examples/ipsec-secgw: support IPv6

Support IPSec IPv6 allowing IPv4/IPv6 traffic in IPv4 or IPv6 tunnel.

We need separate Routing (LPM) and SP (ACL) tables for IPv4 and IPv6,
but a common SA table.

Signed-off-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
This commit is contained in:
Sergio Gonzalez Monroy 2016-06-09 09:42:48 +01:00 committed by Thomas Monjalon
parent 54526a5375
commit 906257e965
10 changed files with 1305 additions and 434 deletions

View File

@ -47,7 +47,7 @@ CFLAGS_sa.o += -diag-disable=vec
endif
ifeq ($(DEBUG),1)
CFLAGS += -DIPSEC_DEBUG -fstack-protector-all
CFLAGS += -DIPSEC_DEBUG -fstack-protector-all -O0
endif
#
@ -55,7 +55,8 @@ endif
#
SRCS-y += ipsec.c
SRCS-y += esp.c
SRCS-y += sp.c
SRCS-y += sp4.c
SRCS-y += sp6.c
SRCS-y += sa.c
SRCS-y += rt.c
SRCS-y += ipsec-secgw.c

View File

@ -37,6 +37,7 @@
#include <sys/stat.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <fcntl.h>
#include <unistd.h>
@ -50,13 +51,11 @@
#include "esp.h"
#include "ipip.h"
#define IP_ESP_HDR_SZ (sizeof(struct ip) + sizeof(struct esp_hdr))
static inline void
random_iv_u64(uint64_t *buf, uint16_t n)
{
unsigned left = n & 0x7;
unsigned i;
uint32_t left = n & 0x7;
uint32_t i;
RTE_ASSERT((n & 0x3) == 0);
@ -71,15 +70,25 @@ int
esp_inbound(struct rte_mbuf *m, struct ipsec_sa *sa,
struct rte_crypto_op *cop)
{
int32_t payload_len;
int32_t payload_len, ip_hdr_len;
struct rte_crypto_sym_op *sym_cop;
RTE_ASSERT(m != NULL);
RTE_ASSERT(sa != NULL);
RTE_ASSERT(cop != NULL);
payload_len = rte_pktmbuf_pkt_len(m) - IP_ESP_HDR_SZ - sa->iv_len -
sa->digest_len;
ip_hdr_len = 0;
switch (sa->flags) {
case IP4_TUNNEL:
ip_hdr_len = sizeof(struct ip);
break;
case IP6_TUNNEL:
ip_hdr_len = sizeof(struct ip6_hdr);
break;
}
payload_len = rte_pktmbuf_pkt_len(m) - ip_hdr_len -
sizeof(struct esp_hdr) - sa->iv_len - sa->digest_len;
if ((payload_len & (sa->block_size - 1)) || (payload_len <= 0)) {
RTE_LOG(DEBUG, IPSEC_ESP, "payload %d not multiple of %u\n",
@ -90,21 +99,19 @@ esp_inbound(struct rte_mbuf *m, struct ipsec_sa *sa,
sym_cop = (struct rte_crypto_sym_op *)(cop + 1);
sym_cop->m_src = m;
sym_cop->cipher.data.offset = IP_ESP_HDR_SZ + sa->iv_len;
sym_cop->cipher.data.offset = ip_hdr_len + sizeof(struct esp_hdr) +
sa->iv_len;
sym_cop->cipher.data.length = payload_len;
sym_cop->cipher.iv.data = rte_pktmbuf_mtod_offset(m, void*,
IP_ESP_HDR_SZ);
ip_hdr_len + sizeof(struct esp_hdr));
sym_cop->cipher.iv.phys_addr = rte_pktmbuf_mtophys_offset(m,
IP_ESP_HDR_SZ);
ip_hdr_len + sizeof(struct esp_hdr));
sym_cop->cipher.iv.length = sa->iv_len;
sym_cop->auth.data.offset = sizeof(struct ip);
if (sa->auth_algo == RTE_CRYPTO_AUTH_AES_GCM)
sym_cop->auth.data.length = sizeof(struct esp_hdr);
else
sym_cop->auth.data.length = sizeof(struct esp_hdr) +
sa->iv_len + payload_len;
sym_cop->auth.data.offset = ip_hdr_len;
sym_cop->auth.data.length = sizeof(struct esp_hdr) +
sa->iv_len + payload_len;
sym_cop->auth.digest.data = rte_pktmbuf_mtod_offset(m, void*,
rte_pktmbuf_pkt_len(m) - sa->digest_len);
@ -150,17 +157,20 @@ esp_inbound_post(struct rte_mbuf *m, struct ipsec_sa *sa,
return -EINVAL;
}
return ip4ip_inbound(m, sizeof(struct esp_hdr) + sa->iv_len);
ipip_inbound(m, sizeof(struct esp_hdr) + sa->iv_len);
return 0;
}
int
esp_outbound(struct rte_mbuf *m, struct ipsec_sa *sa,
struct rte_crypto_op *cop)
{
uint16_t pad_payload_len, pad_len;
struct ip *ip;
uint16_t pad_payload_len, pad_len, ip_hdr_len;
struct ip *ip4;
struct ip6_hdr *ip6;
struct esp_hdr *esp;
int i;
int32_t i;
char *padding;
struct rte_crypto_sym_op *sym_cop;
@ -173,62 +183,87 @@ esp_outbound(struct rte_mbuf *m, struct ipsec_sa *sa,
sa->block_size);
pad_len = pad_payload_len - rte_pktmbuf_pkt_len(m);
rte_prefetch0(rte_pktmbuf_mtod_offset(m, void *,
rte_pktmbuf_pkt_len(m)));
ip_hdr_len = 0;
switch (sa->flags) {
case IP4_TUNNEL:
ip_hdr_len = sizeof(struct ip);
break;
case IP6_TUNNEL:
ip_hdr_len = sizeof(struct ip6_hdr);
break;
}
/* Check maximum packet size */
if (unlikely(IP_ESP_HDR_SZ + sa->iv_len + pad_payload_len +
sa->digest_len > IP_MAXPACKET)) {
RTE_LOG(DEBUG, IPSEC_ESP, "ipsec packet is too big\n");
if (unlikely(ip_hdr_len + sizeof(struct esp_hdr) + sa->iv_len +
pad_payload_len + sa->digest_len > IP_MAXPACKET)) {
RTE_LOG(ERR, IPSEC_ESP, "ipsec packet is too big\n");
return -EINVAL;
}
padding = rte_pktmbuf_append(m, pad_len + sa->digest_len);
if (unlikely(padding == NULL)) {
RTE_LOG(ERR, IPSEC_ESP, "not enough mbuf trailing space\n");
return -ENOSPC;
}
rte_prefetch0(padding);
RTE_ASSERT(padding != NULL);
switch (sa->flags) {
case IP4_TUNNEL:
ip4 = ip4ip_outbound(m, sizeof(struct esp_hdr) + sa->iv_len,
&sa->src, &sa->dst);
esp = (struct esp_hdr *)(ip4 + 1);
break;
case IP6_TUNNEL:
ip6 = ip6ip_outbound(m, sizeof(struct esp_hdr) + sa->iv_len,
&sa->src, &sa->dst);
esp = (struct esp_hdr *)(ip6 + 1);
break;
default:
RTE_LOG(ERR, IPSEC_ESP, "Unsupported SA flags: 0x%x\n",
sa->flags);
return -EINVAL;
}
ip = ip4ip_outbound(m, sizeof(struct esp_hdr) + sa->iv_len,
sa->src, sa->dst);
sa->seq++;
esp->spi = rte_cpu_to_be_32(sa->spi);
esp->seq = rte_cpu_to_be_32(sa->seq);
esp = (struct esp_hdr *)(ip + 1);
esp->spi = sa->spi;
esp->seq = htonl(sa->seq++);
RTE_LOG(DEBUG, IPSEC_ESP, "pktlen %u\n", rte_pktmbuf_pkt_len(m));
if (sa->cipher_algo == RTE_CRYPTO_CIPHER_AES_CBC)
random_iv_u64((uint64_t *)(esp + 1), sa->iv_len);
/* Fill pad_len using default sequential scheme */
for (i = 0; i < pad_len - 2; i++)
padding[i] = i + 1;
padding[pad_len - 2] = pad_len - 2;
padding[pad_len - 1] = IPPROTO_IPIP;
if (RTE_ETH_IS_IPV4_HDR(m->packet_type))
padding[pad_len - 1] = IPPROTO_IPIP;
else
padding[pad_len - 1] = IPPROTO_IPV6;
sym_cop = (struct rte_crypto_sym_op *)(cop + 1);
sym_cop->m_src = m;
sym_cop->cipher.data.offset = IP_ESP_HDR_SZ + sa->iv_len;
sym_cop->cipher.data.offset = ip_hdr_len + sizeof(struct esp_hdr) +
sa->iv_len;
sym_cop->cipher.data.length = pad_payload_len;
sym_cop->cipher.iv.data = rte_pktmbuf_mtod_offset(m, uint8_t *,
IP_ESP_HDR_SZ);
ip_hdr_len + sizeof(struct esp_hdr));
sym_cop->cipher.iv.phys_addr = rte_pktmbuf_mtophys_offset(m,
IP_ESP_HDR_SZ);
ip_hdr_len + sizeof(struct esp_hdr));
sym_cop->cipher.iv.length = sa->iv_len;
sym_cop->auth.data.offset = sizeof(struct ip);
sym_cop->auth.data.offset = ip_hdr_len;
sym_cop->auth.data.length = sizeof(struct esp_hdr) + sa->iv_len +
pad_payload_len;
sym_cop->auth.digest.data = rte_pktmbuf_mtod_offset(m, uint8_t *,
IP_ESP_HDR_SZ + sa->iv_len + pad_payload_len);
rte_pktmbuf_pkt_len(m) - sa->digest_len);
sym_cop->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m,
IP_ESP_HDR_SZ + sa->iv_len + pad_payload_len);
rte_pktmbuf_pkt_len(m) - sa->digest_len);
sym_cop->auth.digest.length = sa->digest_len;
if (sa->cipher_algo == RTE_CRYPTO_CIPHER_AES_CBC)
random_iv_u64((uint64_t *)sym_cop->cipher.iv.data,
sym_cop->cipher.iv.length);
return 0;
}

