gro: support VxLAN GRO
This patch adds a framework that allows GRO on tunneled packets. Furthermore, it leverages that framework to provide GRO support for VxLAN-encapsulated packets. Supported VxLAN packets must have an outer IPv4 header, and contain an inner TCP/IPv4 packet. VxLAN GRO doesn't check if input packets have correct checksums and doesn't update checksums for output packets. Additionally, it assumes the packets are complete (i.e., MF==0 && frag_off==0), when IP fragmentation is possible (i.e., DF==0). Signed-off-by: Jiayu Hu <jiayu.hu@intel.com> Reviewed-by: Junjie Chen <junjie.j.chen@intel.com> Tested-by: Lei Yao <lei.a.yao@intel.com>
This commit is contained in:
parent
b52b61f046
commit
9e0b9d2ec0
@ -57,7 +57,9 @@ assumes the packets are complete (i.e., MF==0 && frag_off==0), when IP
|
||||
fragmentation is possible (i.e., DF==0). Additionally, it complies RFC
|
||||
6864 to process the IPv4 ID field.
|
||||
|
||||
Currently, the GRO library provides GRO supports for TCP/IPv4 packets.
|
||||
Currently, the GRO library provides GRO supports for TCP/IPv4 packets and
|
||||
VxLAN packets which contain an outer IPv4 header and an inner TCP/IPv4
|
||||
packet.
|
||||
|
||||
Two Sets of API
|
||||
---------------
|
||||
@ -108,7 +110,8 @@ Reassembly Algorithm
|
||||
|
||||
The reassembly algorithm is used for reassembling packets. In the GRO
|
||||
library, different GRO types can use different algorithms. In this
|
||||
section, we will introduce an algorithm, which is used by TCP/IPv4 GRO.
|
||||
section, we will introduce an algorithm, which is used by TCP/IPv4 GRO
|
||||
and VxLAN GRO.
|
||||
|
||||
Challenges
|
||||
~~~~~~~~~~
|
||||
@ -185,6 +188,30 @@ Header fields deciding if two packets are neighbors include:
|
||||
- IPv4 ID. The IPv4 ID fields of the packets, whose DF bit is 0, should
|
||||
be increased by 1.
|
||||
|
||||
VxLAN GRO
|
||||
---------
|
||||
|
||||
The table structure used by VxLAN GRO, which is in charge of processing
|
||||
VxLAN packets with an outer IPv4 header and inner TCP/IPv4 packet, is
|
||||
similar with that of TCP/IPv4 GRO. Differently, the header fields used
|
||||
to define a VxLAN flow include:
|
||||
|
||||
- outer source and destination: Ethernet and IP address, UDP port
|
||||
|
||||
- VxLAN header (VNI and flag)
|
||||
|
||||
- inner source and destination: Ethernet and IP address, TCP port
|
||||
|
||||
Header fields deciding if packets are neighbors include:
|
||||
|
||||
- outer IPv4 ID. The IPv4 ID fields of the packets, whose DF bit in the
|
||||
outer IPv4 header is 0, should be increased by 1.
|
||||
|
||||
- inner TCP sequence number
|
||||
|
||||
- inner IPv4 ID. The IPv4 ID fields of the packets, whose DF bit in the
|
||||
inner IPv4 header is 0, should be increased by 1.
|
||||
|
||||
.. note::
|
||||
We comply RFC 6864 to process the IPv4 ID field. Specifically,
|
||||
we check IPv4 ID fields for the packets whose DF bit is 0 and
|
||||
|
@ -17,6 +17,7 @@ LIBABIVER := 1
|
||||
# source files
|
||||
SRCS-$(CONFIG_RTE_LIBRTE_GRO) += rte_gro.c
|
||||
SRCS-$(CONFIG_RTE_LIBRTE_GRO) += gro_tcp4.c
|
||||
SRCS-$(CONFIG_RTE_LIBRTE_GRO) += gro_vxlan_tcp4.c
|
||||
|
||||
# install this header file
|
||||
SYMLINK-$(CONFIG_RTE_LIBRTE_GRO)-include += rte_gro.h
|
||||
|
@ -6,8 +6,6 @@
|
||||
#include <rte_mbuf.h>
|
||||
#include <rte_cycles.h>
|
||||
#include <rte_ethdev.h>
|
||||
#include <rte_ip.h>
|
||||
#include <rte_tcp.h>
|
||||
|
||||
#include "gro_tcp4.h"
|
||||
|
||||
@ -74,109 +72,6 @@ gro_tcp4_tbl_destroy(void *tbl)
|
||||
rte_free(tcp_tbl);
|
||||
}
|
||||
|
||||
/*
|
||||
* merge two TCP/IPv4 packets without updating checksums.
