app/test: add SNOW 3G performance test

Adding performance test for snow3g wireless algorithm.
Performance test can run over both software and hardware.

Signed-off-by: Fiona Trahe <fiona.trahe@intel.com>
Signed-off-by: Deepak Kumar Jain <deepak.k.jain@intel.com>
Signed-off-by: Declan Doherty <declan.doherty@intel.com>
This commit is contained in:
Fiona Trahe 2016-06-20 16:08:23 +01:00 committed by Thomas Monjalon
parent f468db6fa8
commit 97fe6461c7
2 changed files with 688 additions and 2 deletions

View File

@ -46,7 +46,7 @@
#define DEFAULT_BURST_SIZE (64)
#define DEFAULT_NUM_XFORMS (2)
#define NUM_MBUFS (8191)
#define MBUF_CACHE_SIZE (250)
#define MBUF_CACHE_SIZE (256)
#define MBUF_DATAPAYLOAD_SIZE (2048 + DIGEST_BYTE_LENGTH_SHA512)
#define MBUF_SIZE (sizeof(struct rte_mbuf) + \
RTE_PKTMBUF_HEADROOM + MBUF_DATAPAYLOAD_SIZE)

View File

@ -58,6 +58,25 @@ struct crypto_testsuite_params {
uint8_t dev_id;
};
enum chain_mode {
CIPHER_HASH,
HASH_CIPHER,
CIPHER_ONLY,
HASH_ONLY
};
struct perf_test_params {
unsigned total_operations;
unsigned burst_size;
unsigned buf_size;
enum chain_mode chain;
enum rte_crypto_cipher_algorithm cipher_algo;
unsigned cipher_key_length;
enum rte_crypto_auth_algorithm auth_algo;
};
#define MAX_NUM_OF_OPS_PER_UT (128)
@ -75,6 +94,98 @@ struct crypto_unittest_params {
uint8_t *digest;
};
static struct rte_cryptodev_sym_session *
test_perf_create_snow3g_session(uint8_t dev_id, enum chain_mode chain,
enum rte_crypto_cipher_algorithm cipher_algo, unsigned cipher_key_len,
enum rte_crypto_auth_algorithm auth_algo);
static struct rte_mbuf *
test_perf_create_pktmbuf(struct rte_mempool *mpool, unsigned buf_sz);
static inline struct rte_crypto_op *
test_perf_set_crypto_op_snow3g(struct rte_crypto_op *op, struct rte_mbuf *m,
struct rte_cryptodev_sym_session *sess, unsigned data_len,
unsigned digest_len);
static uint32_t get_auth_digest_length(enum rte_crypto_auth_algorithm algo);
static const char *chain_mode_name(enum chain_mode mode)
{
switch (mode) {
case CIPHER_HASH: return "cipher_hash"; break;
case HASH_CIPHER: return "hash_cipher"; break;
case CIPHER_ONLY: return "cipher_only"; break;
case HASH_ONLY: return "hash_only"; break;
default: return ""; break;
}
}
static const char *pmd_name(enum rte_cryptodev_type pmd)
{
switch (pmd) {
case RTE_CRYPTODEV_NULL_PMD: return CRYPTODEV_NAME_NULL_PMD; break;
case RTE_CRYPTODEV_AESNI_GCM_PMD:
return CRYPTODEV_NAME_AESNI_GCM_PMD;
case RTE_CRYPTODEV_AESNI_MB_PMD:
return CRYPTODEV_NAME_AESNI_MB_PMD;
case RTE_CRYPTODEV_QAT_SYM_PMD:
return CRYPTODEV_NAME_QAT_SYM_PMD;
case RTE_CRYPTODEV_SNOW3G_PMD:
return CRYPTODEV_NAME_SNOW3G_PMD;
default:
return "";
}
}
static const char *cipher_algo_name(enum rte_crypto_cipher_algorithm cipher_algo)
{
switch (cipher_algo) {
case RTE_CRYPTO_CIPHER_NULL: return "NULL";
case RTE_CRYPTO_CIPHER_3DES_CBC: return "3DES_CBC";