View File

@ -37,67 +37,144 @@
#include <stdint.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <rte_mbuf.h>
#define IPV6_VERSION (6)
static inline struct ip *
ip4ip_outbound(struct rte_mbuf *m, uint32_t offset, uint32_t src, uint32_t dst)
static inline void *
ipip_outbound(struct rte_mbuf *m, uint32_t offset, uint32_t is_ipv6,
struct ip_addr *src, struct ip_addr *dst)
{
struct ip *inip, *outip;
struct ip *inip4, *outip4;
struct ip6_hdr *inip6, *outip6;
uint8_t ds_ecn;
inip = rte_pktmbuf_mtod(m, struct ip*);
inip4 = rte_pktmbuf_mtod(m, struct ip *);
RTE_ASSERT(inip->ip_v == IPVERSION || inip->ip_v == IPV6_VERSION);
RTE_ASSERT(inip4->ip_v == IPVERSION || inip4->ip_v == IP6_VERSION);
if (inip4->ip_v == IPVERSION) {
/* XXX This should be done by the forwarding engine instead */
inip4->ip_ttl -= 1;
ds_ecn = inip4->ip_tos;
} else {
inip6 = (struct ip6_hdr *)inip4;
/* XXX This should be done by the forwarding engine instead */
inip6->ip6_hops -= 1;
ds_ecn = ntohl(inip6->ip6_flow) >> 20;
}
if (is_ipv6) {
offset += sizeof(struct ip6_hdr);
outip6 = (struct ip6_hdr *)rte_pktmbuf_prepend(m, offset);
RTE_ASSERT(outip6 != NULL);
/* Per RFC4301 5.1.2.1 */
outip6->ip6_flow = htonl(IP6_VERSION << 28 | ds_ecn << 20);
outip6->ip6_plen = htons(rte_pktmbuf_data_len(m));
outip6->ip6_nxt = IPPROTO_ESP;
outip6->ip6_hops = IPDEFTTL;
memcpy(&outip6->ip6_src.s6_addr, src, 16);
memcpy(&outip6->ip6_dst.s6_addr, dst, 16);
return outip6;
}
offset += sizeof(struct ip);
outip4 = (struct ip *)rte_pktmbuf_prepend(m, offset);
outip = (struct ip *)rte_pktmbuf_prepend(m, offset);
RTE_ASSERT(outip != NULL);
RTE_ASSERT(outip4 != NULL);
/* Per RFC4301 5.1.2.1 */
outip->ip_v = IPVERSION;
outip->ip_hl = 5;
outip->ip_tos = inip->ip_tos;
outip->ip_len = htons(rte_pktmbuf_data_len(m));
outip4->ip_v = IPVERSION;
outip4->ip_hl = 5;
outip4->ip_tos = ds_ecn;
outip4->ip_len = htons(rte_pktmbuf_data_len(m));
outip->ip_id = 0;
outip->ip_off = 0;
outip4->ip_id = 0;
outip4->ip_off = 0;
outip->ip_ttl = IPDEFTTL;
outip->ip_p = IPPROTO_ESP;
outip4->ip_ttl = IPDEFTTL;
outip4->ip_p = IPPROTO_ESP;
outip->ip_src.s_addr = src;
outip->ip_dst.s_addr = dst;
outip4->ip_src.s_addr = src->ip4;
outip4->ip_dst.s_addr = dst->ip4;
return outip;
return outip4;
}
static inline int
ip4ip_inbound(struct rte_mbuf *m, uint32_t offset)
static inline struct ip *
ip4ip_outbound(struct rte_mbuf *m, uint32_t offset,
struct ip_addr *src, struct ip_addr *dst)
{
struct ip *inip;
struct ip *outip;
return ipip_outbound(m, offset, 0, src, dst);
}
outip = rte_pktmbuf_mtod(m, struct ip*);
static inline struct ip6_hdr *
ip6ip_outbound(struct rte_mbuf *m, uint32_t offset,
struct ip_addr *src, struct ip_addr *dst)
{
return ipip_outbound(m, offset, 1, src, dst);
}
RTE_ASSERT(outip->ip_v == IPVERSION);
static inline void
ip4_ecn_setup(struct ip *ip4)
{
if (ip4->ip_tos & IPTOS_ECN_MASK)
ip4->ip_tos |= IPTOS_ECN_CE;
}
offset += sizeof(struct ip);
inip = (struct ip *)rte_pktmbuf_adj(m, offset);
RTE_ASSERT(inip->ip_v == IPVERSION || inip->ip_v == IPV6_VERSION);
static inline void
ip6_ecn_setup(struct ip6_hdr *ip6)
{
if ((ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK)
ip6->ip6_flow = htonl(ntohl(ip6->ip6_flow) |
(IPTOS_ECN_CE << 20));
}
static inline void
ipip_inbound(struct rte_mbuf *m, uint32_t offset)
{
struct ip *inip4, *outip4;
struct ip6_hdr *inip6, *outip6;
uint32_t ip_len, set_ecn;
outip4 = rte_pktmbuf_mtod(m, struct ip*);
RTE_ASSERT(outip4->ip_v == IPVERSION || outip4->ip_v == IP6_VERSION);
if (outip4->ip_v == IPVERSION) {
ip_len = sizeof(struct ip);
set_ecn = ((outip4->ip_tos & IPTOS_ECN_CE) == IPTOS_ECN_CE);
} else {
outip6 = (struct ip6_hdr *)outip4;
ip_len = sizeof(struct ip6_hdr);
set_ecn = ntohl(outip6->ip6_flow) >> 20;
set_ecn = ((set_ecn & IPTOS_ECN_CE) == IPTOS_ECN_CE);
}
inip4 = (struct ip *)rte_pktmbuf_adj(m, offset + ip_len);
RTE_ASSERT(inip4->ip_v == IPVERSION || inip4->ip_v == IP6_VERSION);
/* Check packet is still bigger than IP header (inner) */
RTE_ASSERT(rte_pktmbuf_pkt_len(m) > sizeof(struct ip));
RTE_ASSERT(rte_pktmbuf_pkt_len(m) > ip_len);
/* RFC4301 5.1.2.1 Note 6 */
if ((inip->ip_tos & htons(IPTOS_ECN_ECT0 | IPTOS_ECN_ECT1)) &&
((outip->ip_tos & htons(IPTOS_ECN_CE)) == IPTOS_ECN_CE))
inip->ip_tos |= htons(IPTOS_ECN_CE);
return 0;
if (inip4->ip_v == IPVERSION) {
if (set_ecn)
ip4_ecn_setup(inip4);
/* XXX This should be done by the forwarding engine instead */
inip4->ip_ttl -= 1;
} else {
inip6 = (struct ip6_hdr *)inip4;
if (set_ecn)
ip6_ecn_setup(inip6);
/* XXX This should be done by the forwarding engine instead */
inip6->ip6_hops -= 1;
}
}
#endif /* __IPIP_H__ */