|
||||
* If cmp is larger than 0, append the new packet to the
|
||||
* original packet. Otherwise, pre-pend the new packet to
|
||||
* the original packet.
|
||||
*/
|
||||
static inline int
|
||||
merge_two_tcp4_packets(struct gro_tcp4_item *item,
|
||||
struct rte_mbuf *pkt,
|
||||
int cmp,
|
||||
uint32_t sent_seq,
|
||||
uint16_t ip_id)
|
||||
{
|
||||
struct rte_mbuf *pkt_head, *pkt_tail, *lastseg;
|
||||
uint16_t hdr_len;
|
||||
|
||||
if (cmp > 0) {
|
||||
pkt_head = item->firstseg;
|
||||
pkt_tail = pkt;
|
||||
} else {
|
||||
pkt_head = pkt;
|
||||
pkt_tail = item->firstseg;
|
||||
}
|
||||
|
||||
/* check if the IPv4 packet length is greater than the max value */
|
||||
hdr_len = pkt_head->l2_len + pkt_head->l3_len + pkt_head->l4_len;
|
||||
if (unlikely(pkt_head->pkt_len - pkt_head->l2_len + pkt_tail->pkt_len -
|
||||
hdr_len > MAX_IPV4_PKT_LENGTH))
|
||||
return 0;
|
||||
|
||||
/* remove the packet header for the tail packet */
|
||||
rte_pktmbuf_adj(pkt_tail, hdr_len);
|
||||
|
||||
/* chain two packets together */
|
||||
if (cmp > 0) {
|
||||
item->lastseg->next = pkt;
|
||||
item->lastseg = rte_pktmbuf_lastseg(pkt);
|
||||
/* update IP ID to the larger value */
|
||||
item->ip_id = ip_id;
|
||||
} else {
|
||||
lastseg = rte_pktmbuf_lastseg(pkt);
|
||||
lastseg->next = item->firstseg;
|
||||
item->firstseg = pkt;
|
||||
/* update sent_seq to the smaller value */
|
||||
item->sent_seq = sent_seq;
|
||||
}
|
||||
item->nb_merged++;
|
||||
|
||||
/* update mbuf metadata for the merged packet */
|
||||
pkt_head->nb_segs += pkt_tail->nb_segs;
|
||||
pkt_head->pkt_len += pkt_tail->pkt_len;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check if two TCP/IPv4 packets are neighbors.