case RTE_CRYPTO_CIPHER_3DES_CTR: return "3DES_CTR";
case RTE_CRYPTO_CIPHER_3DES_ECB: return "3DES_ECB";
case RTE_CRYPTO_CIPHER_AES_CBC: return "AES_CBC";
case RTE_CRYPTO_CIPHER_AES_CCM: return "AES_CCM";
case RTE_CRYPTO_CIPHER_AES_CTR: return "AES_CTR";
case RTE_CRYPTO_CIPHER_AES_ECB: return "AES_ECB";
case RTE_CRYPTO_CIPHER_AES_F8: return "AES_F8";
case RTE_CRYPTO_CIPHER_AES_GCM: return "AES_GCM";
case RTE_CRYPTO_CIPHER_AES_XTS: return "AES_XTS";
case RTE_CRYPTO_CIPHER_ARC4: return "ARC4";
case RTE_CRYPTO_CIPHER_KASUMI_F8: return "KASUMI_F8";
case RTE_CRYPTO_CIPHER_SNOW3G_UEA2: return "SNOW3G_UEA2";
case RTE_CRYPTO_CIPHER_ZUC_EEA3: return "ZUC_EEA3";
default: return "Another cipher algo";
}
}
static const char *auth_algo_name(enum rte_crypto_auth_algorithm auth_algo)
{
switch (auth_algo) {
case RTE_CRYPTO_AUTH_NULL: return "NULL"; break;
case RTE_CRYPTO_AUTH_AES_CBC_MAC: return "AES_CBC_MAC"; break;
case RTE_CRYPTO_AUTH_AES_CCM: return "AES_CCM"; break;
case RTE_CRYPTO_AUTH_AES_CMAC: return "AES_CMAC,"; break;
case RTE_CRYPTO_AUTH_AES_GCM: return "AES_GCM"; break;
case RTE_CRYPTO_AUTH_AES_GMAC: return "AES_GMAC"; break;
case RTE_CRYPTO_AUTH_AES_XCBC_MAC: return "AES_XCBC_MAC"; break;
case RTE_CRYPTO_AUTH_KASUMI_F9: return "KASUMI_F9"; break;
case RTE_CRYPTO_AUTH_MD5: return "MD5"; break;
case RTE_CRYPTO_AUTH_MD5_HMAC: return "MD5_HMAC,"; break;
case RTE_CRYPTO_AUTH_SHA1: return "SHA1"; break;
case RTE_CRYPTO_AUTH_SHA1_HMAC: return "SHA1_HMAC"; break;
case RTE_CRYPTO_AUTH_SHA224: return "SHA224"; break;
case RTE_CRYPTO_AUTH_SHA224_HMAC: return "SHA224_HMAC"; break;
case RTE_CRYPTO_AUTH_SHA256: return "SHA256"; break;
case RTE_CRYPTO_AUTH_SHA256_HMAC: return "SHA256_HMAC"; break;
case RTE_CRYPTO_AUTH_SHA384: return "SHA384,"; break;
case RTE_CRYPTO_AUTH_SHA384_HMAC: return "SHA384_HMAC,"; break;
case RTE_CRYPTO_AUTH_SHA512: return "SHA512,"; break;
case RTE_CRYPTO_AUTH_SHA512_HMAC: return "SHA512_HMAC,"; break;
case RTE_CRYPTO_AUTH_SNOW3G_UIA2: return "SNOW3G_UIA2"; break;
case RTE_CRYPTO_AUTH_ZUC_EIA3: return "RTE_CRYPTO_AUTH_ZUC_EIA3"; break;
default: return "Another auth algo"; break;
};
}
static struct rte_mbuf *
setup_test_string(struct rte_mempool *mpool,
const uint8_t *data, size_t len, uint8_t blocksize)
@ -148,6 +259,21 @@ testsuite_setup(void)
}
}
/* Create 2 SNOW3G devices if required */
if (gbl_cryptodev_preftest_devtype == RTE_CRYPTODEV_SNOW3G_PMD) {
nb_devs = rte_cryptodev_count_devtype(RTE_CRYPTODEV_SNOW3G_PMD);
if (nb_devs < 2) {
for (i = nb_devs; i < 2; i++) {
ret = rte_eal_vdev_init(
CRYPTODEV_NAME_SNOW3G_PMD, NULL);
TEST_ASSERT(ret == 0,
"Failed to create instance %u of pmd : %s",
i, CRYPTODEV_NAME_SNOW3G_PMD);
}
}
}
nb_devs = rte_cryptodev_count();
if (nb_devs < 1) {
RTE_LOG(ERR, USER1, "No crypto devices found?");
@ -219,6 +345,9 @@ testsuite_teardown(void)
