
* pending.
*/
rte_smp_wmb();
rte_atomic64_inc(&iq->instr_pending);
/* SDP_IQ_SEND_SUCCESS */
return 0;
}
static int
sdp_send_data(struct sdp_device *sdpvf,
struct sdp_instr_queue *iq, void *cmd)
{
uint32_t ret;
/* Lock this IQ command queue before posting instruction */
rte_spinlock_lock(&iq->post_lock);
/* Submit IQ command */
ret = post_iqcmd(iq, cmd);
if (ret == SDP_IQ_SEND_SUCCESS) {
sdp_ring_doorbell(sdpvf, iq);
iq->stats.instr_posted++;
otx2_sdp_dbg("Instr submit success posted: %ld\n",
(long)iq->stats.instr_posted);
} else {
iq->stats.instr_dropped++;
otx2_err("Instr submit failed, dropped: %ld\n",
(long)iq->stats.instr_dropped);
}
rte_spinlock_unlock(&iq->post_lock);
return ret;
}
/* Enqueue requests/packets to SDP IQ queue.
* returns number of requests enqueued successfully
*/
int
sdp_rawdev_enqueue(struct rte_rawdev *rawdev,
struct rte_rawdev_buf **buffers __rte_unused,
unsigned int count, rte_rawdev_obj_t context)
{
struct sdp_instr_64B *iqcmd;
struct sdp_instr_queue *iq;
struct sdp_soft_instr *si;
struct sdp_device *sdpvf;
struct sdp_instr_ih ihx;
sdpvf = (struct sdp_device *)rawdev->dev_private;
si = (struct sdp_soft_instr *)context;
iq = sdpvf->instr_queue[si->q_no];
if ((count > 1) || (count < 1)) {
otx2_err("This mode not supported: req[%d]", count);
goto enq_fail;
}
memset(&ihx, 0, sizeof(struct sdp_instr_ih));
iqcmd = &si->command;
memset(iqcmd, 0, sizeof(struct sdp_instr_64B));
iqcmd->dptr = (uint64_t)si->dptr;
/* Populate SDP IH */
ihx.pkind = sdpvf->pkind;
ihx.fsz = si->ih.fsz + 8; /* 8B for NIX IH */
ihx.gather = si->ih.gather;
/* Direct data instruction */
ihx.tlen = si->ih.tlen + ihx.fsz;
switch (ihx.gather) {
case 0: /* Direct data instr */
ihx.tlen = si->ih.tlen + ihx.fsz;
break;
default: /* Gather */
switch (si->ih.gsz) {
case 0: /* Direct gather instr */
otx2_err("Direct Gather instr : not supported");
goto enq_fail;
default: /* Indirect gather instr */
otx2_err("Indirect Gather instr : not supported");
goto enq_fail;
}
}
rte_memcpy(&iqcmd->ih, &ihx, sizeof(uint64_t));
iqcmd->rptr = (uint64_t)si->rptr;
rte_memcpy(&iqcmd->irh, &si->irh, sizeof(uint64_t));
/* Swap FSZ(front data) here, to avoid swapping on OCTEON TX2 side */
sdp_swap_8B_data(&iqcmd->rptr, 1);
sdp_swap_8B_data(&iqcmd->irh, 1);
otx2_sdp_dbg("After swapping");
otx2_sdp_dbg("Word0 [dptr]: 0x%016lx", (unsigned long)iqcmd->dptr);
otx2_sdp_dbg("Word1 [ihtx]: 0x%016lx", (unsigned long)iqcmd->ih);
otx2_sdp_dbg("Word2 [rptr]: 0x%016lx", (unsigned long)iqcmd->rptr);
otx2_sdp_dbg("Word3 [irh]: 0x%016lx", (unsigned long)iqcmd->irh);
otx2_sdp_dbg("Word4 [exhdr[0]]: 0x%016lx",
(unsigned long)iqcmd->exhdr[0]);
sdp_iqreq_add(iq, si->dptr, si->reqtype);
if (sdp_send_data(sdpvf, iq, iqcmd)) {
otx2_err("Data send failed :");
sdp_iqreq_delete(sdpvf, iq, iq->host_write_index);
goto enq_fail;
}
if (rte_atomic64_read(&iq->instr_pending) >= 1)
sdp_flush_iq(sdpvf, iq, 1 /*(iq->nb_desc / 2)*/);
/* Return no# of instructions posted successfully. */
return count;
enq_fail:
return SDP_IQ_SEND_FAILED;
}
static uint32_t
sdp_droq_refill(struct sdp_device *sdpvf, struct sdp_droq *droq)
{
struct sdp_droq_desc *desc_ring;
uint32_t desc_refilled = 0;
void *buf = NULL;
desc_ring = droq->desc_ring;
while (droq->refill_count && (desc_refilled < droq->nb_desc)) {
/* If a valid buffer exists (happens if there is no dispatch),
* reuse the buffer, else allocate.
*/
if (droq->recv_buf_list[droq->refill_idx].buffer != NULL)
break;
if (rte_mempool_get(sdpvf->enqdeq_mpool, &buf) ||
(buf == NULL)) {
/* If a buffer could not be allocated, no point in
* continuing
*/
droq->stats.rx_alloc_failure++;
break;
}
droq->recv_buf_list[droq->refill_idx].buffer = buf;
desc_ring[droq->refill_idx].buffer_ptr = rte_mem_virt2iova(buf);
/* Reset any previous values in the length field. */
droq->info_list[droq->refill_idx].length = 0;
droq->refill_idx = sdp_incr_index(droq->refill_idx, 1,
droq->nb_desc);
desc_refilled++;
droq->refill_count--;
}
return desc_refilled;
}
static int
sdp_droq_read_packet(struct sdp_device *sdpvf __rte_unused,
struct sdp_droq *droq,
struct sdp_droq_pkt *droq_pkt)
{
struct sdp_droq_info *info;
uint32_t total_len = 0;
uint32_t pkt_len = 0;
info = &droq->info_list[droq->read_idx];
sdp_swap_8B_data((uint64_t *)&info->length, 1);
if (!info->length) {
otx2_err("OQ info_list->length[%ld]", (long)info->length);
goto oq_read_fail;
}
/* Deduce the actual data size */
info->length -= SDP_RH_SIZE;
total_len += (uint32_t)info->length;
otx2_sdp_dbg("OQ: pkt_len[%ld], buffer_size %d",
(long)info->length, droq->buffer_size);
if (info->length > droq->buffer_size) {
otx2_err("This mode is not supported: pkt_len > buffer_size");
goto oq_read_fail;
}
if (info->length <= droq->buffer_size) {
pkt_len = (uint32_t)info->length;
droq_pkt->data = droq->recv_buf_list[droq->read_idx].buffer;
droq_pkt->len = pkt_len;
droq->recv_buf_list[droq->read_idx].buffer = NULL;
droq->read_idx = sdp_incr_index(droq->read_idx, 1,/* count */
droq->nb_desc /* max rd idx */);
droq->refill_count++;
}
info->length = 0;
return SDP_OQ_RECV_SUCCESS;
oq_read_fail:
return SDP_OQ_RECV_FAILED;
}
static inline uint32_t
sdp_check_droq_pkts(struct sdp_droq *droq, uint32_t burst_size)
{
uint32_t min_pkts = 0;
uint32_t new_pkts;
uint32_t pkt_count;
/* Latest available OQ packets */
pkt_count = rte_read32(droq->pkts_sent_reg);
/* Newly arrived packets */
new_pkts = pkt_count - droq->last_pkt_count;
otx2_sdp_dbg("Recvd [%d] new OQ pkts", new_pkts);
min_pkts = (new_pkts > burst_size) ? burst_size : new_pkts;
if (min_pkts) {
rte_atomic64_add(&droq->pkts_pending, min_pkts);
/* Back up the aggregated packet count so far */
droq->last_pkt_count += min_pkts;
}
return min_pkts;
}
/* Check for response arrival from OCTEON TX2
* returns number of requests completed
*/
int
sdp_rawdev_dequeue(struct rte_rawdev *rawdev,
struct rte_rawdev_buf **buffers, unsigned int count,
rte_rawdev_obj_t context __rte_unused)
{
struct sdp_droq_pkt *oq_pkt;
struct sdp_device *sdpvf;
struct sdp_droq *droq;
uint32_t q_no = 0, pkts;
uint32_t new_pkts;
uint32_t ret;
sdpvf = (struct sdp_device *)rawdev->dev_private;
