crypto/dpaa_sec: support raw datapath API

This patch add raw vector API framework for dpaa_sec driver.

Signed-off-by: Gagandeep Singh <g.singh@nxp.com>
Acked-by: Akhil Goyal <gakhil@marvell.com>
This commit is contained in:
Gagandeep Singh 2021-10-14 00:30:28 +05:30 committed by Akhil Goyal
parent 3da64325d6
commit 9d5f73c2d2
5 changed files with 538 additions and 14 deletions

View File

@ -138,6 +138,7 @@ New Features
* Added DES-CBC, AES-XCBC-MAC, AES-CMAC and non-HMAC algo support.
* Added PDCP short MAC-I support.
* Added raw vector datapath API support.
* **Updated NXP dpaa2_sec crypto PMD.**

View File

@ -45,10 +45,7 @@
#include <dpaa_sec_log.h>
#include <dpaax_iova_table.h>
static uint8_t cryptodev_driver_id;
static int
dpaa_sec_attach_sess_q(struct dpaa_sec_qp *qp, dpaa_sec_session *sess);
uint8_t dpaa_cryptodev_driver_id;
static inline void
dpaa_sec_op_ending(struct dpaa_sec_op_ctx *ctx)
@ -1787,8 +1784,8 @@ dpaa_sec_enqueue_burst(void *qp, struct rte_crypto_op **ops,
case RTE_CRYPTO_OP_WITH_SESSION:
ses = (dpaa_sec_session *)
get_sym_session_private_data(
op->sym->session,
cryptodev_driver_id);
op->sym->session,
dpaa_cryptodev_driver_id);
break;
#ifdef RTE_LIB_SECURITY
case RTE_CRYPTO_OP_SECURITY_SESSION:
@ -2400,7 +2397,7 @@ dpaa_sec_detach_rxq(struct dpaa_sec_dev_private *qi, struct qman_fq *fq)
return -1;
}
static int
int
dpaa_sec_attach_sess_q(struct dpaa_sec_qp *qp, dpaa_sec_session *sess)
{
int ret;
@ -3216,7 +3213,7 @@ dpaa_sec_dev_infos_get(struct rte_cryptodev *dev,
info->feature_flags = dev->feature_flags;
info->capabilities = dpaa_sec_capabilities;
info->sym.max_nb_sessions = internals->max_nb_sessions;
info->driver_id = cryptodev_driver_id;
info->driver_id = dpaa_cryptodev_driver_id;
}
}
@ -3412,7 +3409,10 @@ static struct rte_cryptodev_ops crypto_ops = {
.queue_pair_release = dpaa_sec_queue_pair_release,
.sym_session_get_size = dpaa_sec_sym_session_get_size,
.sym_session_configure = dpaa_sec_sym_session_configure,
.sym_session_clear = dpaa_sec_sym_session_clear
.sym_session_clear = dpaa_sec_sym_session_clear,
/* Raw data-path API related operations */
.sym_get_raw_dp_ctx_size = dpaa_sec_get_dp_ctx_size,
.sym_configure_raw_dp_ctx = dpaa_sec_configure_raw_dp_ctx,
};
#ifdef RTE_LIB_SECURITY
@ -3463,7 +3463,7 @@ dpaa_sec_dev_init(struct rte_cryptodev *cryptodev)
PMD_INIT_FUNC_TRACE();
cryptodev->driver_id = cryptodev_driver_id;
cryptodev->driver_id = dpaa_cryptodev_driver_id;
cryptodev->dev_ops = &crypto_ops;
cryptodev->enqueue_burst = dpaa_sec_enqueue_burst;
@ -3472,6 +3472,7 @@ dpaa_sec_dev_init(struct rte_cryptodev *cryptodev)
RTE_CRYPTODEV_FF_HW_ACCELERATED |
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
RTE_CRYPTODEV_FF_SECURITY |
RTE_CRYPTODEV_FF_SYM_RAW_DP |
RTE_CRYPTODEV_FF_IN_PLACE_SGL |
RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
@ -3637,5 +3638,5 @@ static struct cryptodev_driver dpaa_sec_crypto_drv;
RTE_PMD_REGISTER_DPAA(CRYPTODEV_NAME_DPAA_SEC_PMD, rte_dpaa_sec_driver);
RTE_PMD_REGISTER_CRYPTO_DRIVER(dpaa_sec_crypto_drv, rte_dpaa_sec_driver.driver,
cryptodev_driver_id);
dpaa_cryptodev_driver_id);
RTE_LOG_REGISTER(dpaa_logtype_sec, pmd.crypto.dpaa, NOTICE);