if (ts_params->mbuf_mp != NULL)
RTE_LOG(DEBUG, USER1, "CRYPTO_PERF_MBUFPOOL count %u\n",
rte_mempool_count(ts_params->mbuf_mp));
if (ts_params->op_mpool != NULL)
RTE_LOG(DEBUG, USER1, "CRYPTO_PERF_OP POOL count %u\n",
rte_mempool_count(ts_params->op_mpool));
}
static int
@ -1693,7 +1822,6 @@ struct crypto_data_params aes_cbc_hmac_sha256_output[MAX_PACKET_SIZE_INDEX] = {
{ AES_CBC_ciphertext_2048B, HMAC_SHA256_ciphertext_2048B_digest } }
};
static int
test_perf_crypto_qp_vary_burst_size(uint16_t dev_num)
{
@ -2019,6 +2147,523 @@ test_perf_AES_CBC_HMAC_SHA256_encrypt_digest_vary_req_size(uint16_t dev_num)
printf("\n");
return TEST_SUCCESS;
}
static int
test_perf_snow3G_optimise_cyclecount(struct perf_test_params *pparams)
{
uint32_t num_to_submit = pparams->total_operations;
struct rte_crypto_op *c_ops[num_to_submit];
struct rte_crypto_op *proc_ops[num_to_submit];
uint64_t failed_polls, retries, start_cycles, end_cycles, total_cycles = 0;
uint32_t burst_sent = 0, burst_received = 0;
uint32_t i, burst_size, num_sent, num_ops_received;
struct crypto_testsuite_params *ts_params = &testsuite_params;
static struct rte_cryptodev_sym_session *sess;
if (rte_cryptodev_count() == 0) {
printf("\nNo crypto devices found. Is PMD build configured?\n");
printf("\nAnd is kernel driver loaded for HW PMDs?\n");
return TEST_FAILED;
}
/* Create Crypto session*/
sess = test_perf_create_snow3g_session(ts_params->dev_id,
pparams->chain, pparams->cipher_algo,
pparams->cipher_key_length, pparams->auth_algo);
TEST_ASSERT_NOT_NULL(sess, "Session creation failed");
/* Generate Crypto op data structure(s)*/
for (i = 0; i < num_to_submit ; i++) {
struct rte_mbuf *m = test_perf_create_pktmbuf(
ts_params->mbuf_mp,
pparams->buf_size);
TEST_ASSERT_NOT_NULL(m, "Failed to allocate tx_buf");
struct rte_crypto_op *op =
rte_crypto_op_alloc(ts_params->op_mpool,
RTE_CRYPTO_OP_TYPE_SYMMETRIC);
TEST_ASSERT_NOT_NULL(op, "Failed to allocate op");
op = test_perf_set_crypto_op_snow3g(op, m, sess, pparams->buf_size,
get_auth_digest_length(pparams->auth_algo));
TEST_ASSERT_NOT_NULL(op, "Failed to attach op to session");
c_ops[i] = op;
}
printf("\nOn %s dev%u qp%u, %s, cipher algo:%s, auth_algo:%s, "
"Packet Size %u bytes",
pmd_name(gbl_cryptodev_preftest_devtype),
ts_params->dev_id, 0,
chain_mode_name(pparams->chain),
cipher_algo_name(pparams->cipher_algo),
auth_algo_name(pparams->auth_algo),
pparams->buf_size);
printf("\nOps Tx\tOps Rx\tOps/burst ");
printf("Retries EmptyPolls\tIACycles/CyOp\tIACycles/Burst\tIACycles/Byte");
for (i = 2; i <= 128 ; i *= 2) {
num_sent = 0;
num_ops_received = 0;
retries = 0;
failed_polls = 0;
burst_size = i;
total_cycles = 0;
while (num_sent < num_to_submit) {
start_cycles = rte_rdtsc_precise();
burst_sent = rte_cryptodev_enqueue_burst(ts_params->dev_id,
0, &c_ops[num_sent],
((num_to_submit-num_sent) < burst_size) ?