droq = sdpvf->droq[q_no];
if (!droq) {
otx2_err("Invalid droq[%d]", q_no);
goto droq_err;
}
/* Grab the lock */
rte_spinlock_lock(&droq->lock);
new_pkts = sdp_check_droq_pkts(droq, count);
if (!new_pkts) {
otx2_sdp_dbg("Zero new_pkts:%d", new_pkts);
goto deq_fail; /* No pkts at this moment */
}
otx2_sdp_dbg("Received new_pkts = %d", new_pkts);
for (pkts = 0; pkts < new_pkts; pkts++) {
/* Push the received pkt to application */
oq_pkt = (struct sdp_droq_pkt *)buffers[pkts];
ret = sdp_droq_read_packet(sdpvf, droq, oq_pkt);
if (ret) {
otx2_err("DROQ read pakt failed.");
goto deq_fail;
}
/* Stats */
droq->stats.pkts_received++;
droq->stats.bytes_received += oq_pkt->len;
}
/* Ack the h/w with no# of pkts read by Host */
rte_write32(pkts, droq->pkts_sent_reg);
rte_io_wmb();
droq->last_pkt_count -= pkts;
otx2_sdp_dbg("DROQ pkts[%d] pushed to application", pkts);
/* Refill DROQ buffers */
if (droq->refill_count >= 2 /* droq->refill_threshold */) {
int desc_refilled = sdp_droq_refill(sdpvf, droq);
/* Flush the droq descriptor data to memory to be sure
* that when we update the credits the data in memory is
* accurate.
*/
rte_write32(desc_refilled, droq->pkts_credit_reg);
/* Ensure mmio write completes */
rte_wmb();
otx2_sdp_dbg("Refilled count = %d", desc_refilled);
}
/* Release the spin lock */
rte_spinlock_unlock(&droq->lock);
return pkts;
deq_fail:
rte_spinlock_unlock(&droq->lock);
droq_err:
return SDP_OQ_RECV_FAILED;
}

View File

@ -1,52 +0,0 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#ifndef _OTX2_EP_ENQDEQ_H_
#define _OTX2_EP_ENQDEQ_H_
#include <rte_byteorder.h>
#include "otx2_ep_rawdev.h"
#define SDP_IQ_SEND_FAILED (-1)
#define SDP_IQ_SEND_SUCCESS (0)
#define SDP_OQ_RECV_FAILED (-1)
#define SDP_OQ_RECV_SUCCESS (0)
static inline uint64_t
sdp_endian_swap_8B(uint64_t _d)
{
return ((((((uint64_t)(_d)) >> 0) & (uint64_t)0xff) << 56) |
(((((uint64_t)(_d)) >> 8) & (uint64_t)0xff) << 48) |
(((((uint64_t)(_d)) >> 16) & (uint64_t)0xff) << 40) |
(((((uint64_t)(_d)) >> 24) & (uint64_t)0xff) << 32) |
(((((uint64_t)(_d)) >> 32) & (uint64_t)0xff) << 24) |
(((((uint64_t)(_d)) >> 40) & (uint64_t)0xff) << 16) |
(((((uint64_t)(_d)) >> 48) & (uint64_t)0xff) << 8) |
(((((uint64_t)(_d)) >> 56) & (uint64_t)0xff) << 0));
}
static inline void
sdp_swap_8B_data(uint64_t *data, uint32_t blocks)
{
/* Swap 8B blocks */
while (blocks) {
*data = sdp_endian_swap_8B(*data);
blocks--;
data++;
}
}
static inline uint32_t
sdp_incr_index(uint32_t index, uint32_t count, uint32_t max)
{
if ((index + count) >= max)
index = index + count - max;
else
index += count;
return index;
}
#endif /* _OTX2_EP_ENQDEQ_H_ */

View File

@ -1,362 +0,0 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#include <string.h>
#include <unistd.h>
#include <rte_bus.h>
#include <rte_bus_pci.h>
#include <rte_eal.h>
#include <rte_lcore.h>
#include <rte_mempool.h>
#include <rte_pci.h>
#include <rte_common.h>
#include <rte_rawdev.h>
#include <rte_rawdev_pmd.h>
#include "otx2_common.h"
#include "otx2_ep_rawdev.h"
#include "otx2_ep_vf.h"
static const struct rte_pci_id pci_sdp_vf_map[] = {
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_CAVIUM,
PCI_DEVID_OCTEONTX2_EP_RAW_VF)
},
{
.vendor_id = 0,
},
};
/* SDP_VF default configuration */
const struct sdp_config default_sdp_conf = {
/* IQ attributes */
.iq = {
.max_iqs = SDP_VF_CFG_IO_QUEUES,
.instr_type = SDP_VF_64BYTE_INSTR,
.pending_list_size = (SDP_VF_MAX_IQ_DESCRIPTORS *
SDP_VF_CFG_IO_QUEUES),
},
/* OQ attributes */
.oq = {
.max_oqs = SDP_VF_CFG_IO_QUEUES,
.info_ptr = SDP_VF_OQ_INFOPTR_MODE,
.refill_threshold = SDP_VF_OQ_REFIL_THRESHOLD,
},
.num_iqdef_descs = SDP_VF_MAX_IQ_DESCRIPTORS,
.num_oqdef_descs = SDP_VF_MAX_OQ_DESCRIPTORS,
.oqdef_buf_size = SDP_VF_OQ_BUF_SIZE,
};
const struct sdp_config*
sdp_get_defconf(struct sdp_device *sdp_dev __rte_unused)
{
const struct sdp_config *default_conf = NULL;
default_conf = &default_sdp_conf;
return default_conf;
}
static int
sdp_vfdev_exit(struct rte_rawdev *rawdev)
{
struct sdp_device *sdpvf;
uint32_t rawdev_queues, q;
otx2_info("%s:", __func__);
sdpvf = (struct sdp_device *)rawdev->dev_private;
sdpvf->fn_list.disable_io_queues(sdpvf);
rawdev_queues = sdpvf->num_oqs;
for (q = 0; q < rawdev_queues; q++) {
if (sdp_delete_oqs(sdpvf, q)) {
otx2_err("Failed to delete OQ:%d", q);
return -ENOMEM;
}
}
otx2_info("Num OQs:%d freed", sdpvf->num_oqs);
/* Free the oqbuf_pool */
rte_mempool_free(sdpvf->enqdeq_mpool);
sdpvf->enqdeq_mpool = NULL;
otx2_info("Enqdeq_mpool free done");
rawdev_queues = sdpvf->num_iqs;
for (q = 0; q < rawdev_queues; q++) {
if (sdp_delete_iqs(sdpvf, q)) {
otx2_err("Failed to delete IQ:%d", q);
return -ENOMEM;
}
}
otx2_sdp_dbg("Num IQs:%d freed", sdpvf->num_iqs);
return 0;
}
static int
sdp_chip_specific_setup(struct sdp_device *sdpvf)
{
struct rte_pci_device *pdev = sdpvf->pci_dev;
uint32_t dev_id = pdev->id.device_id;
int ret;
switch (dev_id) {
case PCI_DEVID_OCTEONTX2_EP_RAW_VF:
sdpvf->chip_id = PCI_DEVID_OCTEONTX2_EP_RAW_VF;
ret = sdp_vf_setup_device(sdpvf);
break;
default:
otx2_err("Unsupported device");
ret = -EINVAL;
}
if (!ret)
otx2_info("SDP dev_id[%d]", dev_id);
return ret;
}
/* SDP VF device initialization */
static int
sdp_vfdev_init(struct sdp_device *sdpvf)
{
uint32_t rawdev_queues, q;
if (sdp_chip_specific_setup(sdpvf)) {
otx2_err("Chip specific setup failed");
goto setup_fail;
}
if (sdpvf->fn_list.setup_device_regs(sdpvf)) {
otx2_err("Failed to configure device registers");
goto setup_fail;
}
rawdev_queues = (uint32_t)(sdpvf->sriov_info.rings_per_vf);
/* Rawdev queues setup for enqueue/dequeue */
for (q = 0; q < rawdev_queues; q++) {
if (sdp_setup_iqs(sdpvf, q)) {
otx2_err("Failed to setup IQs");
goto iq_fail;
}
}
otx2_info("Total[%d] IQs setup", sdpvf->num_iqs);
for (q = 0; q < rawdev_queues; q++) {
if (sdp_setup_oqs(sdpvf, q)) {
otx2_err("Failed to setup OQs");
goto oq_fail;
}
}
otx2_info("Total [%d] OQs setup", sdpvf->num_oqs);
/* Enable IQ/OQ for this device */
sdpvf->fn_list.enable_io_queues(sdpvf);
/* Send OQ desc credits for OQs, credits are always
* sent after the OQs are enabled.
