crypto/octeontx: add hardware register access for misc poll

Adding hardware register accesses required for misc poll

Signed-off-by: Ankur Dwivedi <ankur.dwivedi@caviumnetworks.com>
Signed-off-by: Anoob Joseph <anoob.joseph@caviumnetworks.com>
Signed-off-by: Murthy NSSR <nidadavolu.murthy@caviumnetworks.com>
Signed-off-by: Nithin Dabilpuram <nithin.dabilpuram@caviumnetworks.com>
Signed-off-by: Ragothaman Jayaraman <rjayaraman@caviumnetworks.com>
Signed-off-by: Srisivasubramanian S <ssrinivasan@caviumnetworks.com>
Signed-off-by: Tejasree Kondoj <kondoj.tejasree@caviumnetworks.com>
This commit is contained in:
Ankur Dwivedi 2018-10-09 14:37:36 +05:30 committed by Akhil Goyal
parent 0dc1cffa4d
commit 84eb02f778
3 changed files with 721 additions and 1 deletions

View File

@ -0,0 +1,519 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Cavium, Inc
*/
#ifndef _CPT_HW_TYPES_H_
#define _CPT_HW_TYPES_H_
#include <rte_byteorder.h>
/*
* This file defines HRM specific structs.
*
*/
#define CPT_VF_INTR_MBOX_MASK (1<<0)
#define CPT_VF_INTR_DOVF_MASK (1<<1)
#define CPT_VF_INTR_IRDE_MASK (1<<2)
#define CPT_VF_INTR_NWRP_MASK (1<<3)
#define CPT_VF_INTR_SWERR_MASK (1<<4)
#define CPT_VF_INTR_HWERR_MASK (1<<5)
#define CPT_VF_INTR_FAULT_MASK (1<<6)
/*
* CPT_INST_S software command definitions
* Words EI (0-3)
*/
typedef union {
uint64_t u64;
struct {
uint16_t opcode;
uint16_t param1;
uint16_t param2;
uint16_t dlen;
} s;
} vq_cmd_word0_t;
typedef union {
uint64_t u64;
struct {
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
uint64_t grp : 3;
uint64_t cptr : 61;
#else
uint64_t cptr : 61;
uint64_t grp : 3;
#endif
} s;
} vq_cmd_word3_t;
typedef struct cpt_vq_command {
vq_cmd_word0_t cmd;
uint64_t dptr;
uint64_t rptr;
vq_cmd_word3_t cptr;
} cpt_vq_cmd_t;
/**
* Structure cpt_inst_s
*
* CPT Instruction Structure
* This structure specifies the instruction layout.
* Instructions are stored in memory as little-endian unless
* CPT()_PF_Q()_CTL[INST_BE] is set.
*/
typedef union cpt_inst_s {
uint64_t u[8];
struct cpt_inst_s_8s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
uint64_t reserved_17_63 : 47;
/* [ 16: 16] Done interrupt.
* 0 = No interrupts related to this instruction.
* 1 = When the instruction completes,CPT()_VQ()_DONE[DONE]
* will be incremented, and based on the rules described
* there an interrupt may occur.
*/
uint64_t doneint : 1;
uint64_t reserved_0_15 : 16;
#else /* Word 0 - Little Endian */
uint64_t reserved_0_15 : 16;
uint64_t doneint : 1;
uint64_t reserved_17_63 : 47;
#endif /* Word 0 - End */
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 1 - Big Endian */
/* [127: 64] Result IOVA.
* If nonzero, specifies where to write CPT_RES_S.
* If zero, no result structure will be written.
* Address must be 16-byte aligned.
*
* Bits <63:49> are ignored by hardware; software should
* use a sign-extended bit <48> for forward compatibility.
*/
uint64_t res_addr : 64;
#else /* Word 1 - Little Endian */
uint64_t res_addr : 64;
#endif /* Word 1 - End */
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 2 - Big Endian */
uint64_t reserved_172_191 : 20;
/* [171:162] If [WQ_PTR] is nonzero, the SSO guest-group to
* use when CPT submits work to SSO.