num_to_submit-num_sent : burst_size);
end_cycles = rte_rdtsc_precise();
if (burst_sent == 0)
retries++;
num_sent += burst_sent;
total_cycles += (end_cycles - start_cycles);
/* Wait until requests have been sent. */
rte_delay_ms(1);
start_cycles = rte_rdtsc_precise();
burst_received = rte_cryptodev_dequeue_burst(
ts_params->dev_id, 0, proc_ops, burst_size);
end_cycles = rte_rdtsc_precise();
if (burst_received < burst_sent)
failed_polls++;
num_ops_received += burst_received;
total_cycles += end_cycles - start_cycles;
}
while (num_ops_received != num_to_submit) {
if (gbl_cryptodev_preftest_devtype ==
RTE_CRYPTODEV_AESNI_MB_PMD)
rte_cryptodev_enqueue_burst(ts_params->dev_id, 0,
NULL, 0);
start_cycles = rte_rdtsc_precise();
burst_received = rte_cryptodev_dequeue_burst(
ts_params->dev_id, 0, proc_ops, burst_size);
end_cycles = rte_rdtsc_precise();
total_cycles += end_cycles - start_cycles;
if (burst_received == 0)
failed_polls++;
num_ops_received += burst_received;
}
printf("\n%u\t%u\t%u", num_sent, num_ops_received, burst_size);
printf("\t\t%"PRIu64, retries);
printf("\t%"PRIu64, failed_polls);
printf("\t\t%"PRIu64, total_cycles/num_ops_received);
printf("\t\t%"PRIu64, (total_cycles/num_ops_received)*burst_size);
printf("\t\t%"PRIu64, total_cycles/(num_ops_received*pparams->buf_size));
}
printf("\n");
for (i = 0; i < num_to_submit ; i++) {
rte_pktmbuf_free(c_ops[i]->sym->m_src);
rte_crypto_op_free(c_ops[i]);
}
return TEST_SUCCESS;
}
static int
test_perf_snow3G_vary_burst_size(void)
{
unsigned total_operations = 4096;
/*no need to vary pkt size for QAT, should have no effect on IA cycles */
uint16_t buf_lengths[] = {40};
uint8_t i, j;
struct perf_test_params params_set[] = {
{
.chain = CIPHER_ONLY,
.cipher_algo = RTE_CRYPTO_CIPHER_SNOW3G_UEA2,
.cipher_key_length = 16,
.auth_algo = RTE_CRYPTO_AUTH_NULL,
},
{
.chain = HASH_ONLY,
.cipher_algo = RTE_CRYPTO_CIPHER_NULL,
.auth_algo = RTE_CRYPTO_AUTH_SNOW3G_UIA2,
.cipher_key_length = 16
},
};
printf("\n\nStart %s.", __func__);
printf("\nThis Test measures the average IA cycle cost using a "
"constant request(packet) size. ");
printf("Cycle cost is only valid when indicators show device is not busy,"
" i.e. Retries and EmptyPolls = 0");
for (i = 0; i < RTE_DIM(params_set); i++) {
printf("\n");
params_set[i].total_operations = total_operations;
for (j = 0;
j < RTE_DIM(buf_lengths);
j++) {
params_set[i].buf_size = buf_lengths[j];
test_perf_snow3G_optimise_cyclecount(&params_set[i]);
}
}
return 0;
}
static uint32_t get_auth_key_max_length(enum rte_crypto_auth_algorithm algo)
{
switch (algo) {
case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