*/
for (q = 0; q < rawdev_queues; q++) {
rte_write32(sdpvf->droq[q]->nb_desc,
sdpvf->droq[q]->pkts_credit_reg);
rte_io_mb();
otx2_info("OQ[%d] dbells [%d]", q,
rte_read32(sdpvf->droq[q]->pkts_credit_reg));
}
rte_wmb();
otx2_info("SDP Device is Ready");
return 0;
/* Error handling */
oq_fail:
/* Free the allocated OQs */
for (q = 0; q < sdpvf->num_oqs; q++)
sdp_delete_oqs(sdpvf, q);
iq_fail:
/* Free the allocated IQs */
for (q = 0; q < sdpvf->num_iqs; q++)
sdp_delete_iqs(sdpvf, q);
setup_fail:
return -ENOMEM;
}
static int
sdp_rawdev_start(struct rte_rawdev *dev)
{
dev->started = 1;
return 0;
}
static void
sdp_rawdev_stop(struct rte_rawdev *dev)
{
dev->started = 0;
}
static int
sdp_rawdev_close(struct rte_rawdev *dev)
{
int ret;
ret = sdp_vfdev_exit(dev);
if (ret) {
otx2_err(" SDP_EP rawdev exit error");
return ret;
}
return 0;
}
static int
sdp_rawdev_configure(const struct rte_rawdev *dev, rte_rawdev_obj_t config,
size_t config_size)
{
struct sdp_rawdev_info *app_info = (struct sdp_rawdev_info *)config;
struct sdp_device *sdpvf;
if (app_info == NULL || config_size != sizeof(*app_info)) {
otx2_err("Application config info [NULL] or incorrect size");
return -EINVAL;
}
sdpvf = (struct sdp_device *)dev->dev_private;
sdpvf->conf = app_info->app_conf;
sdpvf->enqdeq_mpool = app_info->enqdeq_mpool;
sdp_vfdev_init(sdpvf);
return 0;
}
/* SDP VF endpoint rawdev ops */
static const struct rte_rawdev_ops sdp_rawdev_ops = {
.dev_configure = sdp_rawdev_configure,
.dev_start = sdp_rawdev_start,
.dev_stop = sdp_rawdev_stop,
.dev_close = sdp_rawdev_close,
.enqueue_bufs = sdp_rawdev_enqueue,
.dequeue_bufs = sdp_rawdev_dequeue,
.dev_selftest = sdp_rawdev_selftest,
};
static int
otx2_sdp_rawdev_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
char name[RTE_RAWDEV_NAME_MAX_LEN];
struct sdp_device *sdpvf = NULL;
struct rte_rawdev *sdp_rawdev;
uint16_t vf_id;
/* Single process support */
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
if (pci_dev->mem_resource[0].addr)
otx2_info("SDP_EP BAR0 is mapped:");
else {
otx2_err("SDP_EP: Failed to map device BARs");
otx2_err("BAR0 %p\n BAR2 %p",
pci_dev->mem_resource[0].addr,
pci_dev->mem_resource[2].addr);
return -ENODEV;
}
memset(name, 0, sizeof(name));
snprintf(name, RTE_RAWDEV_NAME_MAX_LEN, "SDPEP:%x:%02x.%x",
pci_dev->addr.bus, pci_dev->addr.devid,
pci_dev->addr.function);
/* Allocate rawdev pmd */
sdp_rawdev = rte_rawdev_pmd_allocate(name,
sizeof(struct sdp_device),
rte_socket_id());
if (sdp_rawdev == NULL) {
otx2_err("SDP_EP VF rawdev allocation failed");
return -ENOMEM;
}
sdp_rawdev->dev_ops = &sdp_rawdev_ops;
sdp_rawdev->device = &pci_dev->device;
sdp_rawdev->driver_name = pci_dev->driver->driver.name;
sdpvf = (struct sdp_device *)sdp_rawdev->dev_private;
sdpvf->hw_addr = pci_dev->mem_resource[0].addr;
sdpvf->pci_dev = pci_dev;
/* Discover the VF number being probed */
vf_id = ((pci_dev->addr.devid & 0x1F) << 3) |
(pci_dev->addr.function & 0x7);
vf_id -= 1;
sdpvf->vf_num = vf_id;
otx2_info("SDP_EP VF[%d] probe done", vf_id);
return 0;
}
static int
otx2_sdp_rawdev_remove(struct rte_pci_device *pci_dev)
{
char name[RTE_RAWDEV_NAME_MAX_LEN];
struct rte_rawdev *rawdev;
struct sdp_device *sdpvf;
/* Single process support */
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
if (pci_dev == NULL) {
otx2_err("SDP_EP:invalid pci_dev!");
return -EINVAL;
}
memset(name, 0, sizeof(name));
snprintf(name, RTE_RAWDEV_NAME_MAX_LEN, "SDPEP:%x:%02x.%x",
pci_dev->addr.bus, pci_dev->addr.devid,
pci_dev->addr.function);
rawdev = rte_rawdev_pmd_get_named_dev(name);
if (rawdev == NULL) {
otx2_err("SDP_EP: invalid device name (%s)", name);
return -EINVAL;
}
sdpvf = (struct sdp_device *)rawdev->dev_private;
otx2_info("Removing SDP_EP VF[%d] ", sdpvf->vf_num);
/* rte_rawdev_close is called by pmd_release */
return rte_rawdev_pmd_release(rawdev);
}
static struct rte_pci_driver rte_sdp_rawdev_pmd = {
.id_table = pci_sdp_vf_map,
.drv_flags = (RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_NEED_IOVA_AS_VA),
.probe = otx2_sdp_rawdev_probe,
.remove = otx2_sdp_rawdev_remove,
};
RTE_PMD_REGISTER_PCI(sdp_rawdev_pci_driver, rte_sdp_rawdev_pmd);
RTE_PMD_REGISTER_PCI_TABLE(sdp_rawdev_pci_driver, pci_sdp_vf_map);
RTE_PMD_REGISTER_KMOD_DEP(sdp_rawdev_pci_driver, "vfio-pci");

View File

@ -1,499 +0,0 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#ifndef _OTX2_EP_RAWDEV_H_
#define _OTX2_EP_RAWDEV_H_
#include <rte_byteorder.h>
#include <rte_spinlock.h>
/* IQ instruction req types */
#define SDP_REQTYPE_NONE (0)
#define SDP_REQTYPE_NORESP (1)
#define SDP_REQTYPE_NORESP_GATHER (2)
/* Input Request Header format */
struct sdp_instr_irh {
/* Request ID */
uint64_t rid:16;
/* PCIe port to use for response */
uint64_t pcie_port:3;
/* Scatter indicator 1=scatter */
uint64_t scatter:1;
/* Size of Expected result OR no. of entries in scatter list */
uint64_t rlenssz:14;
/* Desired destination port for result */
uint64_t dport:6;
/* Opcode Specific parameters */
uint64_t param:8;
/* Opcode for the return packet */
uint64_t opcode:16;
};
/* SDP 32B instruction format */
struct sdp_instr_32B {
/* Pointer where the input data is available. */
uint64_t dptr;
/* SDP Instruction Header. */
uint64_t ih;
/** Pointer where the response for a RAW mode packet
* will be written by OCTEON TX2.
