net/enic: add AVX2 based vectorized Rx handler

Add the vectorized version of the no-scatter Rx handler. It aims to
process 8 descriptors per loop using AVX2 SIMD instructions. This
handler is in its own file enic_rxtx_vec_avx2.c, and makefile and
meson.build are modified to compile it when the compiler supports
AVX2. Under ideal conditions, the vectorized handler reduces
cycles/packet by more than 30%, when compared against the no-scatter
Rx handler. Most implementation ideas come from i40e's AVX2 based
handler, so credit goes to its authors.

At this point, the new handler is meant for field trials, and is not
selected by default. So add a new devarg enable-avx2-rx to allow the
user to request the use of the new handler. When enable-avx2-rx=1, the
driver will consider using the new handler.

Also update the guide doc and introduce the vectorized handler.

Signed-off-by: Hyong Youb Kim <hyonkim@cisco.com>
Reviewed-by: John Daley <johndale@cisco.com>
This commit is contained in:
Hyong Youb Kim 2018-10-03 13:09:28 -07:00 committed by Ferruh Yigit
parent cd4e7b3250
commit 8a6ff33d6d
7 changed files with 972 additions and 9 deletions

View File

@ -351,6 +351,41 @@ suitable for others. Such applications may change the mode by setting
applications such as OVS-DPDK performance benchmarks that utilize
only the default VLAN and want to see only untagged packets.
Vectorized Rx Handler
---------------------
ENIC PMD includes a version of the receive handler that is vectorized using
AVX2 SIMD instructions. It is meant for bulk, throughput oriented workloads
where reducing cycles/packet in PMD is a priority. In order to use the
vectorized handler, take the following steps.
- Use a recent version of gcc, icc, or clang and build 64-bit DPDK. If
the compiler is known to support AVX2, DPDK build system
automatically compiles the vectorized handler. Otherwise, the
handler is not available.
- Set ``devargs`` parameter ``enable-avx2-rx=1`` to explicitly request that
PMD consider the vectorized handler when selecting the receive handler.
For example::
-w 12:00.0,enable-avx2-rx=1
As the current implementation is intended for field trials, by default, the
vectorized handler is not considerd (``enable-avx2-rx=0``).
- Run on a UCS M4 or later server with CPUs that support AVX2.
PMD selects the vectorized handler when the handler is compiled into
the driver, the user requests its use via ``enable-avx2-rx=1``, CPU
supports AVX2, and scatter Rx is not used. To verify that the
vectorized handler is selected, enable debug logging
(``--log-level=pmd,debug``) and check the following message.
.. code-block:: console
enic_use_vector_rx_handler use the non-scatter avx2 Rx handler
.. _enic_limitations:
Limitations

View File

@ -39,4 +39,32 @@ SRCS-$(CONFIG_RTE_LIBRTE_ENIC_PMD) += base/vnic_intr.c
SRCS-$(CONFIG_RTE_LIBRTE_ENIC_PMD) += base/vnic_rq.c
SRCS-$(CONFIG_RTE_LIBRTE_ENIC_PMD) += base/vnic_rss.c
# The current implementation assumes 64-bit pointers
CC_AVX2_SUPPORT=0
ifeq ($(CONFIG_RTE_ARCH_X86_64),y)
# Figure out if the compiler supports avx2. The extra check using
# -march=core-avx2 is necessary to support users who build for the
# 'default' machine (corei7 which has no avx2) and run the binary on
# newer CPUs that have avx2.
# This part is verbatim from i40e makefile.
ifeq ($(findstring RTE_MACHINE_CPUFLAG_AVX2,$(CFLAGS)),RTE_MACHINE_CPUFLAG_AVX2)
CC_AVX2_SUPPORT=1
else
CC_AVX2_SUPPORT=\
$(shell $(CC) -march=core-avx2 -dM -E - </dev/null 2>&1 | \
grep -q AVX2 && echo 1)
ifeq ($(CC_AVX2_SUPPORT), 1)
ifeq ($(CONFIG_RTE_TOOLCHAIN_ICC),y)
CFLAGS_enic_rxtx_vec_avx2.o += -march=core-avx2
else
CFLAGS_enic_rxtx_vec_avx2.o += -mavx2
endif
endif
endif
endif
ifeq ($(CC_AVX2_SUPPORT), 1)
SRCS-$(CONFIG_RTE_LIBRTE_ENIC_PMD) += enic_rxtx_vec_avx2.c
endif
include $(RTE_SDK)/mk/rte.lib.mk

View File

@ -106,6 +106,11 @@ struct enic {
struct vnic_dev_bar bar0;
struct vnic_dev *vdev;
/*
* mbuf_initializer contains 64 bits of mbuf rearm_data, used by
* the avx2 handler at this time.
*/
uint64_t mbuf_initializer;
unsigned int port_id;
bool overlay_offload;
struct rte_eth_dev *rte_dev;
@ -128,6 +133,7 @@ struct enic {
u8 filter_actions; /* HW supported actions */
bool vxlan;
bool disable_overlay; /* devargs disable_overlay=1 */
uint8_t enable_avx2_rx; /* devargs enable-avx2-rx=1 */
bool nic_cfg_chk; /* NIC_CFG_CHK available */
bool udp_rss_weak; /* Bodega style UDP RSS */
uint8_t ig_vlan_rewrite_mode; /* devargs ig-vlan-rewrite */
@ -329,6 +335,7 @@ uint16_t enic_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
int enic_set_mtu(struct enic *enic, uint16_t new_mtu);
int enic_link_update(struct enic *enic);
bool enic_use_vector_rx_handler(struct enic *enic);
void enic_fdir_info(struct enic *enic);
void enic_fdir_info_get(struct enic *enic, struct rte_eth_fdir_info *stats);
void copy_fltr_v1(struct filter_v2 *fltr, struct rte_eth_fdir_input *input,

