examples/l3fwd: reorganise and optimize LPM code path
With latest HW and optimised RX/TX path there is a huge gap between tespmd iofwd and l3fwd performance results. So there is an attempt to optimise l3fwd LPM code path and reduce the gap: - Instead of processing each input packet up to completion - divide packet processing into several stages and perform stage by stage for the whole burst. - Unroll things by the factor of 4 whenever possible. - Use SSE instincts for some operations (bswap, replace MAC addresses, etc). - Avoid TX packet buffering whenever possible. - Move some checks from RX/TX into setup phase. Note that new(optimized) code path can be switched on/off by setting ENABLE_MULTI_BUFFER_OPTIMIZE macro to 1/0. Some performance data: SUT: dual-socket board IVB 2.8GHz, 2x1GB pages. 4 ports on 4 NICs (all at socket 0) connected to the traffic generator. kernel: 3.11.3-201.fc19.x86_64, gcc: 4.8.2. 64B packets, using the packet flooding method. All 4 ports are managed by one logical core: Optimised scalar PMD RX/TX was used. DIFF % (NEW-OLD) IPV4-CONT-BURST: +23% IPV6-CONT-BURST : +13% IPV4/IPV6-CONT-BURST: +8% IPV4-4STREAMSX8: +7% IPV4-4STREAMSX1: -2% Test cases description: IPV4-CONT-BURST - IPV4 packets all packets from the one input port are destined for the same output port. IPV6-CONT-BURST - IPV6 packets all packets from the one input port are destined for the same output port. IPV4/IPV6-CONT-BURST - mix of the first 2 with interleave=1 (e.g: IPV4,IPV6,IPV4,IPV6, ...) IPV4-4STREAMSX1 - 4 streams of IPV4 packets, where all packets from same stream are destined for the same output port (e.g: IPV4_DST_P0, IPV4_DST_P1, IPV4_DST_P2, IPV4_DST_P3, IPV4_DST_P0, ...) IPV4-4STREAMSX8 - same as above but packets for each stream are coming in groups of 8 (e.g: IPV4_DST_P0 X 8, IPV4_DST_P1 X 8, IPV4_DST_P2 X 8, IPV4_DST_P3 X 8, IPV4_DST_P0 X 8, ...) Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com> Tested-by: Waterman Cao <waterman.cao@intel.com> Acked-by: Pablo de Lara Guarch <pablo.de.lara.guarch@intel.com>
This commit is contained in:
parent
3440438c5d
commit
96ff445371
@ -42,8 +42,8 @@
|
||||
#include <errno.h>
|
||||
#include <getopt.h>
|
||||
|
||||
#include <tmmintrin.h>
|
||||
#include <rte_common.h>
|
||||
#include <rte_common_vect.h>
|
||||
#include <rte_byteorder.h>
|
||||
#include <rte_log.h>
|
||||
#include <rte_memory.h>
|
||||
@ -83,7 +83,16 @@
|
||||
#define APP_LOOKUP_METHOD APP_LOOKUP_LPM
|
||||
#endif
|
||||
|
||||
/*
|
||||
* When set to zero, simple forwaring path is eanbled.
|
||||
* When set to one, optimized forwarding path is enabled.
|
||||
* Note that LPM optimisation path uses SSE4.1 instructions.
|
||||
*/
|
||||
#if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && !defined(__SSE4_1__))
|
||||
#define ENABLE_MULTI_BUFFER_OPTIMIZE 0
|
||||
#else
|
||||
#define ENABLE_MULTI_BUFFER_OPTIMIZE 1
|
||||
#endif
|
||||
|
||||
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
||||
#include <rte_hash.h>
|
||||
@ -150,11 +159,21 @@
|
||||
#define MAX_PKT_BURST 32
|
||||
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
|
||||
|
||||
/*
|
||||
* Try to avoid TX buffering if we have at least MAX_TX_BURST packets to send.