*/
uint64_t rptr;
/* Input Request Header. Additional info about the input. */
uint64_t irh;
};
#define SDP_32B_INSTR_SIZE (sizeof(sdp_instr_32B))
/* SDP 64B instruction format */
struct sdp_instr_64B {
/* Pointer where the input data is available. */
uint64_t dptr;
/* SDP Instruction Header. */
uint64_t ih;
/** Pointer where the response for a RAW mode packet
* will be written by OCTEON TX2.
*/
uint64_t rptr;
/* Input Request Header. */
uint64_t irh;
/* Additional headers available in a 64-byte instruction. */
uint64_t exhdr[4];
};
#define SDP_64B_INSTR_SIZE (sizeof(sdp_instr_64B))
struct sdp_soft_instr {
/** Input data pointer. It is either pointing directly to input data
* or to a gather list.
*/
void *dptr;
/** Response from OCTEON TX2 comes at this address. It is either
* directlty pointing to output data buffer or to a scatter list.
*/
void *rptr;
/* The instruction header. All input commands have this field. */
struct sdp_instr_ih ih;
/* Input request header. */
struct sdp_instr_irh irh;
/** The PCI instruction to be sent to OCTEON TX2. This is stored in the
* instr to retrieve the physical address of buffers when instr is
* freed.
*/
struct sdp_instr_64B command;
/** If a gather list was allocated, this ptr points to the buffer used
* for the gather list. The gather list has to be 8B aligned, so this
* value may be different from dptr.
*/
void *gather_ptr;
/* Total data bytes transferred in the gather mode request. */
uint64_t gather_bytes;
/** If a scatter list was allocated, this ptr points to the buffer used
* for the scatter list. The scatter list has to be 8B aligned, so
* this value may be different from rptr.
*/
void *scatter_ptr;
/* Total data bytes to be received in the scatter mode request. */
uint64_t scatter_bytes;
/* IQ number to which this instruction has to be submitted. */
uint32_t q_no;
/* IQ instruction request type. */
uint32_t reqtype;
};
#define SDP_SOFT_INSTR_SIZE (sizeof(sdp_soft_instr))
/* SDP IQ request list */
struct sdp_instr_list {
void *buf;
uint32_t reqtype;
};
#define SDP_IQREQ_LIST_SIZE (sizeof(struct sdp_instr_list))
/* Input Queue statistics. Each input queue has four stats fields. */
struct sdp_iq_stats {
uint64_t instr_posted; /* Instructions posted to this queue. */
uint64_t instr_processed; /* Instructions processed in this queue. */
uint64_t instr_dropped; /* Instructions that could not be processed */
};
/* Structure to define the configuration attributes for each Input queue. */
struct sdp_iq_config {
/* Max number of IQs available */
uint16_t max_iqs;
/* Command size - 32 or 64 bytes */
uint16_t instr_type;
/* Pending list size, usually set to the sum of the size of all IQs */
uint32_t pending_list_size;
};
/** The instruction (input) queue.
* The input queue is used to post raw (instruction) mode data or packet data
* to OCTEON TX2 device from the host. Each IQ of a SDP EP VF device has one
* such structure to represent it.
*/
struct sdp_instr_queue {
/* A spinlock to protect access to the input ring. */
rte_spinlock_t lock;
rte_spinlock_t post_lock;
struct sdp_device *sdp_dev;
rte_atomic64_t iq_flush_running;
uint32_t q_no;
uint32_t pkt_in_done;
/* Flag for 64 byte commands. */
uint32_t iqcmd_64B:1;
uint32_t rsvd:17;
uint32_t status:8;
/* Number of descriptors in this ring. */
uint32_t nb_desc;
/* Input ring index, where the driver should write the next packet */
uint32_t host_write_index;
/* Input ring index, where the OCTEON TX2 should read the next packet */
uint32_t otx_read_index;
/** This index aids in finding the window in the queue where OCTEON TX2
* has read the commands.
*/
uint32_t flush_index;
/* This keeps track of the instructions pending in this queue. */
rte_atomic64_t instr_pending;
uint32_t reset_instr_cnt;
/* Pointer to the Virtual Base addr of the input ring. */
uint8_t *base_addr;
/* This IQ request list */
struct sdp_instr_list *req_list;
/* SDP doorbell register for the ring. */
void *doorbell_reg;
/* SDP instruction count register for this ring. */
void *inst_cnt_reg;
/* Number of instructions pending to be posted to OCTEON TX2. */
uint32_t fill_cnt;
/* Statistics for this input queue. */
struct sdp_iq_stats stats;
/* DMA mapped base address of the input descriptor ring. */
uint64_t base_addr_dma;
/* Memory zone */
const struct rte_memzone *iq_mz;
};
/* DROQ packet format for application i/f. */
struct sdp_droq_pkt {
/* DROQ packet data buffer pointer. */
uint8_t *data;
/* DROQ packet data length */
uint32_t len;
uint32_t misc;
};
/** Descriptor format.
* The descriptor ring is made of descriptors which have 2 64-bit values:
* -# Physical (bus) address of the data buffer.
* -# Physical (bus) address of a sdp_droq_info structure.
* The device DMA's incoming packets and its information at the address
* given by these descriptor fields.
*/
struct sdp_droq_desc {
/* The buffer pointer */
uint64_t buffer_ptr;
/* The Info pointer */
uint64_t info_ptr;
};
#define SDP_DROQ_DESC_SIZE (sizeof(struct sdp_droq_desc))
/* Receive Header */
union sdp_rh {
uint64_t rh64;
};
#define SDP_RH_SIZE (sizeof(union sdp_rh))
/** Information about packet DMA'ed by OCTEON TX2.
* The format of the information available at Info Pointer after OCTEON TX2
* has posted a packet. Not all descriptors have valid information. Only
* the Info field of the first descriptor for a packet has information
* about the packet.