View File

@ -19,6 +19,8 @@
#define AES_CTR_IV_LEN 16
#define AES_GCM_IV_LEN 12
extern uint8_t dpaa_cryptodev_driver_id;
#define DPAA_IPv6_DEFAULT_VTC_FLOW 0x60000000
/* Minimum job descriptor consists of a oneword job descriptor HEADER and
@ -117,6 +119,24 @@ struct sec_pdcp_ctxt {
uint32_t hfn_threshold; /*!< HFN Threashold for key renegotiation */
};
#endif
typedef int (*dpaa_sec_build_fd_t)(
void *qp, uint8_t *drv_ctx, struct rte_crypto_vec *data_vec,
uint16_t n_data_vecs, union rte_crypto_sym_ofs ofs,
struct rte_crypto_va_iova_ptr *iv,
struct rte_crypto_va_iova_ptr *digest,
struct rte_crypto_va_iova_ptr *aad_or_auth_iv,
void *user_data);
typedef struct dpaa_sec_job* (*dpaa_sec_build_raw_dp_fd_t)(uint8_t *drv_ctx,
struct rte_crypto_sgl *sgl,
struct rte_crypto_sgl *dest_sgl,
struct rte_crypto_va_iova_ptr *iv,
struct rte_crypto_va_iova_ptr *digest,
struct rte_crypto_va_iova_ptr *auth_iv,
union rte_crypto_sym_ofs ofs,
void *userdata);
typedef struct dpaa_sec_session_entry {
struct sec_cdb cdb; /**< cmd block associated with qp */
struct dpaa_sec_qp *qp[MAX_DPAA_CORES];
@ -129,6 +149,8 @@ typedef struct dpaa_sec_session_entry {
#ifdef RTE_LIB_SECURITY
enum rte_security_session_protocol proto_alg; /*!< Security Algorithm*/
#endif
dpaa_sec_build_fd_t build_fd;
dpaa_sec_build_raw_dp_fd_t build_raw_dp_fd;
union {
struct {
uint8_t *data; /**< pointer to key data */
@ -211,7 +233,10 @@ struct dpaa_sec_job {
#define DPAA_MAX_NB_MAX_DIGEST 32
struct dpaa_sec_op_ctx {
struct dpaa_sec_job job;
struct rte_crypto_op *op;
union {
struct rte_crypto_op *op;
void *userdata;
};
struct rte_mempool *ctx_pool; /* mempool pointer for dpaa_sec_op_ctx */
uint32_t fd_status;
int64_t vtop_offset;
@ -1001,4 +1026,16 @@ calc_chksum(void *buffer, int len)
return result;
}
int
dpaa_sec_configure_raw_dp_ctx(struct rte_cryptodev *dev, uint16_t qp_id,
struct rte_crypto_raw_dp_ctx *raw_dp_ctx,
enum rte_crypto_op_sess_type sess_type,
union rte_cryptodev_session_ctx session_ctx, uint8_t is_update);
int
dpaa_sec_get_dp_ctx_size(struct rte_cryptodev *dev);
int
dpaa_sec_attach_sess_q(struct dpaa_sec_qp *qp, dpaa_sec_session *sess);
#endif /* _DPAA_SEC_H_ */