View File

@ -37,6 +37,7 @@ static const struct rte_pci_id pci_id_enic_map[] = {
};
#define ENIC_DEVARG_DISABLE_OVERLAY "disable-overlay"
#define ENIC_DEVARG_ENABLE_AVX2_RX "enable-avx2-rx"
#define ENIC_DEVARG_IG_VLAN_REWRITE "ig-vlan-rewrite"
RTE_INIT(enicpmd_init_log)
@ -915,22 +916,27 @@ static const struct eth_dev_ops enicpmd_eth_dev_ops = {
.udp_tunnel_port_del = enicpmd_dev_udp_tunnel_port_del,
};
static int enic_parse_disable_overlay(__rte_unused const char *key,
static int enic_parse_zero_one(const char *key,
const char *value,
void *opaque)
{
struct enic *enic;
bool b;
enic = (struct enic *)opaque;
if (strcmp(value, "0") == 0) {
enic->disable_overlay = false;
b = false;
} else if (strcmp(value, "1") == 0) {
enic->disable_overlay = true;
b = true;
} else {
dev_err(enic, "Invalid value for " ENIC_DEVARG_DISABLE_OVERLAY
": expected=0|1 given=%s\n", value);
dev_err(enic, "Invalid value for %s"
": expected=0|1 given=%s\n", key, value);
return -EINVAL;
}
if (strcmp(key, ENIC_DEVARG_DISABLE_OVERLAY) == 0)
enic->disable_overlay = b;
if (strcmp(key, ENIC_DEVARG_ENABLE_AVX2_RX) == 0)
enic->enable_avx2_rx = b;
return 0;
}
@ -971,6 +977,7 @@ static int enic_check_devargs(struct rte_eth_dev *dev)
{
static const char *const valid_keys[] = {
ENIC_DEVARG_DISABLE_OVERLAY,
ENIC_DEVARG_ENABLE_AVX2_RX,
ENIC_DEVARG_IG_VLAN_REWRITE,
NULL};
struct enic *enic = pmd_priv(dev);
@ -979,6 +986,7 @@ static int enic_check_devargs(struct rte_eth_dev *dev)
ENICPMD_FUNC_TRACE();
enic->disable_overlay = false;
enic->enable_avx2_rx = false;
enic->ig_vlan_rewrite_mode = IG_VLAN_REWRITE_MODE_PASS_THRU;
if (!dev->device->devargs)
return 0;
@ -986,7 +994,9 @@ static int enic_check_devargs(struct rte_eth_dev *dev)
if (!kvlist)
return -EINVAL;
if (rte_kvargs_process(kvlist, ENIC_DEVARG_DISABLE_OVERLAY,
enic_parse_disable_overlay, enic) < 0 ||
enic_parse_zero_one, enic) < 0 ||
rte_kvargs_process(kvlist, ENIC_DEVARG_ENABLE_AVX2_RX,
enic_parse_zero_one, enic) < 0 ||
rte_kvargs_process(kvlist, ENIC_DEVARG_IG_VLAN_REWRITE,
enic_parse_ig_vlan_rewrite, enic) < 0) {
rte_kvargs_free(kvlist);
@ -1055,4 +1065,5 @@ RTE_PMD_REGISTER_PCI_TABLE(net_enic, pci_id_enic_map);
RTE_PMD_REGISTER_KMOD_DEP(net_enic, "* igb_uio | uio_pci_generic | vfio-pci");
RTE_PMD_REGISTER_PARAM_STRING(net_enic,
ENIC_DEVARG_DISABLE_OVERLAY "=0|1 "
ENIC_DEVARG_ENABLE_AVX2_RX "=0|1 "
ENIC_DEVARG_IG_VLAN_REWRITE "=trunk|untag|priority|pass");

View File

@ -514,12 +514,29 @@ static void enic_prep_wq_for_simple_tx(struct enic *enic, uint16_t queue_idx)
}
}
/*
* The 'strong' version is in enic_rxtx_vec_avx2.c. This weak version is used
* used when that file is not compiled.
*/
bool __attribute__((weak))
enic_use_vector_rx_handler(__rte_unused struct enic *enic)
{
return false;
}
static void pick_rx_handler(struct enic *enic)
{
struct rte_eth_dev *eth_dev;
/* Use the non-scatter, simplified RX handler if possible. */
/*
* Preference order:
* 1. The vectorized handler if possible and requested.
* 2. The non-scatter, simplified handler if scatter Rx is not used.
* 3. The default handler as a fallback.
*/
eth_dev = enic->rte_dev;
if (enic_use_vector_rx_handler(enic))
return;
if (enic->rq_count > 0 && enic->rq[0].data_queue_enable == 0) {
PMD_INIT_LOG(DEBUG, " use the non-scatter Rx handler");
eth_dev->rx_pkt_burst = &enic_noscatter_recv_pkts;
@ -535,6 +552,24 @@ int enic_enable(struct enic *enic)
int err;
struct rte_eth_dev *eth_dev = enic->rte_dev;
uint64_t simple_tx_offloads;
uintptr_t p;
if (enic->enable_avx2_rx) {
struct rte_mbuf mb_def = { .buf_addr = 0 };
/*
* mbuf_initializer contains const-after-init fields of
* receive mbufs (i.e. 64 bits of fields from rearm_data).
* It is currently used by the vectorized handler.
*/
mb_def.nb_segs = 1;
mb_def.data_off = RTE_PKTMBUF_HEADROOM;
mb_def.port = enic->port_id;
rte_mbuf_refcnt_set(&mb_def, 1);
rte_compiler_barrier();
p = (uintptr_t)&mb_def.rearm_data;
enic->mbuf_initializer = *(uint64_t *)p;
}
eth_dev->data->dev_link.link_speed = vnic_dev_port_speed(enic->vdev);
eth_dev->data->dev_link.link_duplex = ETH_LINK_FULL_DUPLEX;