*/
struct sdp_droq_info {
/* The Output Receive Header. */
union sdp_rh rh;
/* The Length of the packet. */
uint64_t length;
};
#define SDP_DROQ_INFO_SIZE (sizeof(struct sdp_droq_info))
/** Pointer to data buffer.
* Driver keeps a pointer to the data buffer that it made available to
* the OCTEON TX2 device. Since the descriptor ring keeps physical (bus)
* addresses, this field is required for the driver to keep track of
* the virtual address pointers.
*/
struct sdp_recv_buffer {
/* Packet buffer, including meta data. */
void *buffer;
/* Data in the packet buffer. */
/* uint8_t *data; */
};
#define SDP_DROQ_RECVBUF_SIZE (sizeof(struct sdp_recv_buffer))
/* DROQ statistics. Each output queue has four stats fields. */
struct sdp_droq_stats {
/* Number of packets received in this queue. */
uint64_t pkts_received;
/* Bytes received by this queue. */
uint64_t bytes_received;
/* Num of failures of rte_pktmbuf_alloc() */
uint64_t rx_alloc_failure;
};
/* Structure to define the configuration attributes for each Output queue. */
struct sdp_oq_config {
/* Max number of OQs available */
uint16_t max_oqs;
/* If set, the Output queue uses info-pointer mode. (Default: 1 ) */
uint16_t info_ptr;
/** The number of buffers that were consumed during packet processing by
* the driver on this Output queue before the driver attempts to
* replenish the descriptor ring with new buffers.
*/
uint32_t refill_threshold;
};
/* The Descriptor Ring Output Queue(DROQ) structure. */
struct sdp_droq {
/* A spinlock to protect access to this ring. */
rte_spinlock_t lock;
struct sdp_device *sdp_dev;
/* The 8B aligned descriptor ring starts at this address. */
struct sdp_droq_desc *desc_ring;
uint32_t q_no;
uint32_t last_pkt_count;
/* Driver should read the next packet at this index */
uint32_t read_idx;
/* OCTEON TX2 will write the next packet at this index */
uint32_t write_idx;
/* At this index, the driver will refill the descriptor's buffer */
uint32_t refill_idx;
/* Packets pending to be processed */
rte_atomic64_t pkts_pending;
/* Number of descriptors in this ring. */
uint32_t nb_desc;
/* The number of descriptors pending to refill. */
uint32_t refill_count;
uint32_t refill_threshold;
/* The 8B aligned info ptrs begin from this address. */
struct sdp_droq_info *info_list;
/* receive buffer list contains virtual addresses of the buffers. */
struct sdp_recv_buffer *recv_buf_list;
/* The size of each buffer pointed by the buffer pointer. */
uint32_t buffer_size;
/** Pointer to the mapped packet credit register.
* Host writes number of info/buffer ptrs available to this register
*/
void *pkts_credit_reg;
/** Pointer to the mapped packet sent register. OCTEON TX2 writes the
* number of packets DMA'ed to host memory in this register.
*/
void *pkts_sent_reg;
/* Statistics for this DROQ. */
struct sdp_droq_stats stats;
/* DMA mapped address of the DROQ descriptor ring. */
size_t desc_ring_dma;
/* Info_ptr list is allocated at this virtual address. */
size_t info_base_addr;
/* DMA mapped address of the info list */
size_t info_list_dma;
/* Allocated size of info list. */
uint32_t info_alloc_size;
/* Memory zone **/
const struct rte_memzone *desc_ring_mz;
const struct rte_memzone *info_mz;
};
#define SDP_DROQ_SIZE (sizeof(struct sdp_droq))
/* IQ/OQ mask */
struct sdp_io_enable {
uint64_t iq;
uint64_t oq;
uint64_t iq64B;
};
/* Structure to define the configuration. */
struct sdp_config {
/* Input Queue attributes. */
struct sdp_iq_config iq;
/* Output Queue attributes. */
struct sdp_oq_config oq;
/* Num of desc for IQ rings */
uint32_t num_iqdef_descs;
/* Num of desc for OQ rings */
uint32_t num_oqdef_descs;
/* OQ buffer size */
uint32_t oqdef_buf_size;
};
/* Required functions for each VF device */
struct sdp_fn_list {
void (*setup_iq_regs)(struct sdp_device *sdpvf, uint32_t q_no);
void (*setup_oq_regs)(struct sdp_device *sdpvf, uint32_t q_no);
int (*setup_device_regs)(struct sdp_device *sdpvf);
uint32_t (*update_iq_read_idx)(struct sdp_instr_queue *iq);
void (*enable_io_queues)(struct sdp_device *sdpvf);
void (*disable_io_queues)(struct sdp_device *sdpvf);
void (*enable_iq)(struct sdp_device *sdpvf, uint32_t q_no);
void (*disable_iq)(struct sdp_device *sdpvf, uint32_t q_no);
void (*enable_oq)(struct sdp_device *sdpvf, uint32_t q_no);
void (*disable_oq)(struct sdp_device *sdpvf, uint32_t q_no);
};
/* SRIOV information */
struct sdp_sriov_info {
/* Number of rings assigned to VF */
uint32_t rings_per_vf;
/* Number of VF devices enabled */
uint32_t num_vfs;
};
/* Information to be passed from application */
struct sdp_rawdev_info {
struct rte_mempool *enqdeq_mpool;
const struct sdp_config *app_conf;
};
/* SDP EP VF device */
struct sdp_device {
/* PCI device pointer */
struct rte_pci_device *pci_dev;
uint16_t chip_id;
uint16_t pf_num;
uint16_t vf_num;
/* This device's PCIe port used for traffic. */
uint16_t pcie_port;
uint32_t pkind;
/* The state of this device */
rte_atomic64_t status;
/* Memory mapped h/w address */
uint8_t *hw_addr;
struct sdp_fn_list fn_list;
/* Num IQs */
uint32_t num_iqs;
/* The input instruction queues */
struct sdp_instr_queue *instr_queue[SDP_VF_MAX_IOQS_PER_RAWDEV];
/* Num OQs */
uint32_t num_oqs;
/* The DROQ output queues */
struct sdp_droq *droq[SDP_VF_MAX_IOQS_PER_RAWDEV];
/* IOQ data buffer pool */
struct rte_mempool *enqdeq_mpool;
/* IOQ mask */
struct sdp_io_enable io_qmask;
/* SR-IOV info */
struct sdp_sriov_info sriov_info;
/* Device configuration */
const struct sdp_config *conf;
};
const struct sdp_config *sdp_get_defconf(struct sdp_device *sdp_dev);
int sdp_setup_iqs(struct sdp_device *sdpvf, uint32_t iq_no);
int sdp_delete_iqs(struct sdp_device *sdpvf, uint32_t iq_no);
int sdp_setup_oqs(struct sdp_device *sdpvf, uint32_t oq_no);
int sdp_delete_oqs(struct sdp_device *sdpvf, uint32_t oq_no);
int sdp_rawdev_enqueue(struct rte_rawdev *dev, struct rte_rawdev_buf **buffers,
unsigned int count, rte_rawdev_obj_t context);
int sdp_rawdev_dequeue(struct rte_rawdev *dev, struct rte_rawdev_buf **buffers,
unsigned int count, rte_rawdev_obj_t context);
int sdp_rawdev_selftest(uint16_t dev_id);
#endif /* _OTX2_EP_RAWDEV_H_ */

View File

@ -1,172 +0,0 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <rte_common.h>
#include <rte_eal.h>