View File

@ -38,6 +38,7 @@
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
@ -65,6 +66,7 @@
#include <rte_mbuf.h>
#include <rte_acl.h>
#include <rte_lpm.h>
#include <rte_lpm6.h>
#include <rte_hash.h>
#include <rte_jhash.h>
#include <rte_cryptodev.h>
@ -192,7 +194,8 @@ struct lcore_conf {
struct buffer tx_mbufs[RTE_MAX_ETHPORTS];
struct ipsec_ctx inbound;
struct ipsec_ctx outbound;
struct rt_ctx *rt_ctx;
struct rt_ctx *rt4_ctx;
struct rt_ctx *rt6_ctx;
} __rte_cache_aligned;
static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
@ -230,27 +233,39 @@ struct traffic_type {
};
struct ipsec_traffic {
struct traffic_type ipsec4;
struct traffic_type ipv4;
struct traffic_type ipsec;
struct traffic_type ip4;
struct traffic_type ip6;
};
static inline void
prepare_one_packet(struct rte_mbuf *pkt, struct ipsec_traffic *t)
{
uint8_t *nlp;
struct ether_hdr *eth;
if (RTE_ETH_IS_IPV4_HDR(pkt->packet_type)) {
rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
nlp = rte_pktmbuf_mtod_offset(pkt, uint8_t *,
offsetof(struct ip, ip_p));
eth = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv4)) {
nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
nlp = RTE_PTR_ADD(nlp, offsetof(struct ip, ip_p));
if (*nlp == IPPROTO_ESP)
t->ipsec4.pkts[(t->ipsec4.num)++] = pkt;
t->ipsec.pkts[(t->ipsec.num)++] = pkt;
else {
t->ipv4.data[t->ipv4.num] = nlp;
t->ipv4.pkts[(t->ipv4.num)++] = pkt;
t->ip4.data[t->ip4.num] = nlp;
t->ip4.pkts[(t->ip4.num)++] = pkt;
}
} else if (eth->ether_type == rte_cpu_to_be_16(ETHER_TYPE_IPv6)) {
nlp = (uint8_t *)rte_pktmbuf_adj(pkt, ETHER_HDR_LEN);
nlp = RTE_PTR_ADD(nlp, offsetof(struct ip6_hdr, ip6_nxt));
if (*nlp == IPPROTO_ESP)
t->ipsec.pkts[(t->ipsec.num)++] = pkt;
else {
t->ip6.data[t->ip6.num] = nlp;
t->ip6.pkts[(t->ip6.num)++] = pkt;
}
} else {
/* Unknown/Unsupported type, drop the packet */
RTE_LOG(ERR, IPSEC, "Unsupported packet type\n");
rte_pktmbuf_free(pkt);
}
}
@ -261,8 +276,9 @@ prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
{
int32_t i;
t->ipsec4.num = 0;
t->ipv4.num = 0;
t->ipsec.num = 0;
t->ip4.num = 0;
t->ip6.num = 0;
for (i = 0; i < (nb_pkts - PREFETCH_OFFSET); i++) {
rte_prefetch0(rte_pktmbuf_mtod(pkts[i + PREFETCH_OFFSET],
@ -277,14 +293,27 @@ prepare_traffic(struct rte_mbuf **pkts, struct ipsec_traffic *t,
static inline void
prepare_tx_pkt(struct rte_mbuf *pkt, uint8_t port)
{
pkt->ol_flags |= PKT_TX_IP_CKSUM | PKT_TX_IPV4;
pkt->l3_len = sizeof(struct ip);
pkt->l2_len = ETHER_HDR_LEN;
struct ip *ip;
struct ether_hdr *ethhdr;
struct ether_hdr *ethhdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt,
ETHER_HDR_LEN);
ip = rte_pktmbuf_mtod(pkt, struct ip *);
ethhdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, ETHER_HDR_LEN);
if (ip->ip_v == IPVERSION) {
pkt->ol_flags |= PKT_TX_IP_CKSUM | PKT_TX_IPV4;
pkt->l3_len = sizeof(struct ip);
pkt->l2_len = ETHER_HDR_LEN;
ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
} else {
pkt->ol_flags |= PKT_TX_IPV6;
pkt->l3_len = sizeof(struct ip6_hdr);
pkt->l2_len = ETHER_HDR_LEN;
ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv6);
}
ethhdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
memcpy(&ethhdr->s_addr, &ethaddr_tbl[port].src,
sizeof(struct ether_addr));
memcpy(&ethhdr->d_addr, &ethaddr_tbl[port].dst,
@ -354,52 +383,101 @@ send_single_packet(struct rte_mbuf *m, uint8_t port)
return 0;
}
static inline void
inbound_sp_sa(struct sp_ctx *sp, struct sa_ctx *sa, struct traffic_type *ip)
{
struct rte_mbuf *m;
uint32_t i, j, res, sa_idx;
if (ip->num == 0)
return;
rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
ip->num, DEFAULT_MAX_CATEGORIES);
j = 0;
for (i = 0; i < ip->num; i++) {
m = ip->pkts[i];
res = ip->res[i];
if (res & DISCARD) {
rte_pktmbuf_free(m);
continue;
}
if (res & BYPASS) {
ip->pkts[j++] = m;
continue;
}
/* Check return SA SPI matches pkt SPI */
sa_idx = ip->res[i] & PROTECT_MASK;
if (sa_idx == 0 || !inbound_sa_check(sa, m, sa_idx)) {
rte_pktmbuf_free(m);
continue;
}
ip->pkts[j++] = m;
}
ip->num = j;
}
static inline void
process_pkts_inbound(struct ipsec_ctx *ipsec_ctx,
struct ipsec_traffic *traffic)
{
struct rte_mbuf *m;
uint16_t idx, nb_pkts_in, i, j;
uint32_t sa_idx, res;
uint16_t idx, nb_pkts_in, i;
nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec4.pkts,
traffic->ipsec4.num, MAX_PKT_BURST);
nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
traffic->ipsec.num, MAX_PKT_BURST);
/* SP/ACL Inbound check ipsec and ipv4 */
/* SP/ACL Inbound check ipsec and ip4 */
for (i = 0; i < nb_pkts_in; i++) {
idx = traffic->ipv4.num++;
m = traffic->ipsec4.pkts[i];
traffic->ipv4.pkts[idx] = m;
traffic->ipv4.data[idx] = rte_pktmbuf_mtod_offset(m,
uint8_t *, offsetof(struct ip, ip_p));
m = traffic->ipsec.pkts[i];
struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
if (ip->ip_v == IPVERSION) {
idx = traffic->ip4.num++;
traffic->ip4.pkts[idx] = m;
traffic->ip4.data[idx] = rte_pktmbuf_mtod_offset(m,
uint8_t *, offsetof(struct ip, ip_p));
} else if (ip->ip_v == IP6_VERSION) {
idx = traffic->ip6.num++;
traffic->ip6.pkts[idx] = m;
traffic->ip6.data[idx] = rte_pktmbuf_mtod_offset(m,
uint8_t *,
offsetof(struct ip6_hdr, ip6_nxt));
} else
rte_pktmbuf_free(m);
}
rte_acl_classify((struct rte_acl_ctx *)ipsec_ctx->sp_ctx,
traffic->ipv4.data, traffic->ipv4.res,
traffic->ipv4.num, DEFAULT_MAX_CATEGORIES);
inbound_sp_sa(ipsec_ctx->sp4_ctx, ipsec_ctx->sa_ctx, &traffic->ip4);
inbound_sp_sa(ipsec_ctx->sp6_ctx, ipsec_ctx->sa_ctx, &traffic->ip6);
}
static inline void
outbound_sp(struct sp_ctx *sp, struct traffic_type *ip,
struct traffic_type *ipsec)
{
struct rte_mbuf *m;
uint32_t i, j, sa_idx;
if (ip->num == 0)
return;
rte_acl_classify((struct rte_acl_ctx *)sp, ip->data, ip->res,
ip->num, DEFAULT_MAX_CATEGORIES);
j = 0;
for (i = 0; i < traffic->ipv4.num - nb_pkts_in; i++) {
m = traffic->ipv4.pkts[i];
res = traffic->ipv4.res[i];
if (res & ~BYPASS) {
for (i = 0; i < ip->num; i++) {
m = ip->pkts[i];
sa_idx = ip->res[i] & PROTECT_MASK;
if ((ip->res[i] == 0) || (ip->res[i] & DISCARD))
rte_pktmbuf_free(m);
continue;
}
traffic->ipv4.pkts[j++] = m;
else if (sa_idx != 0) {
ipsec->res[ipsec->num] = sa_idx;
ipsec->pkts[ipsec->num++] = m;
} else /* BYPASS */
ip->pkts[j++] = m;
}
/* Check return SA SPI matches pkt SPI */
for ( ; i < traffic->ipv4.num; i++) {
m = traffic->ipv4.pkts[i];
sa_idx = traffic->ipv4.res[i] & PROTECT_MASK;
if (sa_idx == 0 || !inbound_sa_check(ipsec_ctx->sa_ctx,
m, sa_idx)) {
rte_pktmbuf_free(m);
continue;
}
traffic->ipv4.pkts[j++] = m;
}
traffic->ipv4.num = j;
ip->num = j;
}
static inline void
@ -407,42 +485,32 @@ process_pkts_outbound(struct ipsec_ctx *ipsec_ctx,
struct ipsec_traffic *traffic)
{
struct rte_mbuf *m;
uint16_t idx, nb_pkts_out, i, j;
uint32_t sa_idx, res;
rte_acl_classify((struct rte_acl_ctx *)ipsec_ctx->sp_ctx,
traffic->ipv4.data, traffic->ipv4.res,
traffic->ipv4.num, DEFAULT_MAX_CATEGORIES);
uint16_t idx, nb_pkts_out, i;
/* Drop any IPsec traffic from protected ports */
for (i = 0; i < traffic->ipsec4.num; i++)
rte_pktmbuf_free(traffic->ipsec4.pkts[i]);
for (i = 0; i < traffic->ipsec.num; i++)
rte_pktmbuf_free(traffic->ipsec.pkts[i]);
traffic->ipsec4.num = 0;
traffic->ipsec.num = 0;
j = 0;
for (i = 0; i < traffic->ipv4.num; i++) {
m = traffic->ipv4.pkts[i];
res = traffic->ipv4.res[i];
sa_idx = res & PROTECT_MASK;
if ((res == 0) || (res & DISCARD))
rte_pktmbuf_free(m);
else if (sa_idx != 0) {
traffic->ipsec4.res[traffic->ipsec4.num] = sa_idx;
traffic->ipsec4.pkts[traffic->ipsec4.num++] = m;
} else /* BYPASS */
traffic->ipv4.pkts[j++] = m;
}
traffic->ipv4.num = j;
outbound_sp(ipsec_ctx->sp4_ctx, &traffic->ip4, &traffic->ipsec);
nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec4.pkts,
traffic->ipsec4.res, traffic->ipsec4.num,
outbound_sp(ipsec_ctx->sp6_ctx, &traffic->ip6, &traffic->ipsec);
nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipsec.pkts,
traffic->ipsec.res, traffic->ipsec.num,
MAX_PKT_BURST);
for (i = 0; i < nb_pkts_out; i++) {
idx = traffic->ipv4.num++;
m = traffic->ipsec4.pkts[i];
traffic->ipv4.pkts[idx] = m;
m = traffic->ipsec.pkts[i];
struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
if (ip->ip_v == IPVERSION) {
idx = traffic->ip4.num++;
traffic->ip4.pkts[idx] = m;
} else {
idx = traffic->ip6.num++;
traffic->ip6.pkts[idx] = m;
}
}
}
@ -450,47 +518,72 @@ static inline void
process_pkts_inbound_nosp(struct ipsec_ctx *ipsec_ctx,
struct ipsec_traffic *traffic)
{
uint16_t nb_pkts_in, i;
struct rte_mbuf *m;
uint32_t nb_pkts_in, i, idx;
/* Drop any IPv4 traffic from unprotected ports */
for (i = 0; i < traffic->ipv4.num; i++)
rte_pktmbuf_free(traffic->ipv4.pkts[i]);
for (i = 0; i < traffic->ip4.num; i++)
rte_pktmbuf_free(traffic->ip4.pkts[i]);
traffic->ipv4.num = 0;
traffic->ip4.num = 0;
nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec4.pkts,
traffic->ipsec4.num, MAX_PKT_BURST);
/* Drop any IPv6 traffic from unprotected ports */
for (i = 0; i < traffic->ip6.num; i++)
rte_pktmbuf_free(traffic->ip6.pkts[i]);
for (i = 0; i < nb_pkts_in; i++)
traffic->ipv4.pkts[i] = traffic->ipsec4.pkts[i];
traffic->ip6.num = 0;
traffic->ipv4.num = nb_pkts_in;
nb_pkts_in = ipsec_inbound(ipsec_ctx, traffic->ipsec.pkts,
traffic->ipsec.num, MAX_PKT_BURST);
for (i = 0; i < nb_pkts_in; i++) {
m = traffic->ipsec.pkts[i];
struct ip *ip = rte_pktmbuf_mtod(m, struct ip *);
if (ip->ip_v == IPVERSION) {
idx = traffic->ip4.num++;
traffic->ip4.pkts[idx] = m;
} else {
idx = traffic->ip6.num++;
traffic->ip6.pkts[idx] = m;
}
}
}
static inline void
process_pkts_outbound_nosp(struct ipsec_ctx *ipsec_ctx,
struct ipsec_traffic *traffic)
{
uint16_t nb_pkts_out, i;
struct rte_mbuf *m;
uint32_t nb_pkts_out, i;
struct ip *ip;
/* Drop any IPsec traffic from protected ports */
for (i = 0; i < traffic->ipsec4.num; i++)
rte_pktmbuf_free(traffic->ipsec4.pkts[i]);
for (i = 0; i < traffic->ipsec.num; i++)
rte_pktmbuf_free(traffic->ipsec.pkts[i]);
traffic->ipsec4.num = 0;
traffic->ipsec.num = 0;
for (i = 0; i < traffic->ipv4.num; i++)
traffic->ipv4.res[i] = single_sa_idx;
for (i = 0; i < traffic->ip4.num; i++)
traffic->ip4.res[i] = single_sa_idx;
nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ipv4.pkts,
traffic->ipv4.res, traffic->ipv4.num,
for (i = 0; i < traffic->ip6.num; i++)
traffic->ip6.res[i] = single_sa_idx;
nb_pkts_out = ipsec_outbound(ipsec_ctx, traffic->ip4.pkts,
traffic->ip4.res, traffic->ip4.num,
MAX_PKT_BURST);
traffic->ipv4.num = nb_pkts_out;
/* They all sue the same SA (ip4 or ip6 tunnel) */
m = traffic->ipsec.pkts[i];
ip = rte_pktmbuf_mtod(m, struct ip *);
if (ip->ip_v == IPVERSION)
traffic->ip4.num = nb_pkts_out;
else
traffic->ip6.num = nb_pkts_out;
}
static inline void
route_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
route4_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
{
uint32_t hop[MAX_PKT_BURST * 2];
uint32_t dst_ip[MAX_PKT_BURST * 2];
@ -517,6 +610,35 @@ route_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
}
}
static inline void
route6_pkts(struct rt_ctx *rt_ctx, struct rte_mbuf *pkts[], uint8_t nb_pkts)
{
int16_t hop[MAX_PKT_BURST * 2];
uint8_t dst_ip[MAX_PKT_BURST * 2][16];
uint8_t *ip6_dst;
uint16_t i, offset;
if (nb_pkts == 0)
return;
for (i = 0; i < nb_pkts; i++) {
offset = offsetof(struct ip6_hdr, ip6_dst);
ip6_dst = rte_pktmbuf_mtod_offset(pkts[i], uint8_t *, offset);
memcpy(&dst_ip[i][0], ip6_dst, 16);
}
rte_lpm6_lookup_bulk_func((struct rte_lpm6 *)rt_ctx, dst_ip,
hop, nb_pkts);
for (i = 0; i < nb_pkts; i++) {
if (hop[i] == -1) {
rte_pktmbuf_free(pkts[i]);
continue;
}
send_single_packet(pkts[i], hop[i] & 0xff);
}
}
static inline void
process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
uint8_t nb_pkts, uint8_t portid)
@ -525,7 +647,7 @@ process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
prepare_traffic(pkts, &traffic, nb_pkts);
if (single_sa) {
if (unlikely(single_sa)) {
if (UNPROTECTED_PORT(portid))
process_pkts_inbound_nosp(&qconf->inbound, &traffic);
else
@ -537,7 +659,8 @@ process_pkts(struct lcore_conf *qconf, struct rte_mbuf **pkts,
process_pkts_outbound(&qconf->outbound, &traffic);
}
route_pkts(qconf->rt_ctx, traffic.ipv4.pkts, traffic.ipv4.num);
route4_pkts(qconf->rt4_ctx, traffic.ip4.pkts, traffic.ip4.num);
route6_pkts(qconf->rt6_ctx, traffic.ip6.pkts, traffic.ip6.num);
}
static inline void
@ -576,12 +699,15 @@ main_loop(__attribute__((unused)) void *dummy)
rxql = qconf->rx_queue_list;
socket_id = rte_lcore_to_socket_id(lcore_id);
qconf->rt_ctx = socket_ctx[socket_id].rt_ipv4;
qconf->inbound.sp_ctx = socket_ctx[socket_id].sp_ipv4_in;
qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_ipv4_in;
qconf->rt4_ctx = socket_ctx[socket_id].rt_ip4;
qconf->rt6_ctx = socket_ctx[socket_id].rt_ip6;
qconf->inbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_in;
qconf->inbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_in;
qconf->inbound.sa_ctx = socket_ctx[socket_id].sa_in;
qconf->inbound.cdev_map = cdev_map_in;
qconf->outbound.sp_ctx = socket_ctx[socket_id].sp_ipv4_out;
qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_ipv4_out;
qconf->outbound.sp4_ctx = socket_ctx[socket_id].sp_ip4_out;
qconf->outbound.sp6_ctx = socket_ctx[socket_id].sp_ip6_out;
qconf->outbound.sa_ctx = socket_ctx[socket_id].sa_out;
qconf->outbound.cdev_map = cdev_map_out;
if (qconf->nb_rx_queue == 0) {
@ -760,7 +886,7 @@ parse_config(const char *q_arg)
FLD_LCORE,
_NUM_FLD
};
int long int_fld[_NUM_FLD];
unsigned long int_fld[_NUM_FLD];
char *str_fld[_NUM_FLD];
int32_t i;
uint32_t size;
@ -1309,7 +1435,9 @@ main(int32_t argc, char **argv)
sa_init(&socket_ctx[socket_id], socket_id, ep);
sp_init(&socket_ctx[socket_id], socket_id, ep);
sp4_init(&socket_ctx[socket_id], socket_id, ep);
sp6_init(&socket_ctx[socket_id], socket_id, ep);
rt_init(&socket_ctx[socket_id], socket_id, ep);