View File

@ -0,0 +1,831 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2008-2018 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*/
#include <rte_mbuf.h>
#include <rte_ethdev_driver.h>
#include "enic_compat.h"
#include "rq_enet_desc.h"
#include "enic.h"
#include "enic_rxtx_common.h"
#include <x86intrin.h>
static struct rte_mbuf *
rx_one(struct cq_enet_rq_desc *cqd, struct rte_mbuf *mb, struct enic *enic)
{
bool tnl;
*(uint64_t *)&mb->rearm_data = enic->mbuf_initializer;
mb->data_len = cqd->bytes_written_flags &
CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK;
mb->pkt_len = mb->data_len;
tnl = enic->overlay_offload && (cqd->completed_index_flags &
CQ_ENET_RQ_DESC_FLAGS_FCOE) != 0;
mb->packet_type =
enic_cq_rx_flags_to_pkt_type((struct cq_desc *)cqd, tnl);
enic_cq_rx_to_pkt_flags((struct cq_desc *)cqd, mb);
/* Wipe the outer types set by enic_cq_rx_flags_to_pkt_type() */
if (tnl) {
mb->packet_type &= ~(RTE_PTYPE_L3_MASK |
RTE_PTYPE_L4_MASK);
}
return mb;
}
static uint16_t
enic_noscatter_vec_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct rte_mbuf **rx, **rxmb;
uint16_t cq_idx, nb_rx, max_rx;
struct cq_enet_rq_desc *cqd;
struct rq_enet_desc *rqd;
struct vnic_cq *cq;
struct vnic_rq *rq;
struct enic *enic;
uint8_t color;
rq = rx_queue;
enic = vnic_dev_priv(rq->vdev);
cq = &enic->cq[enic_cq_rq(enic, rq->index)];
cq_idx = cq->to_clean;
/*
* Fill up the reserve of free mbufs. Below, we restock the receive
* ring with these mbufs to avoid allocation failures.
*/
if (rq->num_free_mbufs == 0) {
if (rte_mempool_get_bulk(rq->mp, (void **)rq->free_mbufs,
ENIC_RX_BURST_MAX))
return 0;
rq->num_free_mbufs = ENIC_RX_BURST_MAX;
}
/* Receive until the end of the ring, at most. */
max_rx = RTE_MIN(nb_pkts, rq->num_free_mbufs);
max_rx = RTE_MIN(max_rx, cq->ring.desc_count - cq_idx);
rxmb = rq->mbuf_ring + cq_idx;
color = cq->last_color;
cqd = (struct cq_enet_rq_desc *)(cq->ring.descs) + cq_idx;
rx = rx_pkts;
if (max_rx == 0 ||
(cqd->type_color & CQ_DESC_COLOR_MASK_NOSHIFT) == color)
return 0;
/* Step 1: Process one packet to do aligned 256-bit load below */
if (cq_idx & 0x1) {
if (unlikely(cqd->bytes_written_flags &
CQ_ENET_RQ_DESC_FLAGS_TRUNCATED)) {
rte_pktmbuf_free(*rxmb++);
rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
} else {
*rx++ = rx_one(cqd, *rxmb++, enic);
}
cqd++;
max_rx--;
}
const __m256i mask =
_mm256_set_epi8(/* Second descriptor */
0xff, /* type_color */
(CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT |
CQ_ENET_RQ_DESC_FLAGS_IPV4 |
CQ_ENET_RQ_DESC_FLAGS_IPV6 |
CQ_ENET_RQ_DESC_FLAGS_TCP |
CQ_ENET_RQ_DESC_FLAGS_UDP), /* flags */
0, 0, /* checksum_fcoe */
0xff, 0xff, /* vlan */
0x3f, 0xff, /* bytes_written_flags */
0xff, 0xff, 0xff, 0xff, /* rss_hash */
0xff, 0xff, /* q_number_rss_type_flags */
0, 0, /* completed_index_flags */
/* First descriptor */
0xff, /* type_color */
(CQ_ENET_RQ_DESC_FLAGS_IPV4_FRAGMENT |
CQ_ENET_RQ_DESC_FLAGS_IPV4 |
CQ_ENET_RQ_DESC_FLAGS_IPV6 |
CQ_ENET_RQ_DESC_FLAGS_TCP |
CQ_ENET_RQ_DESC_FLAGS_UDP), /* flags */
0, 0, /* checksum_fcoe */
0xff, 0xff, /* vlan */
0x3f, 0xff, /* bytes_written_flags */
0xff, 0xff, 0xff, 0xff, /* rss_hash */
0xff, 0xff, /* q_number_rss_type_flags */
0, 0 /* completed_index_flags */
);
const __m256i shuffle_mask =
_mm256_set_epi8(/* Second descriptor */
7, 6, 5, 4, /* rss = rss_hash */
11, 10, /* vlan_tci = vlan */
9, 8, /* data_len = bytes_written */
0x80, 0x80, 9, 8, /* pkt_len = bytes_written */
0x80, 0x80, 0x80, 0x80, /* packet_type = 0 */
/* First descriptor */
7, 6, 5, 4, /* rss = rss_hash */
11, 10, /* vlan_tci = vlan */
9, 8, /* data_len = bytes_written */
0x80, 0x80, 9, 8, /* pkt_len = bytes_written */
0x80, 0x80, 0x80, 0x80 /* packet_type = 0 */
);
/* Used to collect 8 flags from 8 desc into one register */
const __m256i flags_shuffle_mask =
_mm256_set_epi8(/* Second descriptor */
1, 3, 9, 14,
1, 3, 9, 14,
1, 3, 9, 14,
1, 3, 9, 14,
/* First descriptor */
1, 3, 9, 14,
1, 3, 9, 14,
1, 3, 9, 14,
/*