* For the SSO to not discard the add-work request, FPA_PF_MAP()
* must map [GRP] and CPT()_PF_Q()_GMCTL[GMID] as valid.
*/
uint64_t grp : 10;
/* [161:160] If [WQ_PTR] is nonzero, the SSO tag type to use
* when CPT submits work to SSO.
*/
uint64_t tt : 2;
/* [159:128] If [WQ_PTR] is nonzero, the SSO tag to use when
* CPT submits work to SSO.
*/
uint64_t tag : 32;
#else /* Word 2 - Little Endian */
uint64_t tag : 32;
uint64_t tt : 2;
uint64_t grp : 10;
uint64_t reserved_172_191 : 20;
#endif /* Word 2 - End */
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 3 - Big Endian */
/** [255:192] If [WQ_PTR] is nonzero, it is a pointer to a
* work-queue entry that CPT submits work to SSO after all
* context, output data, and result write operations are
* visible to other CNXXXX units and the cores.
* Bits <2:0> must be zero.
* Bits <63:49> are ignored by hardware; software should use a
* sign-extended bit <48> for forward compatibility.
* Internal:Bits <63:49>, <2:0> are ignored by hardware,
* treated as always 0x0.
**/
uint64_t wq_ptr : 64;
#else /* Word 3 - Little Endian */
uint64_t wq_ptr : 64;
#endif /* Word 3 - End */
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 4 - Big Endian */
union {
/** [319:256] Engine instruction word 0. Passed to the
* AE/SE.
**/
uint64_t ei0 : 64;
vq_cmd_word0_t vq_cmd_w0;
};
#else /* Word 4 - Little Endian */
union {
uint64_t ei0 : 64;
vq_cmd_word0_t vq_cmd_w0;
};
#endif /* Word 4 - End */
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 5 - Big Endian */
union {
/** [383:320] Engine instruction word 1. Passed to the
* AE/SE.
**/
uint64_t ei1 : 64;
uint64_t dptr;
};
#else /* Word 5 - Little Endian */
union {
uint64_t ei1 : 64;
uint64_t dptr;
};
#endif /* Word 5 - End */
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 6 - Big Endian */
union {
/** [447:384] Engine instruction word 2. Passed to the
* AE/SE.
**/
uint64_t ei2 : 64;
uint64_t rptr;
};
#else /* Word 6 - Little Endian */
union {
uint64_t ei2 : 64;
uint64_t rptr;
};
#endif /* Word 6 - End */
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 7 - Big Endian */
union {
/** [511:448] Engine instruction word 3. Passed to the
* AE/SE.
**/
uint64_t ei3 : 64;
vq_cmd_word3_t vq_cmd_w3;
};
#else /* Word 7 - Little Endian */
union {
uint64_t ei3 : 64;
vq_cmd_word3_t vq_cmd_w3;
};
#endif /* Word 7 - End */
} s8x;
} cpt_inst_s_t;
/**
* Structure cpt_res_s
*
* CPT Result Structure
* The CPT coprocessor writes the result structure after it completes a
* CPT_INST_S instruction. The result structure is exactly 16 bytes, and each
* instruction completion produces exactly one result structure.
*
* This structure is stored in memory as little-endian unless
* CPT()_PF_Q()_CTL[INST_BE] is set.
*/
typedef union cpt_res_s {
uint64_t u[2];
struct cpt_res_s_8s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
uint64_t reserved_17_63 : 47;
/** [ 16: 16] Done interrupt. This bit is copied from the
* corresponding instruction's CPT_INST_S[DONEINT].
**/
uint64_t doneint : 1;
uint64_t reserved_8_15 : 8;
/** [ 7: 0] Indicates completion/error status of the CPT
* coprocessor for the associated instruction, as enumerated by
* CPT_COMP_E. Core software may write the memory location
* containing [COMPCODE] to 0x0 before ringing the doorbell, and
* then poll for completion by checking for a nonzero value.