|
||||
*/
|
||||
#define MAX_TX_BURST (MAX_PKT_BURST / 2)
|
||||
|
||||
#define NB_SOCKETS 8
|
||||
|
||||
/* Configure how many packets ahead to prefetch, when reading packets */
|
||||
#define PREFETCH_OFFSET 3
|
||||
|
||||
/* Used to mark destination port as 'invalid'. */
|
||||
#define BAD_PORT ((uint16_t)-1)
|
||||
|
||||
#define FWDSTEP 4
|
||||
|
||||
/*
|
||||
* Configurable number of RX/TX ring descriptors
|
||||
*/
|
||||
@ -166,6 +185,11 @@ static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
|
||||
/* ethernet addresses of ports */
|
||||
static struct ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
|
||||
|
||||
static __m128i val_eth[RTE_MAX_ETHPORTS];
|
||||
|
||||
/* replace first 12B of the ethernet header. */
|
||||
#define MASK_ETH 0x3f
|
||||
|
||||
/* mask of enabled ports */
|
||||
static uint32_t enabled_port_mask = 0;
|
||||
static int promiscuous_on = 0; /**< Ports set in promiscuous mode off by default. */
|
||||
@ -562,6 +586,84 @@ send_single_packet(struct rte_mbuf *m, uint8_t port)
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline __attribute__((always_inline)) void
|
||||
send_packetsx4(struct lcore_conf *qconf, uint8_t port,
|
||||
struct rte_mbuf *m[], uint32_t num)
|
||||
{
|
||||
uint32_t len, j, n;
|
||||
|
||||
len = qconf->tx_mbufs[port].len;
|
||||
|
||||
/*
|
||||
* If TX buffer for that queue is empty, and we have enough packets,
|
||||
* then send them straightway.
|
||||
*/
|
||||
if (num >= MAX_TX_BURST && len == 0) {
|
||||
n = rte_eth_tx_burst(port, qconf->tx_queue_id[port], m, num);
|
||||
if (unlikely(n < num)) {
|
||||
do {
|
||||
rte_pktmbuf_free(m[n]);
|
||||
} while (++n < num);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Put packets into TX buffer for that queue.
|
||||
*/
|
||||
|
||||
n = len + num;
|
||||
n = (n > MAX_PKT_BURST) ? MAX_PKT_BURST - len : num;
|
||||
|
||||
j = 0;
|
||||
switch (n % FWDSTEP) {
|
||||
while (j < n) {
|
||||
case 0:
|
||||
qconf->tx_mbufs[port].m_table[len + j] = m[j];
|
||||
j++;
|
||||
case 3:
|
||||
qconf->tx_mbufs[port].m_table[len + j] = m[j];
|
||||
j++;
|
||||
case 2:
|
||||
qconf->tx_mbufs[port].m_table[len + j] = m[j];
|
||||
j++;
|
||||
case 1:
|
||||
qconf->tx_mbufs[port].m_table[len + j] = m[j];
|
||||
j++;
|
||||
}
|
||||
}
|
||||
|
||||
len += n;
|
||||
|
||||
/* enough pkts to be sent */
|
||||
if (unlikely(len == MAX_PKT_BURST)) {
|
||||
|
||||
send_burst(qconf, MAX_PKT_BURST, port);
|
||||
|
||||
/* copy rest of the packets into the TX buffer. */
|
||||
len = num - n;
|
||||
j = 0;
|
||||
switch (len % FWDSTEP) {
|
||||
while (j < len) {
|
||||
case 0:
|
||||
qconf->tx_mbufs[port].m_table[j] = m[n + j];
|
||||
j++;
|
||||
case 3:
|
||||
qconf->tx_mbufs[port].m_table[j] = m[n + j];
|
||||
j++;
|
||||
case 2:
|
||||
qconf->tx_mbufs[port].m_table[j] = m[n + j];
|
||||
j++;
|
||||
case 1:
|
||||
qconf->tx_mbufs[port].m_table[j] = m[n + j];
|
||||
j++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
qconf->tx_mbufs[port].len = len;
|
||||
}
|
||||
|
||||
#ifdef DO_RFC_1812_CHECKS
|
||||
static inline int
|
||||
is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len)
|
||||
@ -647,14 +749,15 @@ get_ipv6_dst_port(void *ipv6_hdr, uint8_t portid, lookup_struct_t * ipv6_l3fwd_
|
||||
#endif
|
||||
|
||||
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
||||
|
||||
static inline uint8_t
|
||||
get_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, lookup_struct_t * ipv4_l3fwd_lookup_struct)
|
||||
{
|
||||
uint8_t next_hop;
|
||||
|
||||
return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
|
||||
rte_be_to_cpu_32(((struct ipv4_hdr*)ipv4_hdr)->dst_addr), &next_hop) == 0)?