* Byte 3: upper byte of completed_index_flags
* bit 5 = fcoe (tunnel)
* Byte 2: upper byte of q_number_rss_type_flags
* bits 2,3,4,5 = rss type
* bit 6 = csum_not_calc
* Byte 1: upper byte of bytes_written_flags
* bit 6 = truncated
* bit 7 = vlan stripped
* Byte 0: flags
*/
1, 3, 9, 14
);
/* Used to collect 8 VLAN IDs from 8 desc into one register */
const __m256i vlan_shuffle_mask =
_mm256_set_epi8(/* Second descriptor */
0x80, 0x80, 11, 10,
0x80, 0x80, 11, 10,
0x80, 0x80, 11, 10,
0x80, 0x80, 11, 10,
/* First descriptor */
0x80, 0x80, 11, 10,
0x80, 0x80, 11, 10,
0x80, 0x80, 11, 10,
0x80, 0x80, 11, 10);
/* PKT_RX_RSS_HASH is 1<<1 so fits in 8-bit integer */
const __m256i rss_shuffle =
_mm256_set_epi8(/* second 128 bits */
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
0, /* rss_types = 0 */
/* first 128 bits */
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
0 /* rss_types = 0 */);
/*
* VLAN offload flags.
* shuffle index:
* vlan_stripped => bit 0
* vlan_id == 0 => bit 1
*/
const __m256i vlan_shuffle =
_mm256_set_epi32(0, 0, 0, 0,
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, PKT_RX_VLAN);
/* Use the same shuffle index as vlan_shuffle */
const __m256i vlan_ptype_shuffle =
_mm256_set_epi32(0, 0, 0, 0,
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L2_ETHER_VLAN);
/*
* CKSUM flags. Shift right so they fit int 8-bit integers.
* shuffle index:
* ipv4_csum_ok => bit 3
* ip4 => bit 2
* tcp_or_udp => bit 1
* tcp_udp_csum_ok => bit 0
*/
const __m256i csum_shuffle =
_mm256_set_epi8(/* second 128 bits */
/* 1111 ip4+ip4_ok+l4+l4_ok */
((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1),
/* 1110 ip4_ok+ip4+l4+!l4_ok */
((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1),
(PKT_RX_IP_CKSUM_GOOD >> 1), /* 1101 ip4+ip4_ok */
(PKT_RX_IP_CKSUM_GOOD >> 1), /* 1100 ip4_ok+ip4 */
(PKT_RX_L4_CKSUM_GOOD >> 1), /* 1011 l4+l4_ok */
(PKT_RX_L4_CKSUM_BAD >> 1), /* 1010 l4+!l4_ok */
0, /* 1001 */
0, /* 1000 */
/* 0111 !ip4_ok+ip4+l4+l4_ok */
((PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD) >> 1),
/* 0110 !ip4_ok+ip4+l4+!l4_ok */
((PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1),
(PKT_RX_IP_CKSUM_BAD >> 1), /* 0101 !ip4_ok+ip4 */
(PKT_RX_IP_CKSUM_BAD >> 1), /* 0100 !ip4_ok+ip4 */
(PKT_RX_L4_CKSUM_GOOD >> 1), /* 0011 l4+l4_ok */
(PKT_RX_L4_CKSUM_BAD >> 1), /* 0010 l4+!l4_ok */
0, /* 0001 */
0, /* 0000 */
/* first 128 bits */
((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1),
((PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1),
(PKT_RX_IP_CKSUM_GOOD >> 1),
(PKT_RX_IP_CKSUM_GOOD >> 1),
(PKT_RX_L4_CKSUM_GOOD >> 1),
(PKT_RX_L4_CKSUM_BAD >> 1),
0, 0,
((PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD) >> 1),
((PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1),
(PKT_RX_IP_CKSUM_BAD >> 1),
(PKT_RX_IP_CKSUM_BAD >> 1),
(PKT_RX_L4_CKSUM_GOOD >> 1),
(PKT_RX_L4_CKSUM_BAD >> 1),
0, 0);
/*
* Non-fragment PTYPEs.
* Shuffle 4-bit index:
* ip6 => bit 0
* ip4 => bit 1
* udp => bit 2
* tcp => bit 3
* bit
* 3 2 1 0
* -------
* 0 0 0 0 unknown
* 0 0 0 1 ip6 | nonfrag
* 0 0 1 0 ip4 | nonfrag
* 0 0 1 1 unknown
* 0 1 0 0 unknown
* 0 1 0 1 ip6 | udp
* 0 1 1 0 ip4 | udp
* 0 1 1 1 unknown
* 1 0 0 0 unknown
* 1 0 0 1 ip6 | tcp
* 1 0 1 0 ip4 | tcp
* 1 0 1 1 unknown
* 1 1 0 0 unknown
* 1 1 0 1 unknown
* 1 1 1 0 unknown
* 1 1 1 1 unknown
*
* PTYPEs do not fit in 8 bits, so shift right 4..
*/
const __m256i nonfrag_ptype_shuffle =
_mm256_set_epi8(/* second 128 bits */
RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG) >> 4,
RTE_PTYPE_UNKNOWN,
/* first 128 bits */
RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_TCP) >> 4,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN | RTE_PTYPE_L4_UDP) >> 4,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG) >> 4,
RTE_PTYPE_UNKNOWN);
/* Fragment PTYPEs. Use the same shuffle index as above. */
const __m256i frag_ptype_shuffle =
_mm256_set_epi8(/* second 128 bits */
RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