View File

@ -66,7 +66,8 @@ create_session(struct ipsec_ctx *ipsec_ctx __rte_unused, struct ipsec_sa *sa)
}
RTE_LOG(DEBUG, IPSEC, "Create session for SA spi %u on cryptodev "
"%u qp %u\n", sa->spi, ipsec_ctx->tbl[cdev_id_qp].id,
"%u qp %u\n", sa->spi,
ipsec_ctx->tbl[cdev_id_qp].id,
ipsec_ctx->tbl[cdev_id_qp].qp);
sa->crypto_session = rte_cryptodev_sym_session_create(
@ -80,7 +81,7 @@ create_session(struct ipsec_ctx *ipsec_ctx __rte_unused, struct ipsec_sa *sa)
static inline void
enqueue_cop(struct cdev_qp *cqp, struct rte_crypto_op *cop)
{
int ret, i;
int32_t ret, i;
cqp->buf[cqp->len++] = cop;
@ -105,7 +106,7 @@ ipsec_enqueue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
struct rte_mbuf *pkts[], struct ipsec_sa *sas[],
uint16_t nb_pkts)
{
int ret = 0, i;
int32_t ret = 0, i;
struct ipsec_mbuf_metadata *priv;
struct ipsec_sa *sa;
@ -151,7 +152,7 @@ static inline int
ipsec_dequeue(ipsec_xform_fn xform_func, struct ipsec_ctx *ipsec_ctx,
struct rte_mbuf *pkts[], uint16_t max_pkts)
{
int nb_pkts = 0, ret = 0, i, j, nb_cops;
int32_t nb_pkts = 0, ret = 0, i, j, nb_cops;
struct ipsec_mbuf_metadata *priv;
struct rte_crypto_op *cops[max_pkts];
struct ipsec_sa *sa;

View File

@ -37,7 +37,6 @@
#include <stdint.h>
#include <rte_byteorder.h>
#include <rte_ip.h>
#include <rte_crypto.h>
#define RTE_LOGTYPE_IPSEC RTE_LOGTYPE_USER1
@ -50,15 +49,15 @@
#define MAX_DIGEST_SIZE 32 /* Bytes -- 256 bits */
#define uint32_t_to_char(ip, a, b, c, d) do {\
*a = (unsigned char)(ip >> 24 & 0xff);\
*b = (unsigned char)(ip >> 16 & 0xff);\
*c = (unsigned char)(ip >> 8 & 0xff);\
*d = (unsigned char)(ip & 0xff);\
*a = (uint8_t)(ip >> 24 & 0xff);\
*b = (uint8_t)(ip >> 16 & 0xff);\
*c = (uint8_t)(ip >> 8 & 0xff);\
*d = (uint8_t)(ip & 0xff);\
} while (0)
#define DEFAULT_MAX_CATEGORIES 1
#define IPSEC_SA_MAX_ENTRIES (64) /* must be power of 2, max 2 power 30 */
#define IPSEC_SA_MAX_ENTRIES (128) /* must be power of 2, max 2 power 30 */
#define SPI2IDX(spi) (spi & (IPSEC_SA_MAX_ENTRIES - 1))
#define INVALID_SPI (0)
@ -69,6 +68,8 @@
#define IPSEC_XFORM_MAX 2
#define IP6_VERSION (6)
struct rte_crypto_xform;
struct ipsec_xform;
struct rte_cryptodev_session;
@ -76,23 +77,35 @@ struct rte_mbuf;
struct ipsec_sa;
typedef int (*ipsec_xform_fn)(struct rte_mbuf *m, struct ipsec_sa *sa,
typedef int32_t (*ipsec_xform_fn)(struct rte_mbuf *m, struct ipsec_sa *sa,
struct rte_crypto_op *cop);
struct ip_addr {
union {
uint32_t ip4;
union {
uint64_t ip6[2];
uint8_t ip6_b[16];
};
};
};
struct ipsec_sa {
uint32_t spi;
uint32_t cdev_id_qp;
uint32_t src;
uint32_t dst;
struct rte_cryptodev_sym_session *crypto_session;
struct rte_crypto_sym_xform *xforms;
uint32_t seq;
enum rte_crypto_cipher_algorithm cipher_algo;
enum rte_crypto_auth_algorithm auth_algo;
uint16_t digest_len;
uint16_t iv_len;
uint16_t block_size;
uint16_t flags;
uint32_t seq;
#define IP4_TUNNEL (1 << 0)
#define IP6_TUNNEL (1 << 1)
struct ip_addr src;
struct ip_addr dst;
struct rte_crypto_sym_xform *xforms;
} __rte_cache_aligned;
struct ipsec_mbuf_metadata {
@ -111,7 +124,8 @@ struct cdev_qp {
struct ipsec_ctx {
struct rte_hash *cdev_map;
struct sp_ctx *sp_ctx;
struct sp_ctx *sp4_ctx;
struct sp_ctx *sp6_ctx;
struct sa_ctx *sa_ctx;
uint16_t nb_qps;
uint16_t last_qp;
@ -125,11 +139,14 @@ struct cdev_key {
};
struct socket_ctx {
struct sa_ctx *sa_ipv4_in;
struct sa_ctx *sa_ipv4_out;
struct sp_ctx *sp_ipv4_in;
struct sp_ctx *sp_ipv4_out;
struct rt_ctx *rt_ipv4;
struct sa_ctx *sa_in;
struct sa_ctx *sa_out;
struct sp_ctx *sp_ip4_in;
struct sp_ctx *sp_ip4_out;
struct sp_ctx *sp_ip6_in;
struct sp_ctx *sp_ip6_out;
struct rt_ctx *rt_ip4;
struct rt_ctx *rt_ip6;
struct rte_mempool *mbuf_pool;
};
@ -165,12 +182,15 @@ outbound_sa_lookup(struct sa_ctx *sa_ctx, uint32_t sa_idx[],
struct ipsec_sa *sa[], uint16_t nb_pkts);
void
sp_init(struct socket_ctx *ctx, int socket_id, unsigned ep);
sp4_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t ep);
void
sa_init(struct socket_ctx *ctx, int socket_id, unsigned ep);
sp6_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t ep);
void
rt_init(struct socket_ctx *ctx, int socket_id, unsigned ep);
sa_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t ep);
void
rt_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t ep);
#endif /* __IPSEC_H__ */