|
||||
next_hop : portid);
|
||||
rte_be_to_cpu_32(((struct ipv4_hdr *)ipv4_hdr)->dst_addr),
|
||||
&next_hop) == 0) ? next_hop : portid);
|
||||
}
|
||||
|
||||
static inline uint8_t
|
||||
@ -667,7 +770,8 @@ get_ipv6_dst_port(void *ipv6_hdr, uint8_t portid, lookup6_struct_t * ipv6_l3fwd
|
||||
}
|
||||
#endif
|
||||
|
||||
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) & (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)
|
||||
#if ((APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) && \
|
||||
(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
|
||||
static inline void l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, struct lcore_conf *qconf);
|
||||
|
||||
#define MASK_ALL_PKTS 0xf
|
||||
@ -886,7 +990,7 @@ simple_ipv6_fwd_4pkts(struct rte_mbuf* m[4], uint8_t portid, struct lcore_conf *
|
||||
send_single_packet(m[3], (uint8_t)dst_port[3]);
|
||||
|
||||
}
|
||||
#endif // End of #if(APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)&(ENABLE_MULTI_BUFFER_OPTIMIZE == 1)
|
||||
#endif /* APP_LOOKUP_METHOD */
|
||||
|
||||
static inline __attribute__((always_inline)) void
|
||||
l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, struct lcore_conf *qconf)
|
||||
@ -911,13 +1015,16 @@ l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, struct lcore_conf *qcon
|
||||
}
|
||||
#endif
|
||||
|
||||
dst_port = get_ipv4_dst_port(ipv4_hdr, portid, qconf->ipv4_lookup_struct);
|
||||
if (dst_port >= RTE_MAX_ETHPORTS || (enabled_port_mask & 1 << dst_port) == 0)
|
||||
dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
|
||||
qconf->ipv4_lookup_struct);
|
||||
if (dst_port >= RTE_MAX_ETHPORTS ||
|
||||
(enabled_port_mask & 1 << dst_port) == 0)
|
||||
dst_port = portid;
|
||||
|
||||
/* 02:00:00:00:00:xx */
|
||||
d_addr_bytes = ð_hdr->d_addr.addr_bytes[0];
|
||||
*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40);
|
||||
*((uint64_t *)d_addr_bytes) = ETHER_LOCAL_ADMIN_ADDR +
|
||||
((uint64_t)dst_port << 40);
|
||||
|
||||
#ifdef DO_RFC_1812_CHECKS
|
||||
/* Update time to live and header checksum */
|
||||
@ -944,7 +1051,8 @@ l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, struct lcore_conf *qcon
|
||||
|
||||
/* 02:00:00:00:00:xx */
|
||||
d_addr_bytes = ð_hdr->d_addr.addr_bytes[0];
|
||||
*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40);
|
||||
*((uint64_t *)d_addr_bytes) = ETHER_LOCAL_ADMIN_ADDR +
|
||||
((uint64_t)dst_port << 40);
|
||||
|
||||
/* src addr */
|
||||
ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr);
|
||||
@ -954,6 +1062,217 @@ l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, struct lcore_conf *qcon
|
||||
|
||||
}
|
||||
|
||||
#ifdef DO_RFC_1812_CHECKS
|
||||
|
||||
#define IPV4_MIN_VER_IHL 0x45
|
||||
#define IPV4_MAX_VER_IHL 0x4f
|
||||
#define IPV4_MAX_VER_IHL_DIFF (IPV4_MAX_VER_IHL - IPV4_MIN_VER_IHL)
|
||||
|
||||
/* Minimum value of IPV4 total length (20B) in network byte order. */
|
||||
#define IPV4_MIN_LEN_BE (sizeof(struct ipv4_hdr) << 8)
|
||||
|
||||
/*
|
||||
* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2:
|
||||
* - The IP version number must be 4.