|
||||
*/
|
||||
static inline int
|
||||
check_seq_option(struct gro_tcp4_item *item,
|
||||
struct tcp_hdr *tcph,
|
||||
uint32_t sent_seq,
|
||||
uint16_t ip_id,
|
||||
uint16_t tcp_hl,
|
||||
uint16_t tcp_dl,
|
||||
uint8_t is_atomic)
|
||||
{
|
||||
struct rte_mbuf *pkt_orig = item->firstseg;
|
||||
struct ipv4_hdr *iph_orig;
|
||||
struct tcp_hdr *tcph_orig;
|
||||
uint16_t len, tcp_hl_orig;
|
||||
|
||||
iph_orig = (struct ipv4_hdr *)(rte_pktmbuf_mtod(pkt_orig, char *) +
|
||||
pkt_orig->l2_len);
|
||||
tcph_orig = (struct tcp_hdr *)((char *)iph_orig + pkt_orig->l3_len);
|
||||
tcp_hl_orig = pkt_orig->l4_len;
|
||||
|
||||
/* Check if TCP option fields equal */
|
||||
len = RTE_MAX(tcp_hl, tcp_hl_orig) - sizeof(struct tcp_hdr);
|
||||
if ((tcp_hl != tcp_hl_orig) ||
|
||||
((len > 0) && (memcmp(tcph + 1, tcph_orig + 1,
|
||||
len) != 0)))
|
||||
return 0;
|
||||
|
||||
/* Don't merge packets whose DF bits are different */
|
||||
if (unlikely(item->is_atomic ^ is_atomic))
|
||||
return 0;
|
||||
|
||||
/* check if the two packets are neighbors */
|
||||
len = pkt_orig->pkt_len - pkt_orig->l2_len - pkt_orig->l3_len -
|
||||
tcp_hl_orig;
|
||||
if ((sent_seq == item->sent_seq + len) && (is_atomic ||
|
||||
(ip_id == item->ip_id + 1)))
|
||||
/* append the new packet */
|
||||
return 1;
|
||||
else if ((sent_seq + tcp_dl == item->sent_seq) && (is_atomic ||
|
||||
(ip_id + item->nb_merged == item->ip_id)))
|
||||
/* pre-pend the new packet */
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline uint32_t
|
||||
find_an_empty_item(struct gro_tcp4_tbl *tbl)
|
||||
{
|
||||
@ -279,21 +174,6 @@ insert_new_flow(struct gro_tcp4_tbl *tbl,
|
||||
return flow_idx;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check if two TCP/IPv4 packets belong to the same flow.
|
||||
*/
|
||||
static inline int
|
||||
is_same_tcp4_flow(struct tcp4_flow_key k1, struct tcp4_flow_key k2)
|
||||
{
|
||||
return (is_same_ether_addr(&k1.eth_saddr, &k2.eth_saddr) &&
|
||||
is_same_ether_addr(&k1.eth_daddr, &k2.eth_daddr) &&
|
||||
(k1.ip_src_addr == k2.ip_src_addr) &&
|
||||
(k1.ip_dst_addr == k2.ip_dst_addr) &&
|
||||
(k1.recv_ack == k2.recv_ack) &&
|
||||
(k1.src_port == k2.src_port) &&
|
||||
(k1.dst_port == k2.dst_port));
|
||||
}
|
||||
|
||||
/*
|
||||
* update the packet length for the flushed packet.
|
||||
*/
|
||||
@ -407,11 +287,11 @@ gro_tcp4_reassemble(struct rte_mbuf *pkt,
|
||||
prev_idx = cur_idx;
|
||||
do {
|
||||
cmp = check_seq_option(&(tbl->items[cur_idx]), tcp_hdr,
|
||||
sent_seq, ip_id, pkt->l4_len, tcp_dl,
|
||||
sent_seq, ip_id, pkt->l4_len, tcp_dl, 0,
|
||||
is_atomic);
|
||||
if (cmp) {
|
||||
if (merge_two_tcp4_packets(&(tbl->items[cur_idx]),
|
||||
pkt, cmp, sent_seq, ip_id))
|
||||
pkt, cmp, sent_seq, ip_id, 0))
|
||||
return 1;
|
||||
/*
|
||||
* Fail to merge the two packets, as the packet
|
||||
|
@ -5,6 +5,9 @@
|
||||
#ifndef _GRO_TCP4_H_
|
||||
#define _GRO_TCP4_H_
|
||||
|
||||
#include <rte_ip.h>
|
||||
#include <rte_tcp.h>
|
||||
|
||||
#define INVALID_ARRAY_INDEX 0xffffffffUL
|
||||
#define GRO_TCP4_TBL_MAX_ITEM_NUM (1024UL * 1024UL)
|
||||
|
||||
@ -172,4 +175,127 @@ uint16_t gro_tcp4_tbl_timeout_flush(struct gro_tcp4_tbl *tbl,
|
||||
* The number of packets in the table
|
||||
*/
|
||||
uint32_t gro_tcp4_tbl_pkt_count(void *tbl);
|
||||
|
||||
/*
|
||||
* Check if two TCP/IPv4 packets belong to the same flow.