View File

@ -36,110 +36,205 @@
*/
#include <sys/types.h>
#include <rte_lpm.h>
#include <rte_lpm6.h>
#include <rte_errno.h>
#include <rte_ip.h>
#include "ipsec.h"
#define RT_IPV4_MAX_RULES 64
#define RT_IPV4_MAX_RULES 1024
#define RT_IPV6_MAX_RULES 1024
struct ipv4_route {
struct ip4_route {
uint32_t ip;
uint8_t depth;
uint8_t if_out;
uint8_t depth;
uint8_t if_out;
};
/* In the default routing table we have:
* ep0 protected ports 0 and 1, and unprotected ports 2 and 3.
*/
static struct ipv4_route rt_ipv4_ep0[] = {
struct ip6_route {
uint8_t ip[16];
uint8_t depth;
uint8_t if_out;
};
static struct ip4_route rt_ip4_ep0[] = {
/* Outbound */
/* Tunnels */
{ IPv4(172, 16, 2, 5), 32, 0 },
{ IPv4(172, 16, 2, 6), 32, 0 },
{ IPv4(172, 16, 2, 7), 32, 1 },
{ IPv4(172, 16, 2, 8), 32, 1 },
{ IPv4(172, 16, 2, 6), 32, 1 },
/* Bypass */
{ IPv4(192, 168, 240, 0), 24, 0 },
{ IPv4(192, 168, 241, 0), 24, 1 },
/* Inbound */
/* Tunnels */
{ IPv4(192, 168, 115, 0), 24, 2 },
{ IPv4(192, 168, 116, 0), 24, 2 },
{ IPv4(192, 168, 117, 0), 24, 3 },
{ IPv4(192, 168, 118, 0), 24, 3 },
{ IPv4(192, 168, 116, 0), 24, 3 },
{ IPv4(192, 168, 65, 0), 24, 2 },
{ IPv4(192, 168, 66, 0), 24, 3 },
/* NULL */
{ IPv4(192, 168, 210, 0), 24, 2 },
{ IPv4(192, 168, 240, 0), 24, 2 },
{ IPv4(192, 168, 250, 0), 24, 0 }
{ IPv4(192, 168, 211, 0), 24, 3 },
/* Bypass */
{ IPv4(192, 168, 245, 0), 24, 2 },
{ IPv4(192, 168, 246, 0), 24, 3 },
};
/* In the default routing table we have:
* ep1 protected ports 0 and 1, and unprotected ports 2 and 3.
*/
static struct ipv4_route rt_ipv4_ep1[] = {
{ IPv4(172, 16, 1, 5), 32, 2 },
{ IPv4(172, 16, 1, 6), 32, 2 },
{ IPv4(172, 16, 1, 7), 32, 3 },
{ IPv4(172, 16, 1, 8), 32, 3 },
static struct ip6_route rt_ip6_ep0[] = {
/* Outbound */
/* Tunnels */
{ { 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,
0x22, 0x22, 0x22, 0x22, 0x22, 0x55, 0x55 }, 116, 0 },
{ { 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,
0x22, 0x22, 0x22, 0x22, 0x22, 0x66, 0x66 }, 116, 1 },
/* Inbound */
/* Tunnels */
{ { 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xaa,
0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00 }, 116, 2 },
{ { 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xbb,
0xbb, 0xbb, 0xbb, 0x00, 0x00, 0x00, 0x00 }, 116, 3 },
{ { 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x55,
0x55, 0x55, 0x55, 0x00, 0x00, 0x00, 0x00 }, 116, 2 },
{ { 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x66,
0x66, 0x66, 0x66, 0x00, 0x00, 0x00, 0x00 }, 116, 3 },
};
{ IPv4(192, 168, 105, 0), 24, 0 },
{ IPv4(192, 168, 106, 0), 24, 0 },
{ IPv4(192, 168, 107, 0), 24, 1 },
{ IPv4(192, 168, 108, 0), 24, 1 },
{ IPv4(192, 168, 200, 0), 24, 0 },
static struct ip4_route rt_ip4_ep1[] = {
/* Outbound */
/* Tunnels */
{ IPv4(172, 16, 1, 5), 32, 0 },
{ IPv4(172, 16, 1, 6), 32, 1 },
/* Bypass */
{ IPv4(192, 168, 245, 0), 24, 0 },
{ IPv4(192, 168, 246, 0), 24, 1 },
/* Inbound */
/* Tunnels */
{ IPv4(192, 168, 105, 0), 24, 2 },
{ IPv4(192, 168, 106, 0), 24, 3 },
{ IPv4(192, 168, 55, 0), 24, 2 },
{ IPv4(192, 168, 56, 0), 24, 3 },
/* NULL */
{ IPv4(192, 168, 200, 0), 24, 2 },
{ IPv4(192, 168, 201, 0), 24, 3 },
/* Bypass */
{ IPv4(192, 168, 240, 0), 24, 2 },
{ IPv4(192, 168, 250, 0), 24, 0 }
{ IPv4(192, 168, 241, 0), 24, 3 },
};
static struct ip6_route rt_ip6_ep1[] = {
/* Outbound */
/* Tunnels */
{ { 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x11, 0x11, 0x11, 0x55, 0x55 }, 116, 0 },
{ { 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x11, 0x11, 0x11, 0x66, 0x66 }, 116, 1 },
/* Inbound */
/* Tunnels */
{ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xaa,
0xaa, 0xaa, 0xaa, 0x00, 0x00, 0x00, 0x00 }, 116, 2 },
{ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xbb,
0xbb, 0xbb, 0xbb, 0x00, 0x00, 0x00, 0x00 }, 116, 3 },
{ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x55,
0x55, 0x55, 0x55, 0x00, 0x00, 0x00, 0x00 }, 116, 2 },
{ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x66,
0x66, 0x66, 0x66, 0x00, 0x00, 0x00, 0x00 }, 116, 3 },
};
void
rt_init(struct socket_ctx *ctx, int socket_id, unsigned ep)
rt_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t ep)
{
char name[PATH_MAX];
unsigned i;
int ret;
uint32_t i;
int32_t ret;
struct rte_lpm *lpm;
struct ipv4_route *rt;
struct rte_lpm6 *lpm6;
struct ip4_route *rt;
struct ip6_route *rt6;
char a, b, c, d;
unsigned nb_routes;
uint32_t nb_routes, nb_routes6;
struct rte_lpm_config conf = { 0 };
struct rte_lpm6_config conf6 = { 0 };
if (ctx == NULL)
rte_exit(EXIT_FAILURE, "NULL context.\n");
if (ctx->rt_ipv4 != NULL)
rte_exit(EXIT_FAILURE, "Routing Table for socket %u already "
"initialized\n", socket_id);
if (ctx->rt_ip4 != NULL)
rte_exit(EXIT_FAILURE, "IPv4 Routing Table for socket %u "
"already initialized\n", socket_id);
printf("Creating Routing Table (RT) context with %u max routes\n",
if (ctx->rt_ip6 != NULL)
rte_exit(EXIT_FAILURE, "IPv6 Routing Table for socket %u "
"already initialized\n", socket_id);
printf("Creating IPv4 Routing Table (RT) context with %u max routes\n",
RT_IPV4_MAX_RULES);
if (ep == 0) {
rt = rt_ipv4_ep0;
nb_routes = RTE_DIM(rt_ipv4_ep0);
rt = rt_ip4_ep0;
nb_routes = RTE_DIM(rt_ip4_ep0);
rt6 = rt_ip6_ep0;
nb_routes6 = RTE_DIM(rt_ip6_ep0);
} else if (ep == 1) {
rt = rt_ipv4_ep1;
nb_routes = RTE_DIM(rt_ipv4_ep1);
rt = rt_ip4_ep1;
nb_routes = RTE_DIM(rt_ip4_ep1);
rt6 = rt_ip6_ep1;
nb_routes6 = RTE_DIM(rt_ip6_ep1);
} else
rte_exit(EXIT_FAILURE, "Invalid EP value %u. Only 0 or 1 "
"supported.\n", ep);
/* create the LPM table */
snprintf(name, sizeof(name), "%s_%u", "rt_ipv4", socket_id);
snprintf(name, sizeof(name), "%s_%u", "rt_ip4", socket_id);
conf.max_rules = RT_IPV4_MAX_RULES;
conf.number_tbl8s = RTE_LPM_TBL8_NUM_ENTRIES;
lpm = rte_lpm_create(name, socket_id, &conf);
if (lpm == NULL)
rte_exit(EXIT_FAILURE, "Unable to create LPM table "
"on socket %d\n", socket_id);
rte_exit(EXIT_FAILURE, "Unable to create %s LPM table "
"on socket %d\n", name, socket_id);
/* populate the LPM table */
for (i = 0; i < nb_routes; i++) {
ret = rte_lpm_add(lpm, rt[i].ip, rt[i].depth, rt[i].if_out);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Unable to add entry num %u to "
"LPM table on socket %d\n", i, socket_id);
rte_exit(EXIT_FAILURE, "Fail to add entry num %u to %s "
"LPM table on socket %d\n", i, name, socket_id);
uint32_t_to_char(rt[i].ip, &a, &b, &c, &d);
printf("LPM: Adding route %hhu.%hhu.%hhu.%hhu/%hhu (%hhu)\n",
a, b, c, d, rt[i].depth, rt[i].if_out);
}
ctx->rt_ipv4 = (struct rt_ctx *)lpm;
snprintf(name, sizeof(name), "%s_%u", "rt_ip6", socket_id);
conf6.max_rules = RT_IPV6_MAX_RULES;
conf6.number_tbl8s = RTE_LPM_TBL8_NUM_ENTRIES;
lpm6 = rte_lpm6_create(name, socket_id, &conf6);
if (lpm6 == NULL)
rte_exit(EXIT_FAILURE, "Unable to create %s LPM table "
"on socket %d\n", name, socket_id);
/* populate the LPM table */
for (i = 0; i < nb_routes6; i++) {
ret = rte_lpm6_add(lpm6, rt6[i].ip, rt6[i].depth,
rt6[i].if_out);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Fail to add entry num %u to %s "
"LPM table on socket %d\n", i, name, socket_id);
printf("LPM6: Adding route "
" %hx:%hx:%hx:%hx:%hx:%hx:%hx:%hx/%hhx (%hhx)\n",
(uint16_t)((rt6[i].ip[0] << 8) | rt6[i].ip[1]),
(uint16_t)((rt6[i].ip[2] << 8) | rt6[i].ip[3]),
(uint16_t)((rt6[i].ip[4] << 8) | rt6[i].ip[5]),
(uint16_t)((rt6[i].ip[6] << 8) | rt6[i].ip[7]),
(uint16_t)((rt6[i].ip[8] << 8) | rt6[i].ip[9]),
(uint16_t)((rt6[i].ip[10] << 8) | rt6[i].ip[11]),
(uint16_t)((rt6[i].ip[12] << 8) | rt6[i].ip[13]),
(uint16_t)((rt6[i].ip[14] << 8) | rt6[i].ip[15]),
rt6[i].depth, rt6[i].if_out);
}
ctx->rt_ip4 = (struct rt_ctx *)lpm;
ctx->rt_ip6 = (struct rt_ctx *)lpm6;
}