|
||||
* - The IP header length field must be large enough to hold the
|
||||
* minimum length legal IP datagram (20 bytes = 5 words).
|
||||
* - The IP total length field must be large enough to hold the IP
|
||||
* datagram header, whose length is specified in the IP header length
|
||||
* field.
|
||||
* If we encounter invalid IPV4 packet, then set destination port for it
|
||||
* to BAD_PORT value.
|
||||
*/
|
||||
static inline __attribute__((always_inline)) void
|
||||
rfc1812_process(struct ipv4_hdr *ipv4_hdr, uint16_t *dp, uint32_t flags)
|
||||
{
|
||||
uint8_t ihl;
|
||||
|
||||
if ((flags & PKT_RX_IPV4_HDR) != 0) {
|
||||
|
||||
ihl = ipv4_hdr->version_ihl - IPV4_MIN_VER_IHL;
|
||||
|
||||
ipv4_hdr->time_to_live--;
|
||||
ipv4_hdr->hdr_checksum++;
|
||||
|
||||
if (ihl > IPV4_MAX_VER_IHL_DIFF ||
|
||||
((uint8_t)ipv4_hdr->total_length == 0 &&
|
||||
ipv4_hdr->total_length < IPV4_MIN_LEN_BE)) {
|
||||
dp[0] = BAD_PORT;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
#define rfc1812_process(mb, dp) do { } while (0)
|
||||
#endif /* DO_RFC_1812_CHECKS */
|
||||
|
||||
|
||||
#if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
|
||||
(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
|
||||
|
||||
static inline __attribute__((always_inline)) uint16_t
|
||||
get_dst_port(const struct lcore_conf *qconf, struct rte_mbuf *pkt,
|
||||
uint32_t dst_ipv4, uint8_t portid)
|
||||
{
|
||||
uint8_t next_hop;
|
||||
struct ipv6_hdr *ipv6_hdr;
|
||||
struct ether_hdr *eth_hdr;
|
||||
|
||||
if (pkt->ol_flags & PKT_RX_IPV4_HDR) {
|
||||
if (rte_lpm_lookup(qconf->ipv4_lookup_struct, dst_ipv4,
|
||||
&next_hop) != 0)
|
||||
next_hop = portid;
|
||||
} else if (pkt->ol_flags & PKT_RX_IPV6_HDR) {
|
||||
eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
|
||||
ipv6_hdr = (struct ipv6_hdr *)(eth_hdr + 1);
|
||||
if (rte_lpm6_lookup(qconf->ipv6_lookup_struct,
|
||||
ipv6_hdr->dst_addr, &next_hop) != 0)
|
||||
next_hop = portid;
|
||||
} else {
|
||||
next_hop = portid;
|
||||
}
|
||||
|
||||
return next_hop;
|
||||
}
|
||||
|
||||
static inline void
|
||||
process_packet(struct lcore_conf *qconf, struct rte_mbuf *pkt,
|
||||
uint16_t *dst_port, uint8_t portid)
|
||||
{
|
||||
struct ether_hdr *eth_hdr;
|
||||
struct ipv4_hdr *ipv4_hdr;
|
||||
uint32_t dst_ipv4;
|
||||
uint16_t dp;
|
||||
__m128i te, ve;
|
||||
|
||||
eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
|
||||
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
||||
|
||||
dst_ipv4 = ipv4_hdr->dst_addr;
|
||||
dst_ipv4 = rte_be_to_cpu_32(dst_ipv4);
|
||||
dp = get_dst_port(qconf, pkt, dst_ipv4, portid);
|
||||
|
||||
te = _mm_load_si128((__m128i *)eth_hdr);
|
||||
ve = val_eth[dp];
|
||||
|
||||
dst_port[0] = dp;
|
||||
rfc1812_process(ipv4_hdr, dst_port, pkt->ol_flags);
|
||||
|
||||
te = _mm_blend_epi16(te, ve, MASK_ETH);
|
||||
_mm_store_si128((__m128i *)eth_hdr, te);
|
||||
}
|
||||
|
||||
/*
|
||||
* Read ol_flags and destination IPV4 addresses from 4 mbufs.