#include <rte_lcore.h>
#include <rte_mempool.h>
#include <rte_rawdev.h>
#include <rte_rawdev_pmd.h>
#include "otx2_common.h"
#include "otx2_ep_rawdev.h"
#define SDP_IOQ_NUM_BUFS (4 * 1024)
#define SDP_IOQ_BUF_SIZE (2 * 1024)
#define SDP_TEST_PKT_FSZ (0)
#define SDP_TEST_PKT_SIZE (1024)
static int
sdp_validate_data(struct sdp_droq_pkt *oq_pkt, uint8_t *iq_pkt,
uint32_t pkt_len)
{
if (!oq_pkt)
return -EINVAL;
if (pkt_len != oq_pkt->len) {
otx2_err("Invalid packet length");
return -EINVAL;
}
if (memcmp(oq_pkt->data, iq_pkt, pkt_len) != 0) {
otx2_err("Data validation failed");
return -EINVAL;
}
otx2_sdp_dbg("Data validation successful");
return 0;
}
static void
sdp_ioq_buffer_fill(uint8_t *addr, uint32_t len)
{
uint32_t idx;
memset(addr, 0, len);
for (idx = 0; idx < len; idx++)
addr[idx] = idx;
}
static struct rte_mempool*
sdp_ioq_mempool_create(void)
{
struct rte_mempool *mpool;
mpool = rte_mempool_create("ioqbuf_pool",
SDP_IOQ_NUM_BUFS /*num elt*/,
SDP_IOQ_BUF_SIZE /*elt size*/,
0 /*cache_size*/,
0 /*private_data_size*/,
NULL /*mp_init*/,
NULL /*mp_init arg*/,
NULL /*obj_init*/,
NULL /*obj_init arg*/,
rte_socket_id() /*socket id*/,
(MEMPOOL_F_SP_PUT | MEMPOOL_F_SC_GET));
return mpool;
}
int
sdp_rawdev_selftest(uint16_t dev_id)
{
struct sdp_rawdev_info app_info = {0};
struct rte_rawdev_info dev_info = {0};
struct rte_rawdev_buf *d_buf[1];
struct sdp_droq_pkt oq_pkt;
struct sdp_soft_instr si;
struct sdp_device sdpvf;
uint32_t buf_size;
int ret = 0;
void *buf;
otx2_info("SDP RAWDEV Self Test: Started");
memset(&oq_pkt, 0x00, sizeof(oq_pkt));
d_buf[0] = (struct rte_rawdev_buf *)&oq_pkt;
struct rte_mempool *ioq_mpool = sdp_ioq_mempool_create();
if (!ioq_mpool) {
otx2_err("IOQ mpool creation failed");
return -ENOMEM;
}
app_info.enqdeq_mpool = ioq_mpool;
app_info.app_conf = NULL; /* Use default conf */
dev_info.dev_private = &app_info;
ret = rte_rawdev_configure(dev_id, &dev_info, sizeof(app_info));
if (ret) {
otx2_err("Unable to configure SDP_VF %d", dev_id);
rte_mempool_free(ioq_mpool);
return -ENOMEM;
}
otx2_info("SDP VF rawdev[%d] configured successfully", dev_id);
memset(&si, 0x00, sizeof(si));
memset(&sdpvf, 0x00, sizeof(sdpvf));
buf_size = SDP_TEST_PKT_SIZE;
si.q_no = 0;
si.reqtype = SDP_REQTYPE_NORESP;
si.rptr = NULL;
si.ih.fsz = SDP_TEST_PKT_FSZ;
si.ih.tlen = buf_size;
si.ih.gather = 0;
/* Enqueue raw pkt data */
rte_mempool_get(ioq_mpool, &buf);
if (!buf) {
otx2_err("Buffer allocation failed");
rte_mempool_free(ioq_mpool);
rte_rawdev_close(dev_id);
return -ENOMEM;
}
sdp_ioq_buffer_fill(buf, buf_size);
si.dptr = (uint8_t *)buf;
rte_rawdev_enqueue_buffers(dev_id, NULL, 1, &si);
usleep(10000);
/* Dequeue raw pkt data */
ret = 0;
while (ret < 1) {
ret = rte_rawdev_dequeue_buffers(dev_id, &d_buf[0], 1, &si);
rte_pause();
}
/* Validate the dequeued raw pkt data */
if (sdp_validate_data((struct sdp_droq_pkt *)d_buf[0],
buf, buf_size) != 0) {
otx2_err("Data invalid");
rte_mempool_put(ioq_mpool,
((struct sdp_droq_pkt *)d_buf[0])->data);
rte_mempool_free(ioq_mpool);
rte_rawdev_close(dev_id);
return -EINVAL;
}
rte_mempool_put(ioq_mpool, ((struct sdp_droq_pkt *)d_buf[0])->data);
rte_mempool_free(ioq_mpool);
rte_rawdev_close(dev_id);
otx2_info("SDP RAWDEV Self Test: Successful");
return 0;
}

View File

@ -1,475 +0,0 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#include <rte_common.h>
#include <rte_rawdev.h>
#include <rte_rawdev_pmd.h>
#include "otx2_common.h"
#include "otx2_ep_rawdev.h"
#include "otx2_ep_vf.h"
static int
sdp_vf_reset_iq(struct sdp_device *sdpvf, int q_no)
{
uint64_t loop = SDP_VF_BUSY_LOOP_COUNT;
volatile uint64_t d64 = 0ull;
/* There is no RST for a ring.
* Clear all registers one by one after disabling the ring
*/
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_IN_ENABLE(q_no));
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_IN_INSTR_BADDR(q_no));
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_IN_INSTR_RSIZE(q_no));
d64 = 0xFFFFFFFF; /* ~0ull */
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_IN_INSTR_DBELL(q_no));
d64 = otx2_read64(sdpvf->hw_addr + SDP_VF_R_IN_INSTR_DBELL(q_no));
while ((d64 != 0) && loop--) {
otx2_write64(d64, sdpvf->hw_addr +
SDP_VF_R_IN_INSTR_DBELL(q_no));
rte_delay_ms(1);
d64 = otx2_read64(sdpvf->hw_addr +
SDP_VF_R_IN_INSTR_DBELL(q_no));
}
loop = SDP_VF_BUSY_LOOP_COUNT;
d64 = otx2_read64(sdpvf->hw_addr + SDP_VF_R_IN_CNTS(q_no));
while ((d64 != 0) && loop--) {
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_IN_CNTS(q_no));
rte_delay_ms(1);
d64 = otx2_read64(sdpvf->hw_addr + SDP_VF_R_IN_CNTS(q_no));
}
d64 = 0ull;
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_IN_INT_LEVELS(q_no));
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_IN_PKT_CNT(q_no));
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_IN_BYTE_CNT(q_no));
return 0;
}
static int
sdp_vf_reset_oq(struct sdp_device *sdpvf, int q_no)
{
uint64_t loop = SDP_VF_BUSY_LOOP_COUNT;
volatile uint64_t d64 = 0ull;
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_OUT_ENABLE(q_no));
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_OUT_SLIST_BADDR(q_no));
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_OUT_SLIST_RSIZE(q_no));
d64 = 0xFFFFFFFF;
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_OUT_SLIST_DBELL(q_no));
d64 = otx2_read64(sdpvf->hw_addr + SDP_VF_R_OUT_SLIST_DBELL(q_no));
while ((d64 != 0) && loop--) {
otx2_write64(d64, sdpvf->hw_addr +
SDP_VF_R_OUT_SLIST_DBELL(q_no));
rte_delay_ms(1);
d64 = otx2_read64(sdpvf->hw_addr +
SDP_VF_R_OUT_SLIST_DBELL(q_no));
}
loop = SDP_VF_BUSY_LOOP_COUNT;
d64 = otx2_read64(sdpvf->hw_addr + SDP_VF_R_OUT_CNTS(q_no));
while ((d64 != 0) && (loop--)) {
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_OUT_CNTS(q_no));
rte_delay_ms(1);
d64 = otx2_read64(sdpvf->hw_addr + SDP_VF_R_OUT_CNTS(q_no));
}
d64 = 0ull;
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_OUT_INT_LEVELS(q_no));
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_OUT_PKT_CNT(q_no));
otx2_write64(d64, sdpvf->hw_addr + SDP_VF_R_OUT_BYTE_CNT(q_no));
return 0;
}
static void
sdp_vf_setup_global_iq_reg(struct sdp_device *sdpvf, int q_no)
{
volatile uint64_t reg_val = 0ull;
/* Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for IQs
* IS_64B is by default enabled.