View File

@ -37,12 +37,14 @@
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <rte_memzone.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>
#include <rte_byteorder.h>
#include <rte_errno.h>
#include <rte_ip.h>
#include "ipsec.h"
#include "esp.h"
@ -51,108 +53,148 @@
const struct ipsec_sa sa_out[] = {
{
.spi = 5,
.src = IPv4(172, 16, 1, 5),
.dst = IPv4(172, 16, 2, 5),
.src.ip4 = IPv4(172, 16, 1, 5),
.dst.ip4 = IPv4(172, 16, 2, 5),
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = IP4_TUNNEL
},
{
.spi = 6,
.src = IPv4(172, 16, 1, 6),
.dst = IPv4(172, 16, 2, 6),
.src.ip4 = IPv4(172, 16, 1, 6),
.dst.ip4 = IPv4(172, 16, 2, 6),
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = IP4_TUNNEL
},
{
.spi = 7,
.src = IPv4(172, 16, 1, 7),
.dst = IPv4(172, 16, 2, 7),
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
},
{
.spi = 8,
.src = IPv4(172, 16, 1, 8),
.dst = IPv4(172, 16, 2, 8),
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
},
{
.spi = 9,
.src = IPv4(172, 16, 1, 9),
.dst = IPv4(172, 16, 2, 9),
.spi = 15,
.src.ip4 = IPv4(172, 16, 1, 5),
.dst.ip4 = IPv4(172, 16, 2, 5),
.cipher_algo = RTE_CRYPTO_CIPHER_NULL,
.auth_algo = RTE_CRYPTO_AUTH_NULL,
.digest_len = 0,
.iv_len = 0,
.block_size = 4,
}
.flags = IP4_TUNNEL
},
{
.spi = 16,
.src.ip4 = IPv4(172, 16, 1, 6),
.dst.ip4 = IPv4(172, 16, 2, 6),
.cipher_algo = RTE_CRYPTO_CIPHER_NULL,
.auth_algo = RTE_CRYPTO_AUTH_NULL,
.digest_len = 0,
.iv_len = 0,
.block_size = 4,
.flags = IP4_TUNNEL
},
{
.spi = 25,
.src.ip6_b = { 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x55, 0x55 },
.dst.ip6_b = { 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,
0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x55, 0x55 },
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = IP6_TUNNEL
},
{
.spi = 26,
.src.ip6_b = { 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x66, 0x66 },
.dst.ip6_b = { 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,
0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x66, 0x66 },
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = IP6_TUNNEL
},
};
/* SAs Inbound */
const struct ipsec_sa sa_in[] = {
{
.spi = 55,
.src = IPv4(172, 16, 2, 5),
.dst = IPv4(172, 16, 1, 5),
.spi = 105,
.src.ip4 = IPv4(172, 16, 2, 5),
.dst.ip4 = IPv4(172, 16, 1, 5),
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = IP4_TUNNEL
},
{
.spi = 56,
.src = IPv4(172, 16, 2, 6),
.dst = IPv4(172, 16, 1, 6),
.spi = 106,
.src.ip4 = IPv4(172, 16, 2, 6),
.dst.ip4 = IPv4(172, 16, 1, 6),
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = IP4_TUNNEL
},
{
.spi = 57,
.src = IPv4(172, 16, 2, 7),
.dst = IPv4(172, 16, 1, 7),
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
},
{
.spi = 58,
.src = IPv4(172, 16, 2, 8),
.dst = IPv4(172, 16, 1, 8),
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
},
{
.spi = 59,
.src = IPv4(172, 16, 2, 9),
.dst = IPv4(172, 16, 1, 9),
.spi = 115,
.src.ip4 = IPv4(172, 16, 2, 5),
.dst.ip4 = IPv4(172, 16, 1, 5),
.cipher_algo = RTE_CRYPTO_CIPHER_NULL,
.auth_algo = RTE_CRYPTO_AUTH_NULL,
.digest_len = 0,
.iv_len = 0,
.block_size = 4,
}
.flags = IP4_TUNNEL
},
{
.spi = 116,
.src.ip4 = IPv4(172, 16, 2, 6),
.dst.ip4 = IPv4(172, 16, 1, 6),
.cipher_algo = RTE_CRYPTO_CIPHER_NULL,
.auth_algo = RTE_CRYPTO_AUTH_NULL,
.digest_len = 0,
.iv_len = 0,
.block_size = 4,
.flags = IP4_TUNNEL
},
{
.spi = 125,
.src.ip6_b = { 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,
0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x55, 0x55 },
.dst.ip6_b = { 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x55, 0x55 },
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = IP6_TUNNEL
},
{
.spi = 126,
.src.ip6_b = { 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,
0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x66, 0x66 },
.dst.ip6_b = { 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x66, 0x66 },
.cipher_algo = RTE_CRYPTO_CIPHER_AES_CBC,
.auth_algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.iv_len = 16,
.block_size = 16,
.flags = IP6_TUNNEL
},
};
static uint8_t cipher_key[256] = "sixteenbytes key";
@ -217,11 +259,11 @@ struct sa_ctx {
};
static struct sa_ctx *
sa_ipv4_create(const char *name, int socket_id)
sa_create(const char *name, int32_t socket_id)
{
char s[PATH_MAX];
struct sa_ctx *sa_ctx;
unsigned mz_size;
uint32_t mz_size;
const struct rte_memzone *mz;
snprintf(s, sizeof(s), "%s_%u", name, socket_id);
@ -246,10 +288,10 @@ sa_ipv4_create(const char *name, int socket_id)
static int
sa_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
unsigned nb_entries, unsigned inbound)
uint32_t nb_entries, uint32_t inbound)
{
struct ipsec_sa *sa;
unsigned i, idx;
uint32_t i, idx;
for (i = 0; i < nb_entries; i++) {
idx = SPI2IDX(entries[i].spi);
@ -260,8 +302,14 @@ sa_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
return -EINVAL;
}
*sa = entries[i];
sa->src = rte_cpu_to_be_32(sa->src);
sa->dst = rte_cpu_to_be_32(sa->dst);
sa->seq = 0;
switch (sa->flags) {
case IP4_TUNNEL:
sa->src.ip4 = rte_cpu_to_be_32(sa->src.ip4);
sa->dst.ip4 = rte_cpu_to_be_32(sa->dst.ip4);
}
if (inbound) {
if (sa->cipher_algo == RTE_CRYPTO_CIPHER_NULL) {
sa_ctx->xf[idx].a = null_auth_xf;
@ -289,33 +337,33 @@ sa_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
static inline int
sa_out_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
unsigned nb_entries)
uint32_t nb_entries)
{
return sa_add_rules(sa_ctx, entries, nb_entries, 0);
}
static inline int
sa_in_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
unsigned nb_entries)
uint32_t nb_entries)
{
return sa_add_rules(sa_ctx, entries, nb_entries, 1);
}
void
sa_init(struct socket_ctx *ctx, int socket_id, unsigned ep)
sa_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t ep)
{
const struct ipsec_sa *sa_out_entries, *sa_in_entries;
unsigned nb_out_entries, nb_in_entries;
uint32_t nb_out_entries, nb_in_entries;
const char *name;
if (ctx == NULL)
rte_exit(EXIT_FAILURE, "NULL context.\n");
if (ctx->sa_ipv4_in != NULL)
if (ctx->sa_in != NULL)
rte_exit(EXIT_FAILURE, "Inbound SA DB for socket %u already "
"initialized\n", socket_id);
if (ctx->sa_ipv4_out != NULL)
if (ctx->sa_out != NULL)
rte_exit(EXIT_FAILURE, "Outbound SA DB for socket %u already "
"initialized\n", socket_id);
@ -333,21 +381,21 @@ sa_init(struct socket_ctx *ctx, int socket_id, unsigned ep)
rte_exit(EXIT_FAILURE, "Invalid EP value %u. "
"Only 0 or 1 supported.\n", ep);
name = "sa_ipv4_in";
ctx->sa_ipv4_in = sa_ipv4_create(name, socket_id);
if (ctx->sa_ipv4_in == NULL)
name = "sa_in";
ctx->sa_in = sa_create(name, socket_id);
if (ctx->sa_in == NULL)
rte_exit(EXIT_FAILURE, "Error [%d] creating SA context %s "
"in socket %d\n", rte_errno, name, socket_id);
name = "sa_ipv4_out";
ctx->sa_ipv4_out = sa_ipv4_create(name, socket_id);
if (ctx->sa_ipv4_out == NULL)
name = "sa_out";
ctx->sa_out = sa_create(name, socket_id);
if (ctx->sa_out == NULL)
rte_exit(EXIT_FAILURE, "Error [%d] creating SA context %s "
"in socket %d\n", rte_errno, name, socket_id);
sa_in_add_rules(ctx->sa_ipv4_in, sa_in_entries, nb_in_entries);
sa_in_add_rules(ctx->sa_in, sa_in_entries, nb_in_entries);
sa_out_add_rules(ctx->sa_ipv4_out, sa_out_entries, nb_out_entries);
sa_out_add_rules(ctx->sa_out, sa_out_entries, nb_out_entries);
}
int
@ -360,38 +408,63 @@ inbound_sa_check(struct sa_ctx *sa_ctx, struct rte_mbuf *m, uint32_t sa_idx)
return (sa_ctx->sa[sa_idx].spi == priv->sa->spi);
}
static inline void
single_inbound_lookup(struct ipsec_sa *sadb, struct rte_mbuf *pkt,
struct ipsec_sa **sa_ret)
{
struct esp_hdr *esp;
struct ip *ip;
uint32_t *src4_addr;
uint8_t *src6_addr;
struct ipsec_sa *sa;
*sa_ret = NULL;
ip = rte_pktmbuf_mtod(pkt, struct ip *);
if (ip->ip_v == IPVERSION)
esp = (struct esp_hdr *)(ip + 1);
else
esp = (struct esp_hdr *)(((struct ip6_hdr *)ip) + 1);
if (esp->spi == INVALID_SPI)
return;
sa = &sadb[SPI2IDX(rte_be_to_cpu_32(esp->spi))];
if (rte_be_to_cpu_32(esp->spi) != sa->spi)
return;
switch (sa->flags) {
case IP4_TUNNEL:
src4_addr = RTE_PTR_ADD(ip, offsetof(struct ip, ip_src));
if ((ip->ip_v == IPVERSION) &&
(sa->src.ip4 == *src4_addr) &&
(sa->dst.ip4 == *(src4_addr + 1)))
*sa_ret = sa;
break;
case IP6_TUNNEL:
src6_addr = RTE_PTR_ADD(ip, offsetof(struct ip6_hdr, ip6_src));
if ((ip->ip_v == IP6_VERSION) &&
!memcmp(&sa->src.ip6, src6_addr, 16) &&
!memcmp(&sa->dst.ip6, src6_addr + 16, 16))
*sa_ret = sa;
}
}
void
inbound_sa_lookup(struct sa_ctx *sa_ctx, struct rte_mbuf *pkts[],
struct ipsec_sa *sa[], uint16_t nb_pkts)
{
unsigned i;
uint32_t *src, spi;
uint32_t i;
for (i = 0; i < nb_pkts; i++) {
spi = rte_pktmbuf_mtod_offset(pkts[i], struct esp_hdr *,
sizeof(struct ip))->spi;
if (spi == INVALID_SPI)
continue;
sa[i] = &sa_ctx->sa[SPI2IDX(spi)];
if (spi != sa[i]->spi) {
sa[i] = NULL;
continue;
}
src = rte_pktmbuf_mtod_offset(pkts[i], uint32_t *,
offsetof(struct ip, ip_src));
if ((sa[i]->src != *src) || (sa[i]->dst != *(src + 1)))
sa[i] = NULL;
}
for (i = 0; i < nb_pkts; i++)
single_inbound_lookup(sa_ctx->sa, pkts[i], &sa[i]);
}
void
outbound_sa_lookup(struct sa_ctx *sa_ctx, uint32_t sa_idx[],
struct ipsec_sa *sa[], uint16_t nb_pkts)
{
unsigned i;
uint32_t i;
for (i = 0; i < nb_pkts; i++)
sa[i] = &sa_ctx->sa[sa_idx[i]];