|
||||
*/
|
||||
static inline void
|
||||
processx4_step1(struct rte_mbuf *pkt[FWDSTEP], __m128i *dip, uint32_t *flag)
|
||||
{
|
||||
struct ipv4_hdr *ipv4_hdr;
|
||||
struct ether_hdr *eth_hdr;
|
||||
uint32_t x0, x1, x2, x3;
|
||||
|
||||
eth_hdr = rte_pktmbuf_mtod(pkt[0], struct ether_hdr *);
|
||||
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
||||
x0 = ipv4_hdr->dst_addr;
|
||||
flag[0] = pkt[0]->ol_flags & PKT_RX_IPV4_HDR;
|
||||
|
||||
eth_hdr = rte_pktmbuf_mtod(pkt[1], struct ether_hdr *);
|
||||
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
||||
x1 = ipv4_hdr->dst_addr;
|
||||
flag[0] &= pkt[1]->ol_flags;
|
||||
|
||||
eth_hdr = rte_pktmbuf_mtod(pkt[2], struct ether_hdr *);
|
||||
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
||||
x2 = ipv4_hdr->dst_addr;
|
||||
flag[0] &= pkt[2]->ol_flags;
|
||||
|
||||
eth_hdr = rte_pktmbuf_mtod(pkt[3], struct ether_hdr *);
|
||||
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
||||
x3 = ipv4_hdr->dst_addr;
|
||||
flag[0] &= pkt[3]->ol_flags;
|
||||
|
||||
dip[0] = _mm_set_epi32(x3, x2, x1, x0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Lookup into LPM for destination port.
|
||||
* If lookup fails, use incoming port (portid) as destination port.
|
||||
*/
|
||||
static inline void
|
||||
processx4_step2(const struct lcore_conf *qconf, __m128i dip, uint32_t flag,
|
||||
uint8_t portid, struct rte_mbuf *pkt[FWDSTEP], uint16_t dprt[FWDSTEP])
|
||||
{
|
||||
rte_xmm_t dst;
|
||||
const __m128i bswap_mask = _mm_set_epi8(12, 13, 14, 15, 8, 9, 10, 11,
|
||||
4, 5, 6, 7, 0, 1, 2, 3);
|
||||
|
||||
/* Byte swap 4 IPV4 addresses. */
|
||||
dip = _mm_shuffle_epi8(dip, bswap_mask);
|
||||
|
||||
/* if all 4 packets are IPV4. */
|
||||
if (likely(flag != 0)) {
|
||||
rte_lpm_lookupx4(qconf->ipv4_lookup_struct, dip, dprt, portid);
|
||||
} else {
|
||||
dst.m = dip;
|
||||
dprt[0] = get_dst_port(qconf, pkt[0], dst.u32[0], portid);
|
||||
dprt[1] = get_dst_port(qconf, pkt[1], dst.u32[1], portid);
|
||||
dprt[2] = get_dst_port(qconf, pkt[2], dst.u32[2], portid);
|
||||
dprt[3] = get_dst_port(qconf, pkt[3], dst.u32[3], portid);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Update source and destination MAC addresses in the ethernet header.
|
||||
* Perform RFC1812 checks and updates for IPV4 packets.