return 16;
default:
return 0;
}
}
static uint32_t get_auth_digest_length(enum rte_crypto_auth_algorithm algo)
{
switch (algo) {
case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
return 4;
default:
return 0;
}
}
static uint8_t snow3g_cipher_key[] = {
0x2B, 0xD6, 0x45, 0x9F, 0x82, 0xC5, 0xB3, 0x00,
0x95, 0x2C, 0x49, 0x10, 0x48, 0x81, 0xFF, 0x48
};
static uint8_t snow3g_iv[] = {
0x72, 0xA4, 0xF2, 0x0F, 0x64, 0x00, 0x00, 0x00,
0x72, 0xA4, 0xF2, 0x0F, 0x64, 0x00, 0x00, 0x00
};
static uint8_t snow3g_hash_key[] = {
0xC7, 0x36, 0xC6, 0xAA, 0xB2, 0x2B, 0xFF, 0xF9,
0x1E, 0x26, 0x98, 0xD2, 0xE2, 0x2A, 0xD5, 0x7E
};
static struct rte_cryptodev_sym_session *
test_perf_create_snow3g_session(uint8_t dev_id, enum chain_mode chain,
enum rte_crypto_cipher_algorithm cipher_algo, unsigned cipher_key_len,
enum rte_crypto_auth_algorithm auth_algo)
{
struct rte_crypto_sym_xform cipher_xform = {0};
struct rte_crypto_sym_xform auth_xform = {0};
/* Setup Cipher Parameters */
cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
cipher_xform.cipher.algo = cipher_algo;
cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
cipher_xform.cipher.key.data = snow3g_cipher_key;
cipher_xform.cipher.key.length = cipher_key_len;
/* Setup HMAC Parameters */
auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH;
auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
auth_xform.auth.algo = auth_algo;
auth_xform.auth.key.data = snow3g_hash_key;
auth_xform.auth.key.length = get_auth_key_max_length(auth_algo);
auth_xform.auth.digest_length = get_auth_digest_length(auth_algo);
switch (chain) {
case CIPHER_HASH:
cipher_xform.next = &auth_xform;
auth_xform.next = NULL;
/* Create Crypto session*/
return rte_cryptodev_sym_session_create(dev_id, &cipher_xform);
case HASH_CIPHER:
auth_xform.next = &cipher_xform;
cipher_xform.next = NULL;
/* Create Crypto session*/
return rte_cryptodev_sym_session_create(dev_id, &auth_xform);
case CIPHER_ONLY:
cipher_xform.next = NULL;
/* Create Crypto session*/
return rte_cryptodev_sym_session_create(dev_id, &cipher_xform);
case HASH_ONLY:
auth_xform.next = NULL;
/* Create Crypto session */
return rte_cryptodev_sym_session_create(dev_id, &auth_xform);
default:
return NULL;
}
}
#define SNOW3G_CIPHER_IV_LENGTH 16
static struct rte_mbuf *
test_perf_create_pktmbuf(struct rte_mempool *mpool, unsigned buf_sz)
{
struct rte_mbuf *m = rte_pktmbuf_alloc(mpool);
if (rte_pktmbuf_append(m, buf_sz) == NULL) {
rte_pktmbuf_free(m);
return NULL;
}
memset(rte_pktmbuf_mtod(m, uint8_t *), 0, buf_sz);
return m;
}
static inline struct rte_crypto_op *
test_perf_set_crypto_op_snow3g(struct rte_crypto_op *op, struct rte_mbuf *m,