View File

@ -0,0 +1,485 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2021 NXP
*/
#include <rte_byteorder.h>
#include <rte_common.h>
#include <cryptodev_pmd.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>
#ifdef RTE_LIB_SECURITY
#include <rte_security_driver.h>
#endif
/* RTA header files */
#include <desc/ipsec.h>
#include <rte_dpaa_bus.h>
#include <dpaa_sec.h>
#include <dpaa_sec_log.h>
struct dpaa_sec_raw_dp_ctx {
dpaa_sec_session *session;
uint32_t tail;
uint32_t head;
uint16_t cached_enqueue;
uint16_t cached_dequeue;
};
static __rte_always_inline int
dpaa_sec_raw_enqueue_done(void *qp_data, uint8_t *drv_ctx, uint32_t n)
{
RTE_SET_USED(qp_data);
RTE_SET_USED(drv_ctx);
RTE_SET_USED(n);
return 0;
}
static __rte_always_inline int
dpaa_sec_raw_dequeue_done(void *qp_data, uint8_t *drv_ctx, uint32_t n)
{
RTE_SET_USED(qp_data);
RTE_SET_USED(drv_ctx);
RTE_SET_USED(n);
return 0;
}
static inline struct dpaa_sec_op_ctx *
dpaa_sec_alloc_raw_ctx(dpaa_sec_session *ses, int sg_count)
{
struct dpaa_sec_op_ctx *ctx;
int i, retval;
retval = rte_mempool_get(
ses->qp[rte_lcore_id() % MAX_DPAA_CORES]->ctx_pool,
(void **)(&ctx));
if (!ctx || retval) {
DPAA_SEC_DP_WARN("Alloc sec descriptor failed!");
return NULL;
}
/*
* Clear SG memory. There are 16 SG entries of 16 Bytes each.
* one call to dcbz_64() clear 64 bytes, hence calling it 4 times
* to clear all the SG entries. dpaa_sec_alloc_ctx() is called for
* each packet, memset is costlier than dcbz_64().
*/
for (i = 0; i < sg_count && i < MAX_JOB_SG_ENTRIES; i += 4)
dcbz_64(&ctx->job.sg[i]);
ctx->ctx_pool = ses->qp[rte_lcore_id() % MAX_DPAA_CORES]->ctx_pool;
ctx->vtop_offset = (size_t) ctx - rte_mempool_virt2iova(ctx);
return ctx;
}
static struct dpaa_sec_job *
build_dpaa_raw_dp_auth_fd(uint8_t *drv_ctx,
struct rte_crypto_sgl *sgl,
struct rte_crypto_sgl *dest_sgl,
struct rte_crypto_va_iova_ptr *iv,
struct rte_crypto_va_iova_ptr *digest,
struct rte_crypto_va_iova_ptr *auth_iv,
union rte_crypto_sym_ofs ofs,
void *userdata)
{
RTE_SET_USED(drv_ctx);
RTE_SET_USED(sgl);
RTE_SET_USED(dest_sgl);
RTE_SET_USED(iv);
RTE_SET_USED(digest);
RTE_SET_USED(auth_iv);
RTE_SET_USED(ofs);
RTE_SET_USED(userdata);
return NULL;
}
static struct dpaa_sec_job *
build_dpaa_raw_dp_cipher_fd(uint8_t *drv_ctx,
struct rte_crypto_sgl *sgl,
struct rte_crypto_sgl *dest_sgl,
struct rte_crypto_va_iova_ptr *iv,
struct rte_crypto_va_iova_ptr *digest,
struct rte_crypto_va_iova_ptr *auth_iv,
union rte_crypto_sym_ofs ofs,
void *userdata)
{
RTE_SET_USED(digest);
RTE_SET_USED(auth_iv);
dpaa_sec_session *ses =
((struct dpaa_sec_raw_dp_ctx *)drv_ctx)->session;
struct dpaa_sec_job *cf;
struct dpaa_sec_op_ctx *ctx;
struct qm_sg_entry *sg, *out_sg, *in_sg;
unsigned int i;
uint8_t *IV_ptr = iv->va;
int data_len, total_len = 0, data_offset;
for (i = 0; i < sgl->num; i++)
total_len += sgl->vec[i].len;
data_len = total_len - ofs.ofs.cipher.head - ofs.ofs.cipher.tail;
data_offset = ofs.ofs.cipher.head;
/* Support lengths in bits only for SNOW3G and ZUC */