|
||||
*/
|
||||
static inline void
|
||||
processx4_step3(struct rte_mbuf *pkt[FWDSTEP], uint16_t dst_port[FWDSTEP])
|
||||
{
|
||||
__m128i te[FWDSTEP];
|
||||
__m128i ve[FWDSTEP];
|
||||
__m128i *p[FWDSTEP];
|
||||
|
||||
p[0] = (rte_pktmbuf_mtod(pkt[0], __m128i *));
|
||||
p[1] = (rte_pktmbuf_mtod(pkt[1], __m128i *));
|
||||
p[2] = (rte_pktmbuf_mtod(pkt[2], __m128i *));
|
||||
p[3] = (rte_pktmbuf_mtod(pkt[3], __m128i *));
|
||||
|
||||
ve[0] = val_eth[dst_port[0]];
|
||||
te[0] = _mm_load_si128(p[0]);
|
||||
|
||||
ve[1] = val_eth[dst_port[1]];
|
||||
te[1] = _mm_load_si128(p[1]);
|
||||
|
||||
ve[2] = val_eth[dst_port[2]];
|
||||
te[2] = _mm_load_si128(p[2]);
|
||||
|
||||
ve[3] = val_eth[dst_port[3]];
|
||||
te[3] = _mm_load_si128(p[3]);
|
||||
|
||||
/* Update first 12 bytes, keep rest bytes intact. */
|
||||
te[0] = _mm_blend_epi16(te[0], ve[0], MASK_ETH);
|
||||
te[1] = _mm_blend_epi16(te[1], ve[1], MASK_ETH);
|
||||
te[2] = _mm_blend_epi16(te[2], ve[2], MASK_ETH);
|
||||
te[3] = _mm_blend_epi16(te[3], ve[3], MASK_ETH);
|
||||
|
||||
_mm_store_si128(p[0], te[0]);
|
||||
_mm_store_si128(p[1], te[1]);
|
||||
_mm_store_si128(p[2], te[2]);
|
||||
_mm_store_si128(p[3], te[3]);
|
||||
|
||||
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[0] + 1),
|
||||
&dst_port[0], pkt[0]->ol_flags);
|
||||
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[1] + 1),
|
||||
&dst_port[1], pkt[1]->ol_flags);
|
||||
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[2] + 1),
|
||||
&dst_port[2], pkt[2]->ol_flags);
|
||||
rfc1812_process((struct ipv4_hdr *)((struct ether_hdr *)p[3] + 1),
|
||||
&dst_port[3], pkt[3]->ol_flags);
|
||||
}
|
||||
|
||||
#endif /* APP_LOOKUP_METHOD */
|
||||
|
||||
/* main processing loop */
|
||||
static int
|
||||
main_loop(__attribute__((unused)) void *dummy)
|
||||
@ -964,7 +1283,16 @@ main_loop(__attribute__((unused)) void *dummy)
|
||||
int i, j, nb_rx;
|
||||
uint8_t portid, queueid;
|
||||
struct lcore_conf *qconf;
|
||||
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
|
||||
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
|
||||
US_PER_S * BURST_TX_DRAIN_US;
|
||||
|
||||
#if ((APP_LOOKUP_METHOD == APP_LOOKUP_LPM) && \
|
||||
(ENABLE_MULTI_BUFFER_OPTIMIZE == 1))
|
||||
int32_t k;
|
||||
uint16_t dst_port[MAX_PKT_BURST];
|
||||
__m128i dip[MAX_PKT_BURST / FWDSTEP];
|
||||
uint32_t flag[MAX_PKT_BURST / FWDSTEP];
|
||||
#endif
|
||||
|
||||
prev_tsc = 0;
|
||||
|
||||
@ -1003,7 +1331,7 @@ main_loop(__attribute__((unused)) void *dummy)
|
||||
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
|
||||
if (qconf->tx_mbufs[portid].len == 0)
|
||||
continue;
|
||||
send_burst(&lcore_conf[lcore_id],
|
||||
send_burst(qconf,
|
||||
qconf->tx_mbufs[portid].len,
|
||||
portid);
|
||||
qconf->tx_mbufs[portid].len = 0;
|
||||
@ -1018,10 +1346,18 @@ main_loop(__attribute__((unused)) void *dummy)
|
||||
for (i = 0; i < qconf->n_rx_queue; ++i) {
|
||||
portid = qconf->rx_queue_list[i].port_id;
|
||||
queueid = qconf->rx_queue_list[i].queue_id;
|
||||
nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, MAX_PKT_BURST);
|
||||
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH) & (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)
|
||||
nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
|
||||
MAX_PKT_BURST);
|
||||
if (nb_rx == 0)
|
||||
continue;
|
||||
|
||||
#if (ENABLE_MULTI_BUFFER_OPTIMIZE == 1)
|
||||
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
||||
{
|
||||
/* Send nb_rx - nb_rx%4 packets in groups of 4.*/
|
||||
/*
|
||||
* Send nb_rx - nb_rx%4 packets
|
||||
* in groups of 4.