struct rte_cryptodev_sym_session *sess, unsigned data_len,
unsigned digest_len)
{
if (rte_crypto_op_attach_sym_session(op, sess) != 0) {
rte_crypto_op_free(op);
return NULL;
}
/* Authentication Parameters */
op->sym->auth.digest.data = (uint8_t *)m->buf_addr +
(m->data_off + data_len);
op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m, data_len);
op->sym->auth.digest.length = digest_len;
op->sym->auth.aad.data = snow3g_iv;
op->sym->auth.aad.length = SNOW3G_CIPHER_IV_LENGTH;
/* Cipher Parameters */
op->sym->cipher.iv.data = snow3g_iv;
op->sym->cipher.iv.length = SNOW3G_CIPHER_IV_LENGTH;
/* Data lengths/offsets Parameters */
op->sym->auth.data.offset = 0;
op->sym->auth.data.length = data_len << 3;
op->sym->cipher.data.offset = 0;
op->sym->cipher.data.length = data_len << 3;
op->sym->m_src = m;
return op;
}
/* An mbuf set is used in each burst. An mbuf can be used by multiple bursts at
* same time, i.e. as they're not dereferenced there's no need to wait until
* finished with to re-use */
#define NUM_MBUF_SETS 8
static int
test_perf_snow3g(uint8_t dev_id, uint16_t queue_id,
struct perf_test_params *pparams)
{
uint16_t i, k, l, m;
uint16_t j = 0;
uint16_t ops_unused = 0;
uint64_t burst_enqueued = 0, total_enqueued = 0, burst_dequeued = 0;
uint64_t processed = 0, failed_polls = 0, retries = 0;
uint64_t tsc_start = 0, tsc_end = 0;
uint16_t digest_length = get_auth_digest_length(pparams->auth_algo);
struct rte_crypto_op *ops[pparams->burst_size];
struct rte_crypto_op *proc_ops[pparams->burst_size];
struct rte_mbuf *mbufs[pparams->burst_size * NUM_MBUF_SETS];
struct crypto_testsuite_params *ts_params = &testsuite_params;
static struct rte_cryptodev_sym_session *sess;
if (rte_cryptodev_count() == 0) {
printf("\nNo crypto devices found. Is PMD build configured?\n");
printf("\nAnd is kernel driver loaded for HW PMDs?\n");
return TEST_FAILED;
}
/* Create Crypto session*/
sess = test_perf_create_snow3g_session(ts_params->dev_id,
pparams->chain, pparams->cipher_algo,
pparams->cipher_key_length, pparams->auth_algo);
TEST_ASSERT_NOT_NULL(sess, "Session creation failed");
/* Generate a burst of crypto operations */
for (i = 0; i < (pparams->burst_size * NUM_MBUF_SETS); i++) {
struct rte_mbuf *m = test_perf_create_pktmbuf(
ts_params->mbuf_mp,
pparams->buf_size);
if (m == NULL) {
printf("\nFailed to get mbuf - freeing the rest.\n");
for (k = 0; k < i; k++)
rte_pktmbuf_free(mbufs[k]);
return -1;
}
mbufs[i] = m;
}
tsc_start = rte_rdtsc_precise();
while (total_enqueued < pparams->total_operations) {
uint16_t burst_size =
(total_enqueued+pparams->burst_size)
<= pparams->total_operations ?