|
||||
*/
|
||||
static inline int
|
||||
is_same_tcp4_flow(struct tcp4_flow_key k1, struct tcp4_flow_key k2)
|
||||
{
|
||||
return (is_same_ether_addr(&k1.eth_saddr, &k2.eth_saddr) &&
|
||||
is_same_ether_addr(&k1.eth_daddr, &k2.eth_daddr) &&
|
||||
(k1.ip_src_addr == k2.ip_src_addr) &&
|
||||
(k1.ip_dst_addr == k2.ip_dst_addr) &&
|
||||
(k1.recv_ack == k2.recv_ack) &&
|
||||
(k1.src_port == k2.src_port) &&
|
||||
(k1.dst_port == k2.dst_port));
|
||||
}
|
||||
|
||||
/*
|
||||
* Merge two TCP/IPv4 packets without updating checksums.
|
||||
* If cmp is larger than 0, append the new packet to the
|
||||
* original packet. Otherwise, pre-pend the new packet to
|
||||
* the original packet.
|
||||
*/
|
||||
static inline int
|
||||
merge_two_tcp4_packets(struct gro_tcp4_item *item,
|
||||
struct rte_mbuf *pkt,
|
||||
int cmp,
|
||||
uint32_t sent_seq,
|
||||
uint16_t ip_id,
|
||||
uint16_t l2_offset)
|
||||
{
|
||||
struct rte_mbuf *pkt_head, *pkt_tail, *lastseg;
|
||||
uint16_t hdr_len, l2_len;
|
||||
|
||||
if (cmp > 0) {
|
||||
pkt_head = item->firstseg;
|
||||
pkt_tail = pkt;
|
||||
} else {
|
||||
pkt_head = pkt;
|
||||
pkt_tail = item->firstseg;
|
||||
}
|
||||
|
||||
/* check if the IPv4 packet length is greater than the max value */
|
||||
hdr_len = l2_offset + pkt_head->l2_len + pkt_head->l3_len +
|
||||
pkt_head->l4_len;
|
||||
l2_len = l2_offset > 0 ? pkt_head->outer_l2_len : pkt_head->l2_len;
|
||||
if (unlikely(pkt_head->pkt_len - l2_len + pkt_tail->pkt_len -
|
||||
hdr_len > MAX_IPV4_PKT_LENGTH))
|
||||
return 0;
|
||||
|
||||
/* remove the packet header for the tail packet */
|
||||
rte_pktmbuf_adj(pkt_tail, hdr_len);
|
||||
|
||||
/* chain two packets together */
|
||||
if (cmp > 0) {
|
||||
item->lastseg->next = pkt;
|
||||
item->lastseg = rte_pktmbuf_lastseg(pkt);
|
||||
/* update IP ID to the larger value */
|
||||
item->ip_id = ip_id;
|
||||
} else {
|
||||
lastseg = rte_pktmbuf_lastseg(pkt);
|
||||
lastseg->next = item->firstseg;
|
||||
item->firstseg = pkt;
|
||||
/* update sent_seq to the smaller value */
|
||||
item->sent_seq = sent_seq;
|
||||
item->ip_id = ip_id;
|
||||
}
|
||||
item->nb_merged++;
|
||||
|
||||
/* update MBUF metadata for the merged packet */
|
||||
pkt_head->nb_segs += pkt_tail->nb_segs;
|
||||
pkt_head->pkt_len += pkt_tail->pkt_len;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check if two TCP/IPv4 packets are neighbors.