*
* Once the core observes a nonzero [COMPCODE] value in this
* case, the CPT coprocessor will have also completed L2/DRAM
* write operations.
**/
uint64_t compcode : 8;
#else /* Word 0 - Little Endian */
uint64_t compcode : 8;
uint64_t reserved_8_15 : 8;
uint64_t doneint : 1;
uint64_t reserved_17_63 : 47;
#endif /* Word 0 - End */
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 1 - Big Endian */
uint64_t reserved_64_127 : 64;
#else /* Word 1 - Little Endian */
uint64_t reserved_64_127 : 64;
#endif /* Word 1 - End */
} s8x;
} cpt_res_s_t;
/**
* Register (NCB) cpt#_vq#_ctl
*
* CPT VF Queue Control Registers
* This register configures queues. This register should be changed (other than
* clearing [ENA]) only when quiescent (see CPT()_VQ()_INPROG[INFLIGHT]).
*/
typedef union {
uint64_t u;
struct cptx_vqx_ctl_s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
uint64_t reserved_1_63 : 63;
/** [ 0: 0](R/W/H) Enables the logical instruction queue.
* See also CPT()_PF_Q()_CTL[CONT_ERR] and
* CPT()_VQ()_INPROG[INFLIGHT].
* 1 = Queue is enabled.
* 0 = Queue is disabled.
**/
uint64_t ena : 1;
#else /* Word 0 - Little Endian */
uint64_t ena : 1;
uint64_t reserved_1_63 : 63;
#endif /* Word 0 - End */
} s;
} cptx_vqx_ctl_t;
/**
* Register (NCB) cpt#_vq#_done
*
* CPT Queue Done Count Registers
* These registers contain the per-queue instruction done count.
*/
typedef union {
uint64_t u;
struct cptx_vqx_done_s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
uint64_t reserved_20_63 : 44;
/** [ 19: 0](R/W/H) Done count. When CPT_INST_S[DONEINT] set
* and that instruction completes,CPT()_VQ()_DONE[DONE] is
* incremented when the instruction finishes. Write to this
* field are for diagnostic use only; instead software writes
* CPT()_VQ()_DONE_ACK with the number of decrements for this
* field.
*
* Interrupts are sent as follows:
*
* When CPT()_VQ()_DONE[DONE] = 0, then no results are pending,
* the interrupt coalescing timer is held to zero, and an
* interrupt is not sent.
*
* When CPT()_VQ()_DONE[DONE] != 0, then the interrupt
* coalescing timer counts. If the counter is >= CPT()_VQ()_DONE
* _WAIT[TIME_WAIT]*1024, or CPT()_VQ()_DONE[DONE] >= CPT()_VQ()
* _DONE_WAIT[NUM_WAIT], i.e. enough time has passed or enough
* results have arrived, then the interrupt is sent. Otherwise,
* it is not sent due to coalescing.
*
* When CPT()_VQ()_DONE_ACK is written (or CPT()_VQ()_DONE is
* written but this is not typical), the interrupt coalescing
* timer restarts. Note after decrementing this interrupt
* equation is recomputed, for example if CPT()_VQ()_DONE[DONE]
* >= CPT()_VQ()_DONE_WAIT[NUM_WAIT] and because the timer is
* zero, the interrupt will be resent immediately. (This covers
* the race case between software acknowledging an interrupt and
* a result returning.)
*
* When CPT()_VQ()_DONE_ENA_W1S[DONE] = 0, interrupts are not
* sent, but the counting described above still occurs.
*
* Since CPT instructions complete out-of-order, if software is
* using completion interrupts the suggested scheme is to
* request a DONEINT on each request, and when an interrupt
* arrives perform a "greedy" scan for completions; even if a
* later command is acknowledged first this will not result in
* missing a completion.
*
* Software is responsible for making sure [DONE] does not
* overflow; for example by insuring there are not more than
* 2^20-1 instructions in flight that may request interrupts.