if (sgl->num > MAX_SG_ENTRIES) {
DPAA_SEC_DP_ERR("Cipher: Max sec segs supported is %d",
MAX_SG_ENTRIES);
return NULL;
}
ctx = dpaa_sec_alloc_raw_ctx(ses, sgl->num * 2 + 3);
if (!ctx)
return NULL;
cf = &ctx->job;
ctx->userdata = (void *)userdata;
/* output */
out_sg = &cf->sg[0];
out_sg->extension = 1;
out_sg->length = data_len;
qm_sg_entry_set64(out_sg, rte_dpaa_mem_vtop(&cf->sg[2]));
cpu_to_hw_sg(out_sg);
if (dest_sgl) {
/* 1st seg */
sg = &cf->sg[2];
qm_sg_entry_set64(sg, dest_sgl->vec[0].iova);
sg->length = dest_sgl->vec[0].len - data_offset;
sg->offset = data_offset;
/* Successive segs */
for (i = 1; i < dest_sgl->num; i++) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, dest_sgl->vec[i].iova);
sg->length = dest_sgl->vec[i].len;
}
} else {
/* 1st seg */
sg = &cf->sg[2];
qm_sg_entry_set64(sg, sgl->vec[0].iova);
sg->length = sgl->vec[0].len - data_offset;
sg->offset = data_offset;
/* Successive segs */
for (i = 1; i < sgl->num; i++) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, sgl->vec[i].iova);
sg->length = sgl->vec[i].len;
}
}
sg->final = 1;
cpu_to_hw_sg(sg);
/* input */
in_sg = &cf->sg[1];
in_sg->extension = 1;
in_sg->final = 1;
in_sg->length = data_len + ses->iv.length;
sg++;
qm_sg_entry_set64(in_sg, rte_dpaa_mem_vtop(sg));
cpu_to_hw_sg(in_sg);
/* IV */
qm_sg_entry_set64(sg, rte_dpaa_mem_vtop(IV_ptr));
sg->length = ses->iv.length;
cpu_to_hw_sg(sg);
/* 1st seg */
sg++;
qm_sg_entry_set64(sg, sgl->vec[0].iova);
sg->length = sgl->vec[0].len - data_offset;
sg->offset = data_offset;
/* Successive segs */
for (i = 1; i < sgl->num; i++) {
cpu_to_hw_sg(sg);
sg++;
qm_sg_entry_set64(sg, sgl->vec[i].iova);
sg->length = sgl->vec[i].len;
}
sg->final = 1;
cpu_to_hw_sg(sg);
return cf;
}
static uint32_t
dpaa_sec_raw_enqueue_burst(void *qp_data, uint8_t *drv_ctx,
struct rte_crypto_sym_vec *vec, union rte_crypto_sym_ofs ofs,
void *user_data[], int *status)
{
/* Function to transmit the frames to given device and queuepair */
uint32_t loop;
struct dpaa_sec_qp *dpaa_qp = (struct dpaa_sec_qp *)qp_data;
uint16_t num_tx = 0;
struct qm_fd fds[DPAA_SEC_BURST], *fd;
uint32_t frames_to_send;
struct dpaa_sec_job *cf;
dpaa_sec_session *ses =
((struct dpaa_sec_raw_dp_ctx *)drv_ctx)->session;
uint32_t flags[DPAA_SEC_BURST] = {0};
struct qman_fq *inq[DPAA_SEC_BURST];
if (unlikely(!DPAA_PER_LCORE_PORTAL)) {
if (rte_dpaa_portal_init((void *)0)) {
DPAA_SEC_ERR("Failure in affining portal");
return 0;
}
}
while (vec->num) {
frames_to_send = (vec->num > DPAA_SEC_BURST) ?
DPAA_SEC_BURST : vec->num;
for (loop = 0; loop < frames_to_send; loop++) {
if (unlikely(!ses->qp[rte_lcore_id() % MAX_DPAA_CORES])) {
if (dpaa_sec_attach_sess_q(dpaa_qp, ses)) {
frames_to_send = loop;
goto send_pkts;
}
} else if (unlikely(ses->qp[rte_lcore_id() %
MAX_DPAA_CORES] != dpaa_qp)) {
DPAA_SEC_DP_ERR("Old:sess->qp = %p"
" New qp = %p\n",
ses->qp[rte_lcore_id() %
MAX_DPAA_CORES], dpaa_qp);
frames_to_send = loop;
goto send_pkts;
}
/*Clear the unused FD fields before sending*/
fd = &fds[loop];