|
||||
*/
|
||||
int32_t n = RTE_ALIGN_FLOOR(nb_rx, 4);
|
||||
for (j = 0; j < n ; j+=4) {
|
||||
uint32_t ol_flag = pkts_burst[j]->ol_flags
|
||||
@ -1050,7 +1386,71 @@ main_loop(__attribute__((unused)) void *dummy)
|
||||
portid, qconf);
|
||||
}
|
||||
}
|
||||
#else
|
||||
#elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
||||
|
||||
k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
|
||||
for (j = 0; j != k; j += FWDSTEP) {
|
||||
processx4_step1(&pkts_burst[j],
|
||||
&dip[j / FWDSTEP],
|
||||
&flag[j / FWDSTEP]);
|
||||
}
|
||||
|
||||
k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
|
||||
for (j = 0; j != k; j += FWDSTEP) {
|
||||
processx4_step2(qconf, dip[j / FWDSTEP],
|
||||
flag[j / FWDSTEP], portid,
|
||||
&pkts_burst[j], &dst_port[j]);
|
||||
}
|
||||
|
||||
k = RTE_ALIGN_FLOOR(nb_rx, FWDSTEP);
|
||||
for (j = 0; j != k; j += FWDSTEP) {
|
||||
processx4_step3(&pkts_burst[j], &dst_port[j]);
|
||||
}
|
||||
|
||||
/* Process up to last 3 packets one by one. */
|
||||
switch (nb_rx % FWDSTEP) {
|
||||
case 3:
|
||||
process_packet(qconf, pkts_burst[j],
|
||||
dst_port + j, portid);
|
||||
j++;
|
||||
case 2:
|
||||
process_packet(qconf, pkts_burst[j],
|
||||
dst_port + j, portid);
|
||||
j++;
|
||||
case 1:
|
||||
process_packet(qconf, pkts_burst[j],
|
||||
dst_port + j, portid);
|
||||
j++;
|
||||
}
|
||||
|
||||
/*
|
||||
* Send packets out, through destination port.
|
||||
* Try to group packets with the same destination port.
|
||||
* If destination port for the packet equals BAD_PORT,
|
||||
* then free the packet without sending it out.
|
||||
*/
|
||||
for (j = 0; j < nb_rx; j = k) {
|
||||
|
||||
uint16_t cn, pn = dst_port[j];
|
||||
|
||||
k = j;
|
||||
do {
|
||||
cn = dst_port[k];
|
||||
} while (cn != BAD_PORT && pn == cn &&
|
||||
++k < nb_rx);
|
||||
|
||||
send_packetsx4(qconf, pn, pkts_burst + j,
|
||||
k - j);
|
||||
|
||||
if (cn == BAD_PORT) {
|
||||
rte_pktmbuf_free(pkts_burst[k]);
|
||||
k += 1;
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* APP_LOOKUP_METHOD */
|
||||
#else /* ENABLE_MULTI_BUFFER_OPTIMIZE == 0 */
|
||||
|
||||
/* Prefetch first packets */
|
||||
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
|
||||
rte_prefetch0(rte_pktmbuf_mtod(
|
||||
@ -1061,14 +1461,17 @@ main_loop(__attribute__((unused)) void *dummy)
|
||||
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
|
||||
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
|
||||
j + PREFETCH_OFFSET], void *));
|
||||
l3fwd_simple_forward(pkts_burst[j], portid, qconf);
|
||||
l3fwd_simple_forward(pkts_burst[j], portid,
|
||||
qconf);
|
||||
}
|
||||
|
||||
/* Forward remaining prefetched packets */
|
||||
for (; j < nb_rx; j++) {
|
||||
l3fwd_simple_forward(pkts_burst[j], portid, qconf);
|
||||
l3fwd_simple_forward(pkts_burst[j], portid,
|
||||
qconf);
|
||||
}
|
||||