RTE_PTYPE_UNKNOWN,
/* first 128 bits */
RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
(RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
(RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG) >> 4,
RTE_PTYPE_UNKNOWN);
/*
* Tunnel PTYPEs. Use the same shuffle index as above.
* L4 types are not part of this table. They come from non-tunnel
* types above.
*/
const __m256i tnl_l3_ptype_shuffle =
_mm256_set_epi8(/* second 128 bits */
RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
RTE_PTYPE_UNKNOWN,
/* first 128 bits */
RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
RTE_PTYPE_UNKNOWN, RTE_PTYPE_UNKNOWN,
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN >> 16,
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN >> 16,
RTE_PTYPE_UNKNOWN);
const __m256i mbuf_init = _mm256_set_epi64x(0, enic->mbuf_initializer,
0, enic->mbuf_initializer);
/*
* --- cq desc fields --- offset
* completed_index_flags - 0 use: fcoe
* q_number_rss_type_flags - 2 use: rss types, csum_not_calc
* rss_hash - 4 ==> mbuf.hash.rss
* bytes_written_flags - 8 ==> mbuf.pkt_len,data_len
* use: truncated, vlan_stripped
* vlan - 10 ==> mbuf.vlan_tci
* checksum_fcoe - 12 (unused)
* flags - 14 use: all bits
* type_color - 15 (unused)
*
* --- mbuf fields --- offset
* rearm_data ---- 16
* data_off - 0 (mbuf_init) -+
* refcnt - 2 (mbuf_init) |
* nb_segs - 4 (mbuf_init) | 16B 128b
* port - 6 (mbuf_init) |
* ol_flag - 8 (from cqd) -+
* rx_descriptor_fields1 ---- 32
* packet_type - 0 (from cqd) -+
* pkt_len - 4 (from cqd) |
* data_len - 8 (from cqd) | 16B 128b
* vlan_tci - 10 (from cqd) |
* rss - 12 (from cqd) -+
*/
__m256i overlay_enabled =
_mm256_set1_epi32((uint32_t)enic->overlay_offload);
/* Step 2: Process 8 packets per loop using SIMD */
while (max_rx > 7 && (((cqd + 7)->type_color &
CQ_DESC_COLOR_MASK_NOSHIFT) != color)) {
/* Load 8 16B CQ descriptors */
__m256i cqd01 = _mm256_load_si256((void *)cqd);
__m256i cqd23 = _mm256_load_si256((void *)(cqd + 2));
__m256i cqd45 = _mm256_load_si256((void *)(cqd + 4));
__m256i cqd67 = _mm256_load_si256((void *)(cqd + 6));
/* Copy 8 mbuf pointers to rx_pkts */
_mm256_storeu_si256((void *)rx,
_mm256_loadu_si256((void *)rxmb));
_mm256_storeu_si256((void *)(rx + 4),
_mm256_loadu_si256((void *)(rxmb + 4)));
/*
* Collect 8 flags (each 32 bits) into one register.
* 4 shuffles, 3 blends, 1 permute for 8 desc: 1 inst/desc
*/
__m256i flags01 =
_mm256_shuffle_epi8(cqd01, flags_shuffle_mask);
/*
* Shuffle above produces 8 x 32-bit flags for 8 descriptors
* in this order: 0, 0, 0, 0, 1, 1, 1, 1
* The duplicates in each 128-bit lane simplifies blending
* below.
*/
__m256i flags23 =
_mm256_shuffle_epi8(cqd23, flags_shuffle_mask);
__m256i flags45 =
_mm256_shuffle_epi8(cqd45, flags_shuffle_mask);
__m256i flags67 =
_mm256_shuffle_epi8(cqd67, flags_shuffle_mask);
/* 1st blend produces flags for desc: 0, 2, 0, 0, 1, 3, 1, 1 */
__m256i flags0_3 = _mm256_blend_epi32(flags01, flags23, 0x22);
/* 2nd blend produces flags for desc: 4, 4, 4, 6, 5, 5, 5, 7 */
__m256i flags4_7 = _mm256_blend_epi32(flags45, flags67, 0x88);
/* 3rd blend produces flags for desc: 0, 2, 4, 6, 1, 3, 5, 7 */
__m256i flags0_7 = _mm256_blend_epi32(flags0_3, flags4_7, 0xcc);
/*
* Swap to reorder flags in this order: 1, 3, 5, 7, 0, 2, 4, 6
* This order simplifies blend operations way below that
* produce 'rearm' data for each mbuf.
*/
flags0_7 = _mm256_permute4x64_epi64(flags0_7,
(1 << 6) + (0 << 4) + (3 << 2) + 2);
/*
* Check truncated bits and bail out early on.
* 6 avx inst, 1 or, 1 if-then-else for 8 desc: 1 inst/desc
*/
__m256i trunc =
_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 17), 31);
trunc = _mm256_add_epi64(trunc, _mm256_permute4x64_epi64(trunc,
(1 << 6) + (0 << 4) + (3 << 2) + 2));
/* 0:63 contains 1+3+0+2 and 64:127 contains 5+7+4+6 */
if (_mm256_extract_epi64(trunc, 0) ||
_mm256_extract_epi64(trunc, 1))
break;
/*
* Compute PKT_RX_RSS_HASH.
* Use 2 shifts and 1 shuffle for 8 desc: 0.375 inst/desc