|
||||
*/
|
||||
static inline int
|
||||
check_seq_option(struct gro_tcp4_item *item,
|
||||
struct tcp_hdr *tcph,
|
||||
uint32_t sent_seq,
|
||||
uint16_t ip_id,
|
||||
uint16_t tcp_hl,
|
||||
uint16_t tcp_dl,
|
||||
uint16_t l2_offset,
|
||||
uint8_t is_atomic)
|
||||
{
|
||||
struct rte_mbuf *pkt_orig = item->firstseg;
|
||||
struct ipv4_hdr *iph_orig;
|
||||
struct tcp_hdr *tcph_orig;
|
||||
uint16_t len, tcp_hl_orig;
|
||||
|
||||
iph_orig = (struct ipv4_hdr *)(rte_pktmbuf_mtod(pkt_orig, char *) +
|
||||
l2_offset + pkt_orig->l2_len);
|
||||
tcph_orig = (struct tcp_hdr *)((char *)iph_orig + pkt_orig->l3_len);
|
||||
tcp_hl_orig = pkt_orig->l4_len;
|
||||
|
||||
/* Check if TCP option fields equal */
|
||||
len = RTE_MAX(tcp_hl, tcp_hl_orig) - sizeof(struct tcp_hdr);
|
||||
if ((tcp_hl != tcp_hl_orig) || ((len > 0) &&
|
||||
(memcmp(tcph + 1, tcph_orig + 1,
|
||||
len) != 0)))
|
||||
return 0;
|
||||
|
||||
/* Don't merge packets whose DF bits are different */
|
||||
if (unlikely(item->is_atomic ^ is_atomic))
|
||||
return 0;
|
||||
|
||||
/* check if the two packets are neighbors */
|
||||
len = pkt_orig->pkt_len - l2_offset - pkt_orig->l2_len -
|
||||
pkt_orig->l3_len - tcp_hl_orig;
|
||||
if ((sent_seq == item->sent_seq + len) && (is_atomic ||
|
||||
(ip_id == item->ip_id + 1)))
|
||||
/* append the new packet */
|
||||
return 1;
|
||||
else if ((sent_seq + tcp_dl == item->sent_seq) && (is_atomic ||
|
||||
(ip_id + item->nb_merged == item->ip_id)))
|
||||
/* pre-pend the new packet */
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
494
lib/librte_gro/gro_vxlan_tcp4.c
Normal file
494
lib/librte_gro/gro_vxlan_tcp4.c
Normal file
@ -0,0 +1,494 @@
|
||||
/* SPDX-License-Identifier: BSD-3-Clause
|
||||
* Copyright(c) 2018 Intel Corporation
|
||||
*/
|
||||
|
||||
#include <rte_malloc.h>
|
||||
#include <rte_mbuf.h>
|
||||
#include <rte_cycles.h>
|
||||
#include <rte_ethdev.h>
|
||||
#include <rte_udp.h>
|
||||
|
||||
#include "gro_vxlan_tcp4.h"
|
||||
|
||||
void *
|
||||
gro_vxlan_tcp4_tbl_create(uint16_t socket_id,
|
||||
uint16_t max_flow_num,
|
||||
uint16_t max_item_per_flow)
|
||||
{
|
||||
struct gro_vxlan_tcp4_tbl *tbl;
|
||||
size_t size;
|
||||
uint32_t entries_num, i;
|
||||
|
||||
entries_num = max_flow_num * max_item_per_flow;
|
||||
entries_num = RTE_MIN(entries_num, GRO_VXLAN_TCP4_TBL_MAX_ITEM_NUM);
|
||||
|
||||
if (entries_num == 0)
|
||||
return NULL;
|
||||
|
||||
tbl = rte_zmalloc_socket(__func__,
|
||||
sizeof(struct gro_vxlan_tcp4_tbl),
|
||||
RTE_CACHE_LINE_SIZE,
|
||||
socket_id);
|
||||
if (tbl == NULL)
|
||||
return NULL;
|
||||
|
||||
size = sizeof(struct gro_vxlan_tcp4_item) * entries_num;
|
||||
tbl->items = rte_zmalloc_socket(__func__,
|
||||
size,
|
||||
RTE_CACHE_LINE_SIZE,
|
||||
socket_id);
|
||||
if (tbl->items == NULL) {
|
||||
rte_free(tbl);
|
||||
return NULL;
|
||||
}
|
||||
tbl->max_item_num = entries_num;
|
||||
|
||||
size = sizeof(struct gro_vxlan_tcp