*/
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_IN_CONTROL(q_no));
reg_val |= SDP_VF_R_IN_CTL_RDSIZE;
reg_val |= SDP_VF_R_IN_CTL_IS_64B;
reg_val |= SDP_VF_R_IN_CTL_ESR;
otx2_write64(reg_val, sdpvf->hw_addr + SDP_VF_R_IN_CONTROL(q_no));
}
static void
sdp_vf_setup_global_oq_reg(struct sdp_device *sdpvf, int q_no)
{
volatile uint64_t reg_val = 0ull;
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_OUT_CONTROL(q_no));
reg_val |= (SDP_VF_R_OUT_CTL_IMODE);
reg_val &= ~(SDP_VF_R_OUT_CTL_ROR_P);
reg_val &= ~(SDP_VF_R_OUT_CTL_NSR_P);
reg_val &= ~(SDP_VF_R_OUT_CTL_ROR_I);
reg_val &= ~(SDP_VF_R_OUT_CTL_NSR_I);
reg_val &= ~(SDP_VF_R_OUT_CTL_ES_I);
reg_val &= ~(SDP_VF_R_OUT_CTL_ROR_D);
reg_val &= ~(SDP_VF_R_OUT_CTL_NSR_D);
reg_val &= ~(SDP_VF_R_OUT_CTL_ES_D);
/* INFO/DATA ptr swap is required */
reg_val |= (SDP_VF_R_OUT_CTL_ES_P);
otx2_write64(reg_val, sdpvf->hw_addr + SDP_VF_R_OUT_CONTROL(q_no));
}
static int
sdp_vf_reset_input_queues(struct sdp_device *sdpvf)
{
uint32_t q_no = 0;
otx2_sdp_dbg("%s :", __func__);
for (q_no = 0; q_no < sdpvf->sriov_info.rings_per_vf; q_no++)
sdp_vf_reset_iq(sdpvf, q_no);
return 0;
}
static int
sdp_vf_reset_output_queues(struct sdp_device *sdpvf)
{
uint64_t q_no = 0ull;
otx2_sdp_dbg(" %s :", __func__);
for (q_no = 0; q_no < sdpvf->sriov_info.rings_per_vf; q_no++)
sdp_vf_reset_oq(sdpvf, q_no);
return 0;
}
static void
sdp_vf_setup_global_input_regs(struct sdp_device *sdpvf)
{
uint64_t q_no = 0ull;
sdp_vf_reset_input_queues(sdpvf);
for (q_no = 0; q_no < (sdpvf->sriov_info.rings_per_vf); q_no++)
sdp_vf_setup_global_iq_reg(sdpvf, q_no);
}
static void
sdp_vf_setup_global_output_regs(struct sdp_device *sdpvf)
{
uint32_t q_no;
sdp_vf_reset_output_queues(sdpvf);
for (q_no = 0; q_no < (sdpvf->sriov_info.rings_per_vf); q_no++)
sdp_vf_setup_global_oq_reg(sdpvf, q_no);
}
static int
sdp_vf_setup_device_regs(struct sdp_device *sdpvf)
{
sdp_vf_setup_global_input_regs(sdpvf);
sdp_vf_setup_global_output_regs(sdpvf);
return 0;
}
static void
sdp_vf_setup_iq_regs(struct sdp_device *sdpvf, uint32_t iq_no)
{
struct sdp_instr_queue *iq = sdpvf->instr_queue[iq_no];
volatile uint64_t reg_val = 0ull;
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_IN_CONTROL(iq_no));
/* Wait till IDLE to set to 1, not supposed to configure BADDR
* as long as IDLE is 0
*/
if (!(reg_val & SDP_VF_R_IN_CTL_IDLE)) {
do {
reg_val = otx2_read64(sdpvf->hw_addr +
SDP_VF_R_IN_CONTROL(iq_no));
} while (!(reg_val & SDP_VF_R_IN_CTL_IDLE));
}
/* Write the start of the input queue's ring and its size */
otx2_write64(iq->base_addr_dma, sdpvf->hw_addr +
SDP_VF_R_IN_INSTR_BADDR(iq_no));
otx2_write64(iq->nb_desc, sdpvf->hw_addr +
SDP_VF_R_IN_INSTR_RSIZE(iq_no));
/* Remember the doorbell & instruction count register addr
* for this queue
*/
iq->doorbell_reg = (uint8_t *) sdpvf->hw_addr +
SDP_VF_R_IN_INSTR_DBELL(iq_no);
iq->inst_cnt_reg = (uint8_t *) sdpvf->hw_addr +
SDP_VF_R_IN_CNTS(iq_no);
otx2_sdp_dbg("InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p",
iq_no, iq->doorbell_reg, iq->inst_cnt_reg);
/* Store the current instrn counter(used in flush_iq calculation) */
iq->reset_instr_cnt = rte_read32(iq->inst_cnt_reg);
/* IN INTR_THRESHOLD is set to max(FFFFFFFF) which disable the IN INTR
* to raise
*/
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_IN_INT_LEVELS(iq_no));
reg_val = 0xffffffff;
otx2_write64(reg_val, sdpvf->hw_addr + SDP_VF_R_IN_INT_LEVELS(iq_no));
}
static void
sdp_vf_setup_oq_regs(struct sdp_device *sdpvf, uint32_t oq_no)
{
volatile uint64_t reg_val = 0ull;
uint64_t oq_ctl = 0ull;
struct sdp_droq *droq = sdpvf->droq[oq_no];
/* Wait on IDLE to set to 1, supposed to configure BADDR
* as log as IDLE is 0
*/
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_OUT_CONTROL(oq_no));
while (!(reg_val & SDP_VF_R_OUT_CTL_IDLE)) {
reg_val = otx2_read64(sdpvf->hw_addr +
SDP_VF_R_OUT_CONTROL(oq_no));
}
otx2_write64(droq->desc_ring_dma, sdpvf->hw_addr +
SDP_VF_R_OUT_SLIST_BADDR(oq_no));
otx2_write64(droq->nb_desc, sdpvf->hw_addr +
SDP_VF_R_OUT_SLIST_RSIZE(oq_no));
oq_ctl = otx2_read64(sdpvf->hw_addr + SDP_VF_R_OUT_CONTROL(oq_no));
/* Clear the ISIZE and BSIZE (22-0) */
oq_ctl &= ~(0x7fffffull);
/* Populate the BSIZE (15-0) */
oq_ctl |= (droq->buffer_size & 0xffff);
/* Populate ISIZE(22-16) */
oq_ctl |= ((SDP_RH_SIZE << 16) & 0x7fffff);
otx2_write64(oq_ctl, sdpvf->hw_addr + SDP_VF_R_OUT_CONTROL(oq_no));
/* Mapped address of the pkt_sent and pkts_credit regs */
droq->pkts_sent_reg = (uint8_t *) sdpvf->hw_addr +
SDP_VF_R_OUT_CNTS(oq_no);
droq->pkts_credit_reg = (uint8_t *) sdpvf->hw_addr +
SDP_VF_R_OUT_SLIST_DBELL(oq_no);
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_OUT_INT_LEVELS(oq_no));
/* Clear PKT_CNT register */
rte_write64(0xFFFFFFFFF, (uint8_t *)sdpvf->hw_addr +
SDP_VF_R_OUT_PKT_CNT(oq_no));
/* Clear the OQ doorbell */
rte_write32(0xFFFFFFFF, droq->pkts_credit_reg);
while ((rte_read32(droq->pkts_credit_reg) != 0ull)) {
rte_write32(0xFFFFFFFF, droq->pkts_credit_reg);
rte_delay_ms(1);
}
otx2_sdp_dbg("SDP_R[%d]_credit:%x", oq_no,
rte_read32(droq->pkts_credit_reg));
/* Clear the OQ_OUT_CNTS doorbell */
reg_val = rte_read32(droq->pkts_sent_reg);
rte_write32((uint32_t)reg_val, droq->pkts_sent_reg);
otx2_sdp_dbg("SDP_R[%d]_sent: %x", oq_no,
rte_read32(droq->pkts_sent_reg));
while (((rte_read32(droq->pkts_sent_reg)) != 0ull)) {
reg_val = rte_read32(droq->pkts_sent_reg);
rte_write32((uint32_t)reg_val, droq->pkts_sent_reg);
rte_delay_ms(1);
}
}
static void
sdp_vf_enable_iq(struct sdp_device *sdpvf, uint32_t q_no)
{
volatile uint64_t reg_val = 0ull;
uint64_t loop = SDP_VF_BUSY_LOOP_COUNT;
/* Resetting doorbells during IQ enabling also to handle abrupt
* guest reboot. IQ reset does not clear the doorbells.