* RSS types in byte 0, 4, 8, 12, 16, 20, 24, 28
* Everything else is zero.
*/
__m256i rss_types =
_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 10), 28);
/*
* RSS flags (PKT_RX_RSS_HASH) are in
* byte 0, 4, 8, 12, 16, 20, 24, 28
* Everything else is zero.
*/
__m256i rss_flags = _mm256_shuffle_epi8(rss_shuffle, rss_types);
/*
* Compute CKSUM flags. First build the index and then
* use it to shuffle csum_shuffle.
* 20 instructions including const loads: 2.5 inst/desc
*/
/*
* csum_not_calc (bit 22)
* csum_not_calc (0) => 0xffffffff
* csum_not_calc (1) => 0x0
*/
const __m256i zero4 = _mm256_setzero_si256();
const __m256i mask22 = _mm256_set1_epi32(0x400000);
__m256i csum_not_calc = _mm256_cmpeq_epi32(zero4,
_mm256_and_si256(flags0_7, mask22));
/*
* (tcp|udp) && !fragment => bit 1
* tcp = bit 2, udp = bit 1, frag = bit 6
*/
const __m256i mask1 = _mm256_set1_epi32(0x2);
__m256i tcp_udp =
_mm256_andnot_si256(_mm256_srli_epi32(flags0_7, 5),
_mm256_or_si256(flags0_7,
_mm256_srli_epi32(flags0_7, 1)));
tcp_udp = _mm256_and_si256(tcp_udp, mask1);
/* ipv4 (bit 5) => bit 2 */
const __m256i mask2 = _mm256_set1_epi32(0x4);
__m256i ipv4 = _mm256_and_si256(mask2,
_mm256_srli_epi32(flags0_7, 3));
/*
* ipv4_csum_ok (bit 3) => bit 3
* tcp_udp_csum_ok (bit 0) => bit 0
* 0x9
*/
const __m256i mask0_3 = _mm256_set1_epi32(0x9);
__m256i csum_idx = _mm256_and_si256(flags0_7, mask0_3);
csum_idx = _mm256_and_si256(csum_not_calc,
_mm256_or_si256(_mm256_or_si256(csum_idx, ipv4),
tcp_udp));
__m256i csum_flags =
_mm256_shuffle_epi8(csum_shuffle, csum_idx);
/* Shift left to restore CKSUM flags. See csum_shuffle. */
csum_flags = _mm256_slli_epi32(csum_flags, 1);
/* Combine csum flags and offload flags: 0.125 inst/desc */
rss_flags = _mm256_or_si256(rss_flags, csum_flags);
/*
* Collect 8 VLAN IDs and compute vlan_id != 0 on each.
* 4 shuffles, 3 blends, 1 permute, 1 cmp, 1 sub for 8 desc:
* 1.25 inst/desc
*/
__m256i vlan01 = _mm256_shuffle_epi8(cqd01, vlan_shuffle_mask);
__m256i vlan23 = _mm256_shuffle_epi8(cqd23, vlan_shuffle_mask);
__m256i vlan45 = _mm256_shuffle_epi8(cqd45, vlan_shuffle_mask);
__m256i vlan67 = _mm256_shuffle_epi8(cqd67, vlan_shuffle_mask);
__m256i vlan0_3 = _mm256_blend_epi32(vlan01, vlan23, 0x22);
__m256i vlan4_7 = _mm256_blend_epi32(vlan45, vlan67, 0x88);
/* desc: 0, 2, 4, 6, 1, 3, 5, 7 */
__m256i vlan0_7 = _mm256_blend_epi32(vlan0_3, vlan4_7, 0xcc);
/* desc: 1, 3, 5, 7, 0, 2, 4, 6 */
vlan0_7 = _mm256_permute4x64_epi64(vlan0_7,
(1 << 6) + (0 << 4) + (3 << 2) + 2);
/*
* Compare 0 == vlan_id produces 0xffffffff (-1) if
* vlan 0 and 0 if vlan non-0. Then subtracting the
* result from 0 produces 0 - (-1) = 1 for vlan 0, and
* 0 - 0 = 0 for vlan non-0.
*/
vlan0_7 = _mm256_cmpeq_epi32(zero4, vlan0_7);
/* vlan_id != 0 => 0, vlan_id == 0 => 1 */
vlan0_7 = _mm256_sub_epi32(zero4, vlan0_7);
/*
* Compute PKT_RX_VLAN and PKT_RX_VLAN_STRIPPED.
* Use 3 shifts, 1 or, 1 shuffle for 8 desc: 0.625 inst/desc
* VLAN offload flags in byte 0, 4, 8, 12, 16, 20, 24, 28
* Everything else is zero.
*/
__m256i vlan_idx =
_mm256_or_si256(/* vlan_stripped => bit 0 */
_mm256_srli_epi32(_mm256_slli_epi32(flags0_7,
16), 31),
/* (vlan_id == 0) => bit 1 */
_mm256_slli_epi32(vlan0_7, 1));
/*
* The index captures 4 cases.
* stripped, id = 0 ==> 11b = 3
* stripped, id != 0 ==> 01b = 1
* not strip, id == 0 ==> 10b = 2
* not strip, id != 0 ==> 00b = 0
*/
__m256i vlan_flags = _mm256_permutevar8x32_epi32(vlan_shuffle,
vlan_idx);
/* Combine vlan and offload flags: 0.125 inst/desc */
rss_flags = _mm256_or_si256(rss_flags, vlan_flags);
/*
* Compute non-tunnel PTYPEs.
* 17 inst / 8 desc = 2.125 inst/desc
*/
/* ETHER and ETHER_VLAN */
__m256i vlan_ptype =
_mm256_permutevar8x32_epi32(vlan_ptype_shuffle,
vlan_idx);
/* Build the ptype index from flags */
tcp_udp = _mm256_slli_epi32(flags0_7, 29);
tcp_udp = _mm256_slli_epi32(_mm256_srli_epi32(tcp_udp, 30), 2);
__m256i ip4_ip6 =
_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 26), 30);