pparams->burst_size : pparams->total_operations-total_enqueued;
uint16_t ops_needed = burst_size-ops_unused;
/* Handle the last burst correctly */
uint16_t op_offset = pparams->burst_size - burst_size;
if (ops_needed !=
rte_crypto_op_bulk_alloc(ts_params->op_mpool,
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
ops+op_offset, ops_needed)) {
printf("\nFailed to alloc enough ops.");
/*Don't exit, dequeue, more ops should become available*/
} else {
for (i = 0; i < ops_needed; i++) {
ops[i+op_offset] =
test_perf_set_crypto_op_snow3g(ops[i+op_offset],
mbufs[i +
(pparams->burst_size * (j % NUM_MBUF_SETS))],
sess,
pparams->buf_size, digest_length);
}
/* enqueue burst */
burst_enqueued =
rte_cryptodev_enqueue_burst(dev_id, queue_id,
ops+op_offset, burst_size);
if (burst_enqueued < burst_size)
retries++;
ops_unused = burst_size-burst_enqueued;
total_enqueued += burst_enqueued;
}
/* dequeue burst */
burst_dequeued = rte_cryptodev_dequeue_burst(dev_id, queue_id,
proc_ops, pparams->burst_size);
if (burst_dequeued == 0) {
failed_polls++;
} else {
processed += burst_dequeued;
for (l = 0; l < burst_dequeued; l++)
rte_crypto_op_free(proc_ops[l]);
}
j++;
}
/* Dequeue any operations still in the crypto device */
while (processed < pparams->total_operations) {
/* Sending 0 length burst to flush sw crypto device */
rte_cryptodev_enqueue_burst(dev_id, queue_id, NULL, 0);
/* dequeue burst */
burst_dequeued = rte_cryptodev_dequeue_burst(dev_id, queue_id,
proc_ops, pparams->burst_size);
if (burst_dequeued == 0)
failed_polls++;
else {
processed += burst_dequeued;
for (m = 0; m < burst_dequeued; m++)
rte_crypto_op_free(proc_ops[m]);
}
}
tsc_end = rte_rdtsc_precise();
double ops_s = ((double)processed / (tsc_end - tsc_start)) * rte_get_tsc_hz();
double cycles_burst = (double) (tsc_end - tsc_start) /
(double) processed * pparams->burst_size;
double cycles_buff = (double) (tsc_end - tsc_start) / (double) processed;
double cycles_B = cycles_buff / pparams->buf_size;
double throughput = (ops_s * pparams->buf_size * 8) / 1000000;
if (gbl_cryptodev_preftest_devtype == RTE_CRYPTODEV_QAT_SYM_PMD) {
/* Cycle count misleading on HW devices for this test, so don't print */
printf("%4u\t%6.2f\t%10.2f\t n/a \t\t n/a "
"\t\t n/a \t\t%8"PRIu64"\t%8"PRIu64,
pparams->buf_size, ops_s/1000000,
throughput, retries, failed_polls);
} else {
printf("%4u\t%6.2f\t%10.2f\t%10.2f\t%8.2f"
"\t%8.2f\t%8"PRIu64"\t%8"PRIu64,
pparams->buf_size, ops_s/1000000, throughput, cycles_burst,
cycles_buff, cycles_B, retries, failed_polls);
}
for (i = 0; i < pparams->burst_size * NUM_MBUF_SETS; i++)
rte_pktmbuf_free(mbufs[i]);
printf("\n");
return TEST_SUCCESS;
}
static int
test_perf_snow3G_vary_pkt_size(void)
{
unsigned total_operations = 1000000;
uint8_t i, j;
unsigned k;
uint16_t burst_sizes[] = {64};
uint16_t buf_lengths[] = {40, 64, 80, 120, 240, 256, 400, 512, 600, 1024, 2048};
struct perf_test_params params_set[] = {
{
.chain = CIPHER_ONLY,
.cipher_algo = RTE_CRYPTO_CIPHER_SNOW3G_UEA2,
.cipher_key_length = 16,
.auth_algo = RTE_CRYPTO_AUTH_NULL,
},
{
.chain = HASH_ONLY,