*/
otx2_write64(0xFFFFFFFF, sdpvf->hw_addr +
SDP_VF_R_IN_INSTR_DBELL(q_no));
while (((otx2_read64(sdpvf->hw_addr +
SDP_VF_R_IN_INSTR_DBELL(q_no))) != 0ull) && loop--) {
rte_delay_ms(1);
}
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_IN_ENABLE(q_no));
reg_val |= 0x1ull;
otx2_write64(reg_val, sdpvf->hw_addr + SDP_VF_R_IN_ENABLE(q_no));
otx2_info("IQ[%d] enable done", q_no);
}
static void
sdp_vf_enable_oq(struct sdp_device *sdpvf, uint32_t q_no)
{
volatile uint64_t reg_val = 0ull;
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_OUT_ENABLE(q_no));
reg_val |= 0x1ull;
otx2_write64(reg_val, sdpvf->hw_addr + SDP_VF_R_OUT_ENABLE(q_no));
otx2_info("OQ[%d] enable done", q_no);
}
static void
sdp_vf_enable_io_queues(struct sdp_device *sdpvf)
{
uint32_t q_no = 0;
for (q_no = 0; q_no < sdpvf->num_iqs; q_no++)
sdp_vf_enable_iq(sdpvf, q_no);
for (q_no = 0; q_no < sdpvf->num_oqs; q_no++)
sdp_vf_enable_oq(sdpvf, q_no);
}
static void
sdp_vf_disable_iq(struct sdp_device *sdpvf, uint32_t q_no)
{
volatile uint64_t reg_val = 0ull;
/* Reset the doorbell register for this Input Queue. */
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_IN_ENABLE(q_no));
reg_val &= ~0x1ull;
otx2_write64(reg_val, sdpvf->hw_addr + SDP_VF_R_IN_ENABLE(q_no));
}
static void
sdp_vf_disable_oq(struct sdp_device *sdpvf, uint32_t q_no)
{
volatile uint64_t reg_val = 0ull;
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_OUT_ENABLE(q_no));
reg_val &= ~0x1ull;
otx2_write64(reg_val, sdpvf->hw_addr + SDP_VF_R_OUT_ENABLE(q_no));
}
static void
sdp_vf_disable_io_queues(struct sdp_device *sdpvf)
{
uint32_t q_no = 0;
/* Disable Input Queues. */
for (q_no = 0; q_no < sdpvf->num_iqs; q_no++)
sdp_vf_disable_iq(sdpvf, q_no);
/* Disable Output Queues. */
for (q_no = 0; q_no < sdpvf->num_oqs; q_no++)
sdp_vf_disable_oq(sdpvf, q_no);
}
static uint32_t
sdp_vf_update_read_index(struct sdp_instr_queue *iq)
{
uint32_t new_idx = rte_read32(iq->inst_cnt_reg);
/* The new instr cnt reg is a 32-bit counter that can roll over.
* We have noted the counter's initial value at init time into
* reset_instr_cnt
*/
if (iq->reset_instr_cnt < new_idx)
new_idx -= iq->reset_instr_cnt;
else
new_idx += (0xffffffff - iq->reset_instr_cnt) + 1;
/* Modulo of the new index with the IQ size will give us
* the new index.
*/
new_idx %= iq->nb_desc;
return new_idx;
}
int
sdp_vf_setup_device(struct sdp_device *sdpvf)
{
uint64_t reg_val = 0ull;
/* If application doesn't provide its conf, use driver default conf */
if (sdpvf->conf == NULL) {
sdpvf->conf = sdp_get_defconf(sdpvf);
if (sdpvf->conf == NULL) {
otx2_err("SDP VF default config not found");
return -ENOMEM;
}
otx2_info("Default config is used");
}
/* Get IOQs (RPVF] count */
reg_val = otx2_read64(sdpvf->hw_addr + SDP_VF_R_IN_CONTROL(0));
sdpvf->sriov_info.rings_per_vf = ((reg_val >> SDP_VF_R_IN_CTL_RPVF_POS)
& SDP_VF_R_IN_CTL_RPVF_MASK);
otx2_info("SDP RPVF: %d", sdpvf->sriov_info.rings_per_vf);
sdpvf->fn_list.setup_iq_regs = sdp_vf_setup_iq_regs;
sdpvf->fn_list.setup_oq_regs = sdp_vf_setup_oq_regs;
sdpvf->fn_list.setup_device_regs = sdp_vf_setup_device_regs;
sdpvf->fn_list.update_iq_read_idx = sdp_vf_update_read_index;
sdpvf->fn_list.enable_io_queues = sdp_vf_enable_io_queues;
sdpvf->fn_list.disable_io_queues = sdp_vf_disable_io_queues;
sdpvf->fn_list.enable_iq = sdp_vf_enable_iq;
sdpvf->fn_list.disable_iq = sdp_vf_disable_iq;
sdpvf->fn_list.enable_oq = sdp_vf_enable_oq;
sdpvf->fn_list.disable_oq = sdp_vf_disable_oq;
return 0;
}

View File

@ -1,10 +0,0 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2019 Marvell International Ltd.
*/
#ifndef _OTX2_EP_VF_H_
#define _OTX2_EP_VF_H_
int
sdp_vf_setup_device(struct sdp_device *sdpvf);
#endif /*_OTX2_EP_VF_H_ */

View File

@ -1,3 +0,0 @@
DPDK_22 {
local: *;
};