__m256i ptype_idx = _mm256_or_si256(tcp_udp, ip4_ip6);
__m256i frag_bit =
_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 25), 31);
__m256i nonfrag_ptype =
_mm256_shuffle_epi8(nonfrag_ptype_shuffle, ptype_idx);
__m256i frag_ptype =
_mm256_shuffle_epi8(frag_ptype_shuffle, ptype_idx);
/*
* Zero out the unwanted types and combine the remaining bits.
* The effect is same as selecting non-frag or frag types
* depending on the frag bit.
*/
nonfrag_ptype = _mm256_and_si256(nonfrag_ptype,
_mm256_cmpeq_epi32(zero4, frag_bit));
frag_ptype = _mm256_and_si256(frag_ptype,
_mm256_cmpgt_epi32(frag_bit, zero4));
__m256i ptype = _mm256_or_si256(nonfrag_ptype, frag_ptype);
ptype = _mm256_slli_epi32(ptype, 4);
/*
* Compute tunnel PTYPEs.
* 15 inst / 8 desc = 1.875 inst/desc
*/
__m256i tnl_l3_ptype =
_mm256_shuffle_epi8(tnl_l3_ptype_shuffle, ptype_idx);
tnl_l3_ptype = _mm256_slli_epi32(tnl_l3_ptype, 16);
/*
* Shift non-tunnel L4 types to make them tunnel types.
* RTE_PTYPE_L4_TCP << 16 == RTE_PTYPE_INNER_L4_TCP
*/
__m256i tnl_l4_ptype =
_mm256_slli_epi32(_mm256_and_si256(ptype,
_mm256_set1_epi32(RTE_PTYPE_L4_MASK)), 16);
__m256i tnl_ptype =
_mm256_or_si256(tnl_l3_ptype, tnl_l4_ptype);
tnl_ptype = _mm256_or_si256(tnl_ptype,
_mm256_set1_epi32(RTE_PTYPE_TUNNEL_GRENAT |
RTE_PTYPE_INNER_L2_ETHER));
/*
* Select non-tunnel or tunnel types by zeroing out the
* unwanted ones.
*/
__m256i tnl_flags = _mm256_and_si256(overlay_enabled,
_mm256_srli_epi32(_mm256_slli_epi32(flags0_7, 2), 31));
tnl_ptype = _mm256_and_si256(tnl_ptype,
_mm256_sub_epi32(zero4, tnl_flags));
ptype = _mm256_and_si256(ptype,
_mm256_cmpeq_epi32(zero4, tnl_flags));
/*
* Combine types and swap to have ptypes in the same order
* as desc.
* desc: 0 2 4 6 1 3 5 7
* 3 inst / 8 desc = 0.375 inst/desc
*/
ptype = _mm256_or_si256(ptype, tnl_ptype);
ptype = _mm256_or_si256(ptype, vlan_ptype);
ptype = _mm256_permute4x64_epi64(ptype,
(1 << 6) + (0 << 4) + (3 << 2) + 2);
/*
* Mask packet length.
* Use 4 ands: 0.5 instructions/desc
*/
cqd01 = _mm256_and_si256(cqd01, mask);
cqd23 = _mm256_and_si256(cqd23, mask);
cqd45 = _mm256_and_si256(cqd45, mask);
cqd67 = _mm256_and_si256(cqd67, mask);
/*
* Shuffle. Two 16B sets of the mbuf fields.
* packet_type, pkt_len, data_len, vlan_tci, rss
*/
__m256i rearm01 = _mm256_shuffle_epi8(cqd01, shuffle_mask);
__m256i rearm23 = _mm256_shuffle_epi8(cqd23, shuffle_mask);
__m256i rearm45 = _mm256_shuffle_epi8(cqd45, shuffle_mask);
__m256i rearm67 = _mm256_shuffle_epi8(cqd67, shuffle_mask);
/*
* Blend in ptypes
* 4 blends and 3 shuffles for 8 desc: 0.875 inst/desc
*/
rearm01 = _mm256_blend_epi32(rearm01, ptype, 0x11);
rearm23 = _mm256_blend_epi32(rearm23,
_mm256_shuffle_epi32(ptype, 1), 0x11);
rearm45 = _mm256_blend_epi32(rearm45,
_mm256_shuffle_epi32(ptype, 2), 0x11);
rearm67 = _mm256_blend_epi32(rearm67,
_mm256_shuffle_epi32(ptype, 3), 0x11);
/*
* Move rss_flags into ol_flags in mbuf_init.
* Use 1 shift and 1 blend for each desc: 2 inst/desc
*/
__m256i mbuf_init4_5 = _mm256_blend_epi32(mbuf_init,
rss_flags, 0x44);
__m256i mbuf_init2_3 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(rss_flags, 4), 0x44);
__m256i mbuf_init0_1 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(rss_flags, 8), 0x44);
__m256i mbuf_init6_7 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(rss_flags, 4), 0x44);
/*
* Build rearm, one per desc.
* 8 blends and 4 permutes: 1.5 inst/desc
*/
__m256i rearm0 = _mm256_blend_epi32(rearm01,
mbuf_init0_1, 0xf0);
__m256i rearm1 = _mm256_blend_epi32(mbuf_init0_1,
rearm01, 0xf0);
__m256i rearm2 = _mm256_blend_epi32(rearm23,
mbuf_init2_3, 0xf0);
__m256i rearm3 = _mm256_blend_epi32(mbuf_init2_3,
rearm23, 0xf0);
/* Swap upper and lower 64 bits */
rearm0 = _mm256_permute4x64_epi64(rearm0,
(1 << 6) + (0 << 4) + (3 << 2) + 2);
rearm2 = _mm256_permute4x64_epi64(rearm2,
(1 << 6) + (0 << 4) + (3 << 2) + 2);
/* Second set of 4 descriptors */
__m256i rearm4 = _mm256_blend_epi32(rearm45,
mbuf_init4_5, 0xf0);
__m256i rearm5 = _mm256_blend_epi32(mbuf_init4_5,
rearm45, 0xf0);