View File

@ -39,6 +39,7 @@
#include <netinet/ip.h>
#include <rte_acl.h>
#include <rte_ip.h>
#include "ipsec.h"
@ -71,7 +72,7 @@ enum {
RTE_ACL_IPV4_NUM
};
struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
struct rte_acl_field_def ip4_defs[NUM_FIELDS_IPV4] = {
{
.type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof(uint8_t),
@ -110,7 +111,7 @@ struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
},
};
RTE_ACL_RULE_DEF(acl4_rules, RTE_DIM(ipv4_defs));
RTE_ACL_RULE_DEF(acl4_rules, RTE_DIM(ip4_defs));
const struct acl4_rules acl4_rules_out[] = {
{
@ -124,7 +125,7 @@ const struct acl4_rules acl4_rules_out[] = {
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(6), .category_mask = 1, .priority = 2},
.data = {.userdata = PROTECT(6), .category_mask = 1, .priority = 1},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 106, 0),
.mask_range.u32 = 24,},
@ -134,27 +135,7 @@ const struct acl4_rules acl4_rules_out[] = {
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(7), .category_mask = 1, .priority = 3},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 107, 0),
.mask_range.u32 = 24,},
/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(8), .category_mask = 1, .priority = 4},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 108, 0),
.mask_range.u32 = 24,},
/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(9), .category_mask = 1, .priority = 5},
.data = {.userdata = PROTECT(15), .category_mask = 1, .priority = 1},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 200, 0),
.mask_range.u32 = 24,},
@ -164,9 +145,49 @@ const struct acl4_rules acl4_rules_out[] = {
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = BYPASS, .category_mask = 1, .priority = 6},
.data = {.userdata = PROTECT(16), .category_mask = 1, .priority = 1},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 250, 0),
.field[2] = {.value.u32 = IPv4(192, 168, 201, 0),
.mask_range.u32 = 24,},
/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(25), .category_mask = 1, .priority = 1},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 55, 0),
.mask_range.u32 = 24,},
/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(26), .category_mask = 1, .priority = 1},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 56, 0),
.mask_range.u32 = 24,},
/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = BYPASS, .category_mask = 1, .priority = 1},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 240, 0),
.mask_range.u32 = 24,},
/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = BYPASS, .category_mask = 1, .priority = 1},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 241, 0),
.mask_range.u32 = 24,},
/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
@ -177,7 +198,7 @@ const struct acl4_rules acl4_rules_out[] = {
const struct acl4_rules acl4_rules_in[] = {
{
.data = {.userdata = PROTECT(5), .category_mask = 1, .priority = 1},
.data = {.userdata = PROTECT(105), .category_mask = 1, .priority = 1},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 115, 0),
.mask_range.u32 = 24,},
@ -187,7 +208,7 @@ const struct acl4_rules acl4_rules_in[] = {
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(6), .category_mask = 1, .priority = 2},
.data = {.userdata = PROTECT(106), .category_mask = 1, .priority = 1},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 116, 0),
.mask_range.u32 = 24,},
@ -197,27 +218,7 @@ const struct acl4_rules acl4_rules_in[] = {
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(7), .category_mask = 1, .priority = 3},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 117, 0),
.mask_range.u32 = 24,},
/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(8), .category_mask = 1, .priority = 4},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 118, 0),
.mask_range.u32 = 24,},
/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(9), .category_mask = 1, .priority = 5},
.data = {.userdata = PROTECT(115), .category_mask = 1, .priority = 1},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 210, 0),
.mask_range.u32 = 24,},
@ -227,9 +228,49 @@ const struct acl4_rules acl4_rules_in[] = {
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = BYPASS, .category_mask = 1, .priority = 6},
.data = {.userdata = PROTECT(116), .category_mask = 1, .priority = 1},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 240, 0),
.field[2] = {.value.u32 = IPv4(192, 168, 211, 0),
.mask_range.u32 = 24,},
/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(125), .category_mask = 1, .priority = 1},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 65, 0),
.mask_range.u32 = 24,},
/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(126), .category_mask = 1, .priority = 1},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 66, 0),
.mask_range.u32 = 24,},
/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = BYPASS, .category_mask = 1, .priority = 1},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 245, 0),
.mask_range.u32 = 24,},
/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = BYPASS, .category_mask = 1, .priority = 1},
/* destination IPv4 */
.field[2] = {.value.u32 = IPv4(192, 168, 246, 0),
.mask_range.u32 = 24,},
/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
@ -239,9 +280,9 @@ const struct acl4_rules acl4_rules_in[] = {
};
static void
print_one_ipv4_rule(const struct acl4_rules *rule, int extra)
print_one_ip4_rule(const struct acl4_rules *rule, int32_t extra)
{
unsigned char a, b, c, d;
uint8_t a, b, c, d;
uint32_t_to_char(rule->field[SRC_FIELD_IPV4].value.u32,
&a, &b, &c, &d);
@ -266,20 +307,20 @@ print_one_ipv4_rule(const struct acl4_rules *rule, int extra)
}
static inline void
dump_ipv4_rules(const struct acl4_rules *rule, int num, int extra)
dump_ip4_rules(const struct acl4_rules *rule, int32_t num, int32_t extra)
{
int i;
int32_t i;
for (i = 0; i < num; i++, rule++) {
printf("\t%d:", i + 1);
print_one_ipv4_rule(rule, extra);
print_one_ip4_rule(rule, extra);
printf("\n");
}
}
static struct rte_acl_ctx *
acl4_init(const char *name, int socketid, const struct acl4_rules *rules,
unsigned rules_nb)
acl4_init(const char *name, int32_t socketid, const struct acl4_rules *rules,
uint32_t rules_nb)
{
char s[PATH_MAX];
struct rte_acl_param acl_param;
@ -294,11 +335,11 @@ acl4_init(const char *name, int socketid, const struct acl4_rules *rules,
snprintf(s, sizeof(s), "%s_%d", name, socketid);
printf("IPv4 %s entries [%u]:\n", s, rules_nb);
dump_ipv4_rules(rules, rules_nb, 1);
dump_ip4_rules(rules, rules_nb, 1);
acl_param.name = s;
acl_param.socket_id = socketid;
acl_param.rule_size = RTE_ACL_RULE_SZ(RTE_DIM(ipv4_defs));
acl_param.rule_size = RTE_ACL_RULE_SZ(RTE_DIM(ip4_defs));
acl_param.max_rule_num = MAX_ACL_RULE_NUM;
ctx = rte_acl_create(&acl_param);
@ -313,8 +354,8 @@ acl4_init(const char *name, int socketid, const struct acl4_rules *rules,
memset(&acl_build_param, 0, sizeof(acl_build_param));
acl_build_param.num_categories = DEFAULT_MAX_CATEGORIES;
acl_build_param.num_fields = RTE_DIM(ipv4_defs);
memcpy(&acl_build_param.defs, ipv4_defs, sizeof(ipv4_defs));
acl_build_param.num_fields = RTE_DIM(ip4_defs);
memcpy(&acl_build_param.defs, ip4_defs, sizeof(ip4_defs));
if (rte_acl_build(ctx, &acl_build_param) != 0)
rte_exit(EXIT_FAILURE, "Failed to build ACL trie\n");
@ -325,20 +366,20 @@ acl4_init(const char *name, int socketid, const struct acl4_rules *rules,
}
void
sp_init(struct socket_ctx *ctx, int socket_id, unsigned ep)
sp4_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t ep)
{
const char *name;
const struct acl4_rules *rules_out, *rules_in;
unsigned nb_out_rules, nb_in_rules;
uint32_t nb_out_rules, nb_in_rules;
if (ctx == NULL)
rte_exit(EXIT_FAILURE, "NULL context.\n");
if (ctx->sp_ipv4_in != NULL)
if (ctx->sp_ip4_in != NULL)
rte_exit(EXIT_FAILURE, "Inbound SP DB for socket %u already "
"initialized\n", socket_id);
if (ctx->sp_ipv4_out != NULL)
if (ctx->sp_ip4_out != NULL)
rte_exit(EXIT_FAILURE, "Outbound SP DB for socket %u already "
"initialized\n", socket_id);
@ -356,11 +397,11 @@ sp_init(struct socket_ctx *ctx, int socket_id, unsigned ep)
rte_exit(EXIT_FAILURE, "Invalid EP value %u. "
"Only 0 or 1 supported.\n", ep);
name = "sp_ipv4_in";
ctx->sp_ipv4_in = (struct sp_ctx *)acl4_init(name, socket_id,
name = "sp_ip4_in";
ctx->sp_ip4_in = (struct sp_ctx *)acl4_init(name, socket_id,
rules_in, nb_in_rules);
name = "sp_ipv4_out";
ctx->sp_ipv4_out = (struct sp_ctx *)acl4_init(name, socket_id,
name = "sp_ip4_out";
ctx->sp_ip4_out = (struct sp_ctx *)acl4_init(name, socket_id,
rules_out, nb_out_rules);
}