**/
uint64_t done : 20;
#else /* Word 0 - Little Endian */
uint64_t done : 20;
uint64_t reserved_20_63 : 44;
#endif /* Word 0 - End */
} s;
} cptx_vqx_done_t;
/**
* Register (NCB) cpt#_vq#_done_ack
*
* CPT Queue Done Count Ack Registers
* This register is written by software to acknowledge interrupts.
*/
typedef union {
uint64_t u;
struct cptx_vqx_done_ack_s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
uint64_t reserved_20_63 : 44;
/** [ 19: 0](R/W/H) Number of decrements to CPT()_VQ()_DONE
* [DONE]. Reads CPT()_VQ()_DONE[DONE].
*
* Written by software to acknowledge interrupts. If CPT()_VQ()_
* DONE[DONE] is still nonzero the interrupt will be re-sent if
* the conditions described in CPT()_VQ()_DONE[DONE] are
* satisfied.
**/
uint64_t done_ack : 20;
#else /* Word 0 - Little Endian */
uint64_t done_ack : 20;
uint64_t reserved_20_63 : 44;
#endif /* Word 0 - End */
} s;
} cptx_vqx_done_ack_t;
/**
* Register (NCB) cpt#_vq#_done_wait
*
* CPT Queue Done Interrupt Coalescing Wait Registers
* Specifies the per queue interrupt coalescing settings.
*/
typedef union {
uint64_t u;
struct cptx_vqx_done_wait_s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
uint64_t reserved_48_63 : 16;
/** [ 47: 32](R/W) Time hold-off. When CPT()_VQ()_DONE[DONE] =
* 0, or CPT()_VQ()_DONE_ACK is written a timer is cleared. When
* the timer reaches [TIME_WAIT]*1024 then interrupt coalescing
* ends; see CPT()_VQ()_DONE[DONE]. If 0x0, time coalescing is
* disabled.
**/
uint64_t time_wait : 16;
uint64_t reserved_20_31 : 12;
/** [ 19: 0](R/W) Number of messages hold-off. When
* CPT()_VQ()_DONE[DONE] >= [NUM_WAIT] then interrupt coalescing
* ends; see CPT()_VQ()_DONE[DONE]. If 0x0, same behavior as
* 0x1.
**/
uint64_t num_wait : 20;
#else /* Word 0 - Little Endian */
uint64_t num_wait : 20;
uint64_t reserved_20_31 : 12;
uint64_t time_wait : 16;
uint64_t reserved_48_63 : 16;
#endif /* Word 0 - End */
} s;
} cptx_vqx_done_wait_t;
/**
* Register (NCB) cpt#_vq#_doorbell
*
* CPT Queue Doorbell Registers
* Doorbells for the CPT instruction queues.
*/
typedef union {
uint64_t u;
struct cptx_vqx_doorbell_s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
uint64_t reserved_20_63 : 44;
uint64_t dbell_cnt : 20;
/** [ 19: 0](R/W/H) Number of instruction queue 64-bit words
* to add to the CPT instruction doorbell count. Readback value
* is the the current number of pending doorbell requests.
*
* If counter overflows CPT()_VQ()_MISC_INT[DBELL_DOVF] is set.
*
* To reset the count back to zero, write one to clear
* CPT()_VQ()_MISC_INT_ENA_W1C[DBELL_DOVF], then write a value
* of 2^20 minus the read [DBELL_CNT], then write one to
* CPT()_VQ()_MISC_INT_W1C[DBELL_DOVF] and
* CPT()_VQ()_MISC_INT_ENA_W1S[DBELL_DOVF].
*
* Must be a multiple of 8. All CPT instructions are 8 words
* and require a doorbell count of multiple of 8.
**/
#else /* Word 0 - Little Endian */
uint64_t dbell_cnt : 20;
uint64_t reserved_20_63 : 44;
#endif /* Word 0 - End */
} s;
} cptx_vqx_doorbell_t;
/**
* Register (NCB) cpt#_vq#_inprog
*
* CPT Queue In Progress Count Registers
* These registers contain the per-queue instruction in flight registers.