__m256i rearm6 = _mm256_blend_epi32(rearm67,
mbuf_init6_7, 0xf0);
__m256i rearm7 = _mm256_blend_epi32(mbuf_init6_7,
rearm67, 0xf0);
rearm4 = _mm256_permute4x64_epi64(rearm4,
(1 << 6) + (0 << 4) + (3 << 2) + 2);
rearm6 = _mm256_permute4x64_epi64(rearm6,
(1 << 6) + (0 << 4) + (3 << 2) + 2);
/*
* Write out 32B of mbuf fields.
* data_off - off 0 (mbuf_init)
* refcnt - 2 (mbuf_init)
* nb_segs - 4 (mbuf_init)
* port - 6 (mbuf_init)
* ol_flag - 8 (from cqd)
* packet_type - 16 (from cqd)
* pkt_len - 20 (from cqd)
* data_len - 24 (from cqd)
* vlan_tci - 26 (from cqd)
* rss - 28 (from cqd)
*/
_mm256_storeu_si256((__m256i *)&rxmb[0]->rearm_data, rearm0);
_mm256_storeu_si256((__m256i *)&rxmb[1]->rearm_data, rearm1);
_mm256_storeu_si256((__m256i *)&rxmb[2]->rearm_data, rearm2);
_mm256_storeu_si256((__m256i *)&rxmb[3]->rearm_data, rearm3);
_mm256_storeu_si256((__m256i *)&rxmb[4]->rearm_data, rearm4);
_mm256_storeu_si256((__m256i *)&rxmb[5]->rearm_data, rearm5);
_mm256_storeu_si256((__m256i *)&rxmb[6]->rearm_data, rearm6);
_mm256_storeu_si256((__m256i *)&rxmb[7]->rearm_data, rearm7);
max_rx -= 8;
cqd += 8;
rx += 8;
rxmb += 8;
}
/*
* Step 3: Slow path to handle a small (<8) number of packets and
* occasional truncated packets.
*/
while (max_rx && ((cqd->type_color &
CQ_DESC_COLOR_MASK_NOSHIFT) != color)) {
if (unlikely(cqd->bytes_written_flags &
CQ_ENET_RQ_DESC_FLAGS_TRUNCATED)) {
rte_pktmbuf_free(*rxmb++);
rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
} else {
*rx++ = rx_one(cqd, *rxmb++, enic);
}
cqd++;
max_rx--;
}
/* Number of descriptors visited */
nb_rx = cqd - (struct cq_enet_rq_desc *)(cq->ring.descs) - cq_idx;
if (nb_rx == 0)
return 0;
rqd = ((struct rq_enet_desc *)rq->ring.descs) + cq_idx;
rxmb = rq->mbuf_ring + cq_idx;
cq_idx += nb_rx;
rq->rx_nb_hold += nb_rx;
if (unlikely(cq_idx == cq->ring.desc_count)) {
cq_idx = 0;
cq->last_color ^= CQ_DESC_COLOR_MASK_NOSHIFT;
}
cq->to_clean = cq_idx;
/* Step 4: Restock RQ with new mbufs */
memcpy(rxmb, rq->free_mbufs + ENIC_RX_BURST_MAX - rq->num_free_mbufs,
sizeof(struct rte_mbuf *) * nb_rx);
rq->num_free_mbufs -= nb_rx;
while (nb_rx) {
rqd->address = (*rxmb)->buf_iova + RTE_PKTMBUF_HEADROOM;
nb_rx--;
rqd++;
rxmb++;
}
if (rq->rx_nb_hold > rq->rx_free_thresh) {
rq->posted_index = enic_ring_add(rq->ring.desc_count,
rq->posted_index,
rq->rx_nb_hold);
rq->rx_nb_hold = 0;
rte_wmb();
iowrite32_relaxed(rq->posted_index,
&rq->ctrl->posted_index);
}
return rx - rx_pkts;
}
bool
enic_use_vector_rx_handler(struct enic *enic)
{
struct rte_eth_dev *eth_dev;
struct rte_fdir_conf *fconf;
eth_dev = enic->rte_dev;
/* User needs to request for the avx2 handler */
if (!enic->enable_avx2_rx)
return false;
/* Do not support scatter Rx */
if (!(enic->rq_count > 0 && enic->rq[0].data_queue_enable == 0))
return false;
/* Do not support fdir/flow */
fconf = &eth_dev->data->dev_conf.fdir_conf;
if (fconf->mode != RTE_FDIR_MODE_NONE)
return false;
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2)) {
PMD_INIT_LOG(DEBUG, " use the non-scatter avx2 Rx handler");
eth_dev->rx_pkt_burst = &enic_noscatter_vec_recv_pkts;
return true;
}
return false;
}

View File

@ -17,3 +17,19 @@ sources = files(
)
deps += ['hash']
includes += include_directories('base')
# The current implementation assumes 64-bit pointers
if dpdk_conf.has('RTE_MACHINE_CPUFLAG_AVX2') and cc.sizeof('void *') == 8
sources += files('enic_rxtx_vec_avx2.c')
# Build the avx2 handler if the compiler supports it, even though 'machine'
# does not. This is to support users who build for the min supported machine
# and need to run the binary on newer CPUs too.
# This part is from i40e meson.build
elif cc.has_argument('-mavx2') and cc.sizeof('void *') == 8
enic_avx2_lib = static_library('enic_avx2_lib',
'enic_rxtx_vec_avx2.c',
dependencies: [static_rte_ethdev, static_rte_bus_pci],
include_directories: includes,
c_args: [cflags, '-mavx2'])
objs += enic_avx2_lib.extract_objects('enic_rxtx_vec_avx2.c')
endif