#endif // End of #if((ENABLE_MULTI_BUFFER_OPTIMIZE == 1)&(APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH))
|
||||
#endif /* ENABLE_MULTI_BUFFER_OPTIMIZE */
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1459,12 +1862,12 @@ populate_ipv4_few_flow_into_table(const struct rte_hash* h)
|
||||
convert_ipv4_5tuple(&entry.key, &newkey);
|
||||
ret = rte_hash_add_key (h,(void *) &newkey);
|
||||
if (ret < 0) {
|
||||
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
|
||||
"l3fwd hash.\n", i);
|
||||
rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
|
||||
" to the l3fwd hash.\n", i);
|
||||
}
|
||||
ipv4_l3fwd_out_if[ret] = entry.if_out;
|
||||
}
|
||||
printf("Hash: Adding 0x%x keys\n", array_len);
|
||||
printf("Hash: Adding 0x%" PRIx32 " keys\n", array_len);
|
||||
}
|
||||
|
||||
#define BIT_16_TO_23 0x00ff0000
|
||||
@ -1484,12 +1887,12 @@ populate_ipv6_few_flow_into_table(const struct rte_hash* h)
|
||||
convert_ipv6_5tuple(&entry.key, &newkey);
|
||||
ret = rte_hash_add_key (h, (void *) &newkey);
|
||||
if (ret < 0) {
|
||||
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
|
||||
"l3fwd hash.\n", i);
|
||||
rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
|
||||
" to the l3fwd hash.\n", i);
|
||||
}
|
||||
ipv6_l3fwd_out_if[ret] = entry.if_out;
|
||||
}
|
||||
printf("Hash: Adding 0x%xkeys\n", array_len);
|
||||
printf("Hash: Adding 0x%" PRIx32 "keys\n", array_len);
|
||||
}
|
||||
|
||||
#define NUMBER_PORT_USED 4
|
||||
@ -1657,6 +2060,12 @@ setup_lpm(int socketid)
|
||||
|
||||
/* populate the LPM table */
|
||||
for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
|
||||
|
||||
/* skip unused ports */
|
||||
if ((1 << ipv4_l3fwd_route_array[i].if_out &
|
||||
enabled_port_mask) == 0)
|
||||
continue;
|
||||
|
||||
ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
|
||||
ipv4_l3fwd_route_array[i].ip,
|
||||
ipv4_l3fwd_route_array[i].depth,
|
||||
@ -1688,6 +2097,12 @@ setup_lpm(int socketid)
|
||||
|
||||
/* populate the LPM table */
|
||||
for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
|
||||
|
||||
/* skip unused ports */
|
||||
if ((1 << ipv6_l3fwd_route_array[i].if_out &
|
||||
enabled_port_mask) == 0)
|
||||
continue;
|
||||
|
||||
ret = rte_lpm6_add(ipv6_l3fwd_lookup_struct[socketid],
|
||||
ipv6_l3fwd_route_array[i].ip,
|
||||
ipv6_l3fwd_route_array[i].depth,
|
||||
@ -1881,6 +2296,14 @@ MAIN(int argc, char **argv)
|
||||
print_ethaddr(" Address:", &ports_eth_addr[portid]);
|
||||
printf(", ");
|
||||
|
||||
/*
|
||||
* prepare dst and src MACs for each port.
|
||||
*/
|
||||
*(uint64_t *)(val_eth + portid) =
|
||||
ETHER_LOCAL_ADMIN_ADDR + ((uint64_t)portid << 40);
|
||||
ether_addr_copy(&ports_eth_addr[portid],
|
||||
(struct ether_addr *)(val_eth + portid) + 1);
|
||||
|
||||
/* init memory */
|
||||
ret = init_mem(NB_MBUF);
|
||||
if (ret < 0)
|
||||
|
Loading…
Reference in New Issue
Block a user