*/
typedef union {
uint64_t u;
struct cptx_vqx_inprog_s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
uint64_t reserved_8_63 : 56;
/** [ 7: 0](RO/H) Inflight count. Counts the number of
* instructions for the VF for which CPT is fetching, executing
* or responding to instructions. However this does not include
* any interrupts that are awaiting software handling
* (CPT()_VQ()_DONE[DONE] != 0x0).
*
* A queue may not be reconfigured until:
* 1. CPT()_VQ()_CTL[ENA] is cleared by software.
* 2. [INFLIGHT] is polled until equals to zero.
**/
uint64_t inflight : 8;
#else /* Word 0 - Little Endian */
uint64_t inflight : 8;
uint64_t reserved_8_63 : 56;
#endif /* Word 0 - End */
} s;
} cptx_vqx_inprog_t;
/**
* Register (NCB) cpt#_vq#_misc_int
*
* CPT Queue Misc Interrupt Register
* These registers contain the per-queue miscellaneous interrupts.
*/
typedef union {
uint64_t u;
struct cptx_vqx_misc_int_s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
uint64_t reserved_7_63 : 57;
/** [ 6: 6](R/W1C/H) Translation fault detected. */
uint64_t fault : 1;
/** [ 5: 5](R/W1C/H) Hardware error from engines. */
uint64_t hwerr : 1;
/** [ 4: 4](R/W1C/H) Software error from engines. */
uint64_t swerr : 1;
/** [ 3: 3](R/W1C/H) NCB result write response error. */
uint64_t nwrp : 1;
/** [ 2: 2](R/W1C/H) Instruction NCB read response error. */
uint64_t irde : 1;
/** [ 1: 1](R/W1C/H) Doorbell overflow. */
uint64_t dovf : 1;
/** [ 0: 0](R/W1C/H) PF to VF mailbox interrupt. Set when
* CPT()_VF()_PF_MBOX(0) is written.
**/
uint64_t mbox : 1;
#else /* Word 0 - Little Endian */
uint64_t mbox : 1;
uint64_t dovf : 1;
uint64_t irde : 1;
uint64_t nwrp : 1;
uint64_t swerr : 1;
uint64_t hwerr : 1;
uint64_t fault : 1;
uint64_t reserved_5_63 : 59;
#endif /* Word 0 - End */
} s;
} cptx_vqx_misc_int_t;
/**
* Register (NCB) cpt#_vq#_saddr
*
* CPT Queue Starting Buffer Address Registers
* These registers set the instruction buffer starting address.
*/
typedef union {
uint64_t u;
struct cptx_vqx_saddr_s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
uint64_t reserved_49_63 : 15;
/** [ 48: 6](R/W/H) Instruction buffer IOVA <48:6>
* (64-byte aligned). When written, it is the initial buffer
* starting address; when read, it is the next read pointer to
* be requested from L2C. The PTR field is overwritten with the
* next pointer each time that the command buffer segment is
* exhausted. New commands will then be read from the newly
* specified command buffer pointer.
**/
uint64_t ptr : 43;
uint64_t reserved_0_5 : 6;
#else /* Word 0 - Little Endian */
uint64_t reserved_0_5 : 6;
uint64_t ptr : 43;
uint64_t reserved_49_63 : 15;
#endif /* Word 0 - End */
} s;
} cptx_vqx_saddr_t;
#endif /*_CPT_HW_TYPES_H_ */

View File

@ -3,11 +3,19 @@
*/
#include <string.h>
#include <rte_branch_prediction.h>
#include <rte_common.h>
#include "otx_cryptodev_hw_access.h"
#include "cpt_pmd_logs.h"
#include "cpt_hw_types.h"
/*
* VF HAL functions
* Access its own BAR0/4 registers by passing VF number as 0.
* OS/PCI maps them accordingly.