memset(fd, 0, sizeof(struct qm_fd));
cf = ses->build_raw_dp_fd(drv_ctx,
&vec->src_sgl[loop],
&vec->dest_sgl[loop],
&vec->iv[loop],
&vec->digest[loop],
&vec->auth_iv[loop],
ofs,
user_data[loop]);
if (!cf) {
DPAA_SEC_ERR("error: Improper packet contents"
" for crypto operation");
goto skip_tx;
}
inq[loop] = ses->inq[rte_lcore_id() % MAX_DPAA_CORES];
fd->opaque_addr = 0;
fd->cmd = 0;
qm_fd_addr_set64(fd, rte_dpaa_mem_vtop(cf->sg));
fd->_format1 = qm_fd_compound;
fd->length29 = 2 * sizeof(struct qm_sg_entry);
status[loop] = 1;
}
send_pkts:
loop = 0;
while (loop < frames_to_send) {
loop += qman_enqueue_multi_fq(&inq[loop], &fds[loop],
&flags[loop], frames_to_send - loop);
}
vec->num -= frames_to_send;
num_tx += frames_to_send;
}
skip_tx:
dpaa_qp->tx_pkts += num_tx;
dpaa_qp->tx_errs += vec->num - num_tx;
return num_tx;
}
static int
dpaa_sec_deq_raw(struct dpaa_sec_qp *qp, void **out_user_data,
uint8_t is_user_data_array,
rte_cryptodev_raw_post_dequeue_t post_dequeue,
int nb_ops)
{
struct qman_fq *fq;
unsigned int pkts = 0;
int num_rx_bufs, ret;
struct qm_dqrr_entry *dq;
uint32_t vdqcr_flags = 0;
uint8_t is_success = 0;
fq = &qp->outq;
/*
* Until request for four buffers, we provide exact number of buffers.
* Otherwise we do not set the QM_VDQCR_EXACT flag.
* Not setting QM_VDQCR_EXACT flag can provide two more buffers than
* requested, so we request two less in this case.
*/
if (nb_ops < 4) {
vdqcr_flags = QM_VDQCR_EXACT;
num_rx_bufs = nb_ops;
} else {
num_rx_bufs = nb_ops > DPAA_MAX_DEQUEUE_NUM_FRAMES ?
(DPAA_MAX_DEQUEUE_NUM_FRAMES - 2) : (nb_ops - 2);
}
ret = qman_set_vdq(fq, num_rx_bufs, vdqcr_flags);
if (ret)
return 0;
do {
const struct qm_fd *fd;
struct dpaa_sec_job *job;
struct dpaa_sec_op_ctx *ctx;
dq = qman_dequeue(fq);
if (!dq)
continue;
fd = &dq->fd;
/* sg is embedded in an op ctx,
* sg[0] is for output
* sg[1] for input
*/
job = rte_dpaa_mem_ptov(qm_fd_addr_get64(fd));
ctx = container_of(job, struct dpaa_sec_op_ctx, job);
ctx->fd_status = fd->status;
if (is_user_data_array)
out_user_data[pkts] = ctx->userdata;
else
out_user_data[0] = ctx->userdata;
if (!ctx->fd_status) {
is_success = true;
} else {
is_success = false;
DPAA_SEC_DP_WARN("SEC return err:0x%x", ctx->fd_status);
}
post_dequeue(ctx->op, pkts, is_success);
pkts++;
/* report op status to sym->op and then free the ctx memory */
rte_mempool_put(ctx->ctx_pool, (void *)ctx);
qman_dqrr_consume(fq, dq);
} while (fq->flags & QMAN_FQ_STATE_VDQCR);
return pkts;
}
static __rte_always_inline uint32_t
dpaa_sec_raw_dequeue_burst(void *qp_data, uint8_t *drv_ctx,
rte_cryptodev_raw_get_dequeue_count_t get_dequeue_count,
uint32_t max_nb_to_dequeue,
rte_cryptodev_raw_post_dequeue_t post_dequeue,
void **out_user_data, uint8_t is_user_data_array,
uint32_t *n_success, int *dequeue_status)
{
RTE_SET_USED(drv_ctx);
RTE_SET_USED(get_dequeue_count);
uint16_t num_rx;
struct dpaa_sec_qp *dpaa_qp = (struct dpaa_sec_qp *)qp_data;
uint32_t nb_ops = max_nb_to_dequeue;
if (unlikely(!DPAA_PER_LCORE_PORTAL)) {