.cipher_algo = RTE_CRYPTO_CIPHER_NULL,
.auth_algo = RTE_CRYPTO_AUTH_SNOW3G_UIA2,
.cipher_key_length = 16
},
};
printf("\n\nStart %s.", __func__);
printf("\nTest to measure max throughput at various pkt sizes.");
printf("\nOn HW devices t'put maximised when high Retries and EmptyPolls"
" so cycle cost not relevant (n/a displayed).");
for (i = 0; i < RTE_DIM(params_set); i++) {
printf("\n\n");
params_set[i].total_operations = total_operations;
for (k = 0; k < RTE_DIM(burst_sizes); k++) {
printf("\nOn %s dev%u qp%u, %s, "
"cipher algo:%s, auth algo:%s, burst_size: %d ops",
pmd_name(gbl_cryptodev_preftest_devtype),
testsuite_params.dev_id, 0,
chain_mode_name(params_set[i].chain),
cipher_algo_name(params_set[i].cipher_algo),
auth_algo_name(params_set[i].auth_algo),
burst_sizes[k]);
params_set[i].burst_size = burst_sizes[k];
printf("\nPktSzB\tOp/s(M)\tThruput(Mbps)\tCycles/Burst\t"
"Cycles/buf\tCycles/B\tRetries\t\tEmptyPolls\n");
for (j = 0;
j < RTE_DIM(buf_lengths);
j++) {
params_set[i].buf_size = buf_lengths[j];
test_perf_snow3g(testsuite_params.dev_id, 0, &params_set[i]);
}
}
}
return 0;
}
static int
test_perf_encrypt_digest_vary_req_size(void)
@ -2047,6 +2692,19 @@ static struct unit_test_suite cryptodev_testsuite = {
}
};
static struct unit_test_suite cryptodev_snow3g_testsuite = {
.suite_name = "Crypto Device Snow3G Unit Test Suite",
.setup = testsuite_setup,
.teardown = testsuite_teardown,
.unit_test_cases = {
TEST_CASE_ST(ut_setup, ut_teardown,
test_perf_snow3G_vary_pkt_size),
TEST_CASE_ST(ut_setup, ut_teardown,
test_perf_snow3G_vary_burst_size),
TEST_CASES_END() /**< NULL terminate unit test array */
}
};
static int
perftest_aesni_mb_cryptodev(void /*argv __rte_unused, int argc __rte_unused*/)
{
@ -2063,6 +2721,22 @@ perftest_qat_cryptodev(void /*argv __rte_unused, int argc __rte_unused*/)
return unit_test_suite_runner(&cryptodev_testsuite);
}
static int
perftest_sw_snow3g_cryptodev(void /*argv __rte_unused, int argc __rte_unused*/)
{
gbl_cryptodev_preftest_devtype = RTE_CRYPTODEV_SNOW3G_PMD;
return unit_test_suite_runner(&cryptodev_snow3g_testsuite);
}
static int
perftest_qat_snow3g_cryptodev(void /*argv __rte_unused, int argc __rte_unused*/)
{
gbl_cryptodev_preftest_devtype = RTE_CRYPTODEV_QAT_SYM_PMD;
return unit_test_suite_runner(&cryptodev_snow3g_testsuite);
}
static struct test_command cryptodev_aesni_mb_perf_cmd = {
.command = "cryptodev_aesni_mb_perftest",
.callback = perftest_aesni_mb_cryptodev,
@ -2073,5 +2747,17 @@ static struct test_command cryptodev_qat_perf_cmd = {
.callback = perftest_qat_cryptodev,
};
static struct test_command cryptodev_sw_snow3g_perf_cmd = {
.command = "cryptodev_sw_snow3g_perftest",
.callback = perftest_sw_snow3g_cryptodev,
};
static struct test_command cryptodev_qat_snow3g_perf_cmd = {
.command = "cryptodev_qat_snow3g_perftest",
.callback = perftest_qat_snow3g_cryptodev,
};
REGISTER_TEST_COMMAND(cryptodev_aesni_mb_perf_cmd);
REGISTER_TEST_COMMAND(cryptodev_qat_perf_cmd);
REGISTER_TEST_COMMAND(cryptodev_sw_snow3g_perf_cmd);
REGISTER_TEST_COMMAND(cryptodev_qat_snow3g_perf_cmd);