*/
static int
otx_cpt_vf_init(struct cpt_vf *cptvf)
@ -19,10 +27,192 @@ otx_cpt_vf_init(struct cpt_vf *cptvf)
return ret;
}
/*
* Read Interrupt status of the VF
*
* @param cptvf cptvf structure
*/
static uint64_t
otx_cpt_read_vf_misc_intr_status(struct cpt_vf *cptvf)
{
return CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf), CPTX_VQX_MISC_INT(0, 0));
}
/*
* Clear mailbox interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_mbox_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.mbox = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear instruction NCB read error interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_irde_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.irde = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear NCB result write response error interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_nwrp_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.nwrp = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear swerr interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_swerr_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.swerr = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear hwerr interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_hwerr_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.hwerr = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear translation fault interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_fault_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.fault = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
/*
* Clear doorbell overflow interrupt of the VF
*
* @param cptvf cptvf structure
*/
static void
otx_cpt_clear_dovf_intr(struct cpt_vf *cptvf)
{
cptx_vqx_misc_int_t vqx_misc_int;
vqx_misc_int.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0));
/* W1C for the VF */
vqx_misc_int.s.dovf = 1;
CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
CPTX_VQX_MISC_INT(0, 0), vqx_misc_int.u);
}
void
otx_cpt_poll_misc(struct cpt_vf *cptvf)
{
RTE_SET_USED(cptvf);
uint64_t intr;
intr = otx_cpt_read_vf_misc_intr_status(cptvf);
if (!intr)
return;
/* Check for MISC interrupt types */
if (likely(intr & CPT_VF_INTR_MBOX_MASK)) {
CPT_LOG_DP_DEBUG("%s: Mailbox interrupt 0x%lx on CPT VF %d",
cptvf->dev_name, (unsigned int long)intr, cptvf->vfid);
otx_cpt_clear_mbox_intr(cptvf);
} else if (unlikely(intr & CPT_VF_INTR_IRDE_MASK)) {
otx_cpt_clear_irde_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: Instruction NCB read error interrupt "
"0x%lx on CPT VF %d", cptvf->dev_name,
(unsigned int long)intr, cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_NWRP_MASK)) {
otx_cpt_clear_nwrp_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: NCB response write error interrupt 0x%lx"
" on CPT VF %d", cptvf->dev_name,
(unsigned int long)intr, cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_SWERR_MASK)) {
otx_cpt_clear_swerr_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: Software error interrupt 0x%lx on CPT VF "
"%d", cptvf->dev_name, (unsigned int long)intr,
cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_HWERR_MASK)) {
otx_cpt_clear_hwerr_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: Hardware error interrupt 0x%lx on CPT VF "
"%d", cptvf->dev_name, (unsigned int long)intr,
cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_FAULT_MASK)) {
otx_cpt_clear_fault_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: Translation fault interrupt 0x%lx on CPT VF "
"%d", cptvf->dev_name, (unsigned int long)intr,
cptvf->vfid);
} else if (unlikely(intr & CPT_VF_INTR_DOVF_MASK)) {
otx_cpt_clear_dovf_intr(cptvf);
CPT_LOG_DP_DEBUG("%s: Doorbell overflow interrupt 0x%lx on CPT VF "
"%d", cptvf->dev_name, (unsigned int long)intr,
cptvf->vfid);
} else
CPT_LOG_DP_ERR("%s: Unhandled interrupt 0x%lx in CPT VF %d",
cptvf->dev_name, (unsigned int long)intr,
cptvf->vfid);
}
int

View File

@ -7,6 +7,7 @@
#include <stdbool.h>
#include <rte_io.h>
#include <rte_memory.h>
#include "cpt_common.h"
@ -16,6 +17,16 @@
/* Default command queue length */
#define DEFAULT_CMD_QCHUNKS 2
#define CPT_CSR_REG_BASE(cpt) ((cpt)->reg_base)
/* Read hw register */
#define CPT_READ_CSR(__hw_addr, __offset) \
rte_read64_relaxed((uint8_t *)__hw_addr + __offset)
/* Write hw register */
#define CPT_WRITE_CSR(__hw_addr, __offset, __val) \
rte_write64_relaxed((__val), ((uint8_t *)__hw_addr + __offset))
/* cpt instance */
struct cpt_instance {
uint32_t queue_id;