400
examples/ipsec-secgw/sp6.c Normal file
View File

@ -0,0 +1,400 @@
/*-
* BSD LICENSE
*
* Copyright(c) 2016 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Security Policies
*/
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/ip6.h>
#include <rte_acl.h>
#include <rte_ip.h>
#include "ipsec.h"
#define MAX_ACL_RULE_NUM 1000
enum {
IP6_PROTO,
IP6_SRC0,
IP6_SRC1,
IP6_SRC2,
IP6_SRC3,
IP6_DST0,
IP6_DST1,
IP6_DST2,
IP6_DST3,
IP6_SRCP,
IP6_DSTP,
IP6_NUM
};
#define IP6_ADDR_SIZE 16
struct rte_acl_field_def ip6_defs[IP6_NUM] = {
{
.type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof(uint8_t),
.field_index = IP6_PROTO,
.input_index = IP6_PROTO,
.offset = 0,
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = 4,
.field_index = IP6_SRC0,
.input_index = IP6_SRC0,
.offset = 2
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = 4,
.field_index = IP6_SRC1,
.input_index = IP6_SRC1,
.offset = 6
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = 4,
.field_index = IP6_SRC2,
.input_index = IP6_SRC2,
.offset = 10
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = 4,
.field_index = IP6_SRC3,
.input_index = IP6_SRC3,
.offset = 14
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = 4,
.field_index = IP6_DST0,
.input_index = IP6_DST0,
.offset = 18
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = 4,
.field_index = IP6_DST1,
.input_index = IP6_DST1,
.offset = 22
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = 4,
.field_index = IP6_DST2,
.input_index = IP6_DST2,
.offset = 26
},
{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = 4,
.field_index = IP6_DST3,
.input_index = IP6_DST3,
.offset = 30
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = IP6_SRCP,
.input_index = IP6_SRCP,
.offset = 34
},
{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof(uint16_t),
.field_index = IP6_DSTP,
.input_index = IP6_SRCP,
.offset = 36
}
};
RTE_ACL_RULE_DEF(acl6_rules, RTE_DIM(ip6_defs));
const struct acl6_rules acl6_rules_out[] = {
{
.data = {.userdata = PROTECT(5), .category_mask = 1, .priority = 1},
/* destination IPv6 */
.field[5] = {.value.u32 = 0x0, .mask_range.u32 = 32,},
.field[6] = {.value.u32 = 0x0, .mask_range.u32 = 32,},
.field[7] = {.value.u32 = 0x55555555, .mask_range.u32 = 32,},
.field[8] = {.value.u32 = 0x0, .mask_range.u32 = 0,},
/* source port */
.field[9] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[10] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(6), .category_mask = 1, .priority = 1},
/* destination IPv6 */
.field[5] = {.value.u32 = 0x0, .mask_range.u32 = 32,},
.field[6] = {.value.u32 = 0x0, .mask_range.u32 = 32,},
.field[7] = {.value.u32 = 0x66666666, .mask_range.u32 = 32,},
.field[8] = {.value.u32 = 0x0, .mask_range.u32 = 0,},
/* source port */
.field[9] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[10] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(25), .category_mask = 1, .priority = 1},
/* destination IPv6 */
.field[5] = {.value.u32 = 0x0, .mask_range.u32 = 32,},
.field[6] = {.value.u32 = 0x0, .mask_range.u32 = 32,},
.field[7] = {.value.u32 = 0xaaaaaaaa, .mask_range.u32 = 32,},
.field[8] = {.value.u32 = 0x0, .mask_range.u32 = 0,},
/* source port */
.field[9] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[10] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(26), .category_mask = 1, .priority = 1},
/* destination IPv6 */
.field[5] = {.value.u32 = 0x0, .mask_range.u32 = 32,},
.field[6] = {.value.u32 = 0x0, .mask_range.u32 = 32,},
.field[7] = {.value.u32 = 0xbbbbbbbb, .mask_range.u32 = 32,},
.field[8] = {.value.u32 = 0x0, .mask_range.u32 = 0,},
/* source port */
.field[9] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[10] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
}
};
const struct acl6_rules acl6_rules_in[] = {
{
.data = {.userdata = PROTECT(15), .category_mask = 1, .priority = 1},
/* destination IPv6 */
.field[5] = {.value.u32 = 0xffff0000, .mask_range.u32 = 32,},
.field[6] = {.value.u32 = 0x0, .mask_range.u32 = 32,},
.field[7] = {.value.u32 = 0x55555555, .mask_range.u32 = 32,},
.field[8] = {.value.u32 = 0x0, .mask_range.u32 = 0,},
/* source port */
.field[9] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[10] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(16), .category_mask = 1, .priority = 1},
/* destination IPv6 */
.field[5] = {.value.u32 = 0xffff0000, .mask_range.u32 = 32,},
.field[6] = {.value.u32 = 0x0, .mask_range.u32 = 32,},
.field[7] = {.value.u32 = 0x66666666, .mask_range.u32 = 32,},
.field[8] = {.value.u32 = 0x0, .mask_range.u32 = 0,},
/* source port */
.field[9] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[10] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(125), .category_mask = 1, .priority = 1},
/* destination IPv6 */
.field[5] = {.value.u32 = 0xffff0000, .mask_range.u32 = 32,},
.field[6] = {.value.u32 = 0x0, .mask_range.u32 = 32,},
.field[7] = {.value.u32 = 0xaaaaaaaa, .mask_range.u32 = 32,},
.field[8] = {.value.u32 = 0x0, .mask_range.u32 = 0,},
/* source port */
.field[9] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[10] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
},
{
.data = {.userdata = PROTECT(126), .category_mask = 1, .priority = 1},
/* destination IPv6 */
.field[5] = {.value.u32 = 0xffff0000, .mask_range.u32 = 32,},
.field[6] = {.value.u32 = 0x0, .mask_range.u32 = 32,},
.field[7] = {.value.u32 = 0xbbbbbbbb, .mask_range.u32 = 32,},
.field[8] = {.value.u32 = 0x0, .mask_range.u32 = 0,},
/* source port */
.field[9] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},
/* destination port */
.field[10] = {.value.u16 = 0, .mask_range.u16 = 0xffff,}
}
};
static inline void
print_one_ip6_rule(const struct acl6_rules *rule, int32_t extra)
{
uint8_t a, b, c, d;
uint32_t_to_char(rule->field[IP6_SRC0].value.u32,
&a, &b, &c, &d);
printf("%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[IP6_SRC1].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[IP6_SRC2].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[IP6_SRC3].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x/%u ", a, b, c, d,
rule->field[IP6_SRC0].mask_range.u32
+ rule->field[IP6_SRC1].mask_range.u32
+ rule->field[IP6_SRC2].mask_range.u32
+ rule->field[IP6_SRC3].mask_range.u32);
uint32_t_to_char(rule->field[IP6_DST0].value.u32,
&a, &b, &c, &d);
printf("%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[IP6_DST1].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[IP6_DST2].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x", a, b, c, d);
uint32_t_to_char(rule->field[IP6_DST3].value.u32,
&a, &b, &c, &d);
printf(":%.2x%.2x:%.2x%.2x/%u ", a, b, c, d,
rule->field[IP6_DST0].mask_range.u32
+ rule->field[IP6_DST1].mask_range.u32
+ rule->field[IP6_DST2].mask_range.u32
+ rule->field[IP6_DST3].mask_range.u32);
printf("%hu : %hu %hu : %hu 0x%hhx/0x%hhx ",
rule->field[IP6_SRCP].value.u16,
rule->field[IP6_SRCP].mask_range.u16,
rule->field[IP6_DSTP].value.u16,
rule->field[IP6_DSTP].mask_range.u16,
rule->field[IP6_PROTO].value.u8,
rule->field[IP6_PROTO].mask_range.u8);
if (extra)
printf("0x%x-0x%x-0x%x ",
rule->data.category_mask,
rule->data.priority,
rule->data.userdata);
}
static inline void
dump_ip6_rules(const struct acl6_rules *rule, int32_t num, int32_t extra)
{
int32_t i;
for (i = 0; i < num; i++, rule++) {
printf("\t%d:", i + 1);
print_one_ip6_rule(rule, extra);
printf("\n");
}
}
static struct rte_acl_ctx *
acl6_init(const char *name, int32_t socketid, const struct acl6_rules *rules,
uint32_t rules_nb)
{
char s[PATH_MAX];
struct rte_acl_param acl_param;
struct rte_acl_config acl_build_param;
struct rte_acl_ctx *ctx;
printf("Creating SP context with %u max rules\n", MAX_ACL_RULE_NUM);
memset(&acl_param, 0, sizeof(acl_param));
/* Create ACL contexts */
snprintf(s, sizeof(s), "%s_%d", name, socketid);
printf("IPv4 %s entries [%u]:\n", s, rules_nb);
dump_ip6_rules(rules, rules_nb, 1);
acl_param.name = s;
acl_param.socket_id = socketid;
acl_param.rule_size = RTE_ACL_RULE_SZ(RTE_DIM(ip6_defs));
acl_param.max_rule_num = MAX_ACL_RULE_NUM;
ctx = rte_acl_create(&acl_param);
if (ctx == NULL)
rte_exit(EXIT_FAILURE, "Failed to create ACL context\n");
if (rte_acl_add_rules(ctx, (const struct rte_acl_rule *)rules,
rules_nb) < 0)
rte_exit(EXIT_FAILURE, "add rules failed\n");
/* Perform builds */
memset(&acl_build_param, 0, sizeof(acl_build_param));
acl_build_param.num_categories = DEFAULT_MAX_CATEGORIES;
acl_build_param.num_fields = RTE_DIM(ip6_defs);
memcpy(&acl_build_param.defs, ip6_defs, sizeof(ip6_defs));
if (rte_acl_build(ctx, &acl_build_param) != 0)
rte_exit(EXIT_FAILURE, "Failed to build ACL trie\n");
rte_acl_dump(ctx);
return ctx;
}
void
sp6_init(struct socket_ctx *ctx, int32_t socket_id, uint32_t ep)
{
const char *name;
const struct acl6_rules *rules_out, *rules_in;
uint32_t nb_out_rules, nb_in_rules;
if (ctx == NULL)
rte_exit(EXIT_FAILURE, "NULL context.\n");
if (ctx->sp_ip6_in != NULL)
rte_exit(EXIT_FAILURE, "Inbound IPv6 SP DB for socket %u "
"already initialized\n", socket_id);
if (ctx->sp_ip6_out != NULL)
rte_exit(EXIT_FAILURE, "Outbound IPv6 SP DB for socket %u "
"already initialized\n", socket_id);
if (ep == 0) {
rules_out = acl6_rules_out;
nb_out_rules = RTE_DIM(acl6_rules_out);
rules_in = acl6_rules_in;
nb_in_rules = RTE_DIM(acl6_rules_in);
} else if (ep == 1) {
rules_out = acl6_rules_in;
nb_out_rules = RTE_DIM(acl6_rules_in);
rules_in = acl6_rules_out;
nb_in_rules = RTE_DIM(acl6_rules_out);
} else
rte_exit(EXIT_FAILURE, "Invalid EP value %u. "
"Only 0 or 1 supported.\n", ep);
name = "sp_ip6_in";
ctx->sp_ip6_in = (struct sp_ctx *)acl6_init(name, socket_id,
rules_in, nb_in_rules);
name = "sp_ip6_out";
ctx->sp_ip6_out = (struct sp_ctx *)acl6_init(name, socket_id,
rules_out, nb_out_rules);
}