if (rte_dpaa_portal_init((void *)0)) {
DPAA_SEC_ERR("Failure in affining portal");
return 0;
}
}
num_rx = dpaa_sec_deq_raw(dpaa_qp, out_user_data,
is_user_data_array, post_dequeue, nb_ops);
dpaa_qp->rx_pkts += num_rx;
*dequeue_status = 1;
*n_success = num_rx;
DPAA_SEC_DP_DEBUG("SEC Received %d Packets\n", num_rx);
return num_rx;
}
static __rte_always_inline int
dpaa_sec_raw_enqueue(void *qp_data, uint8_t *drv_ctx,
struct rte_crypto_vec *data_vec,
uint16_t n_data_vecs, union rte_crypto_sym_ofs ofs,
struct rte_crypto_va_iova_ptr *iv,
struct rte_crypto_va_iova_ptr *digest,
struct rte_crypto_va_iova_ptr *aad_or_auth_iv,
void *user_data)
{
RTE_SET_USED(qp_data);
RTE_SET_USED(drv_ctx);
RTE_SET_USED(data_vec);
RTE_SET_USED(n_data_vecs);
RTE_SET_USED(ofs);
RTE_SET_USED(iv);
RTE_SET_USED(digest);
RTE_SET_USED(aad_or_auth_iv);
RTE_SET_USED(user_data);
return 0;
}
static __rte_always_inline void *
dpaa_sec_raw_dequeue(void *qp_data, uint8_t *drv_ctx, int *dequeue_status,
enum rte_crypto_op_status *op_status)
{
RTE_SET_USED(qp_data);
RTE_SET_USED(drv_ctx);
RTE_SET_USED(dequeue_status);
RTE_SET_USED(op_status);
return NULL;
}
int
dpaa_sec_configure_raw_dp_ctx(struct rte_cryptodev *dev, uint16_t qp_id,
struct rte_crypto_raw_dp_ctx *raw_dp_ctx,
enum rte_crypto_op_sess_type sess_type,
union rte_cryptodev_session_ctx session_ctx, uint8_t is_update)
{
dpaa_sec_session *sess;
struct dpaa_sec_raw_dp_ctx *dp_ctx;
RTE_SET_USED(qp_id);
if (!is_update) {
memset(raw_dp_ctx, 0, sizeof(*raw_dp_ctx));
raw_dp_ctx->qp_data = dev->data->queue_pairs[qp_id];
}
if (sess_type == RTE_CRYPTO_OP_SECURITY_SESSION)
sess = (dpaa_sec_session *)get_sec_session_private_data(
session_ctx.sec_sess);
else if (sess_type == RTE_CRYPTO_OP_WITH_SESSION)
sess = (dpaa_sec_session *)get_sym_session_private_data(
session_ctx.crypto_sess, dpaa_cryptodev_driver_id);
else
return -ENOTSUP;
raw_dp_ctx->dequeue_burst = dpaa_sec_raw_dequeue_burst;
raw_dp_ctx->dequeue = dpaa_sec_raw_dequeue;
raw_dp_ctx->dequeue_done = dpaa_sec_raw_dequeue_done;
raw_dp_ctx->enqueue_burst = dpaa_sec_raw_enqueue_burst;
raw_dp_ctx->enqueue = dpaa_sec_raw_enqueue;
raw_dp_ctx->enqueue_done = dpaa_sec_raw_enqueue_done;
if (sess->ctxt == DPAA_SEC_CIPHER)
sess->build_raw_dp_fd = build_dpaa_raw_dp_cipher_fd;
else if (sess->ctxt == DPAA_SEC_AUTH)
sess->build_raw_dp_fd = build_dpaa_raw_dp_auth_fd;
else
return -ENOTSUP;
dp_ctx = (struct dpaa_sec_raw_dp_ctx *)raw_dp_ctx->drv_ctx_data;
dp_ctx->session = sess;
return 0;
}
int
dpaa_sec_get_dp_ctx_size(__rte_unused struct rte_cryptodev *dev)
{
return sizeof(struct dpaa_sec_raw_dp_ctx);
}

View File

@ -1,5 +1,5 @@
# SPDX-License-Identifier: BSD-3-Clause
# Copyright 2018 NXP
# Copyright 2018-2021 NXP
if not is_linux
build = false
@ -7,7 +7,7 @@ if not is_linux
endif
deps += ['bus_dpaa', 'mempool_dpaa', 'security']
sources = files('dpaa_sec.c')
sources = files('dpaa_sec.c', 'dpaa_sec_raw_dp.c')
includes += include_directories('../../bus/dpaa/include')
includes += include_directories('../../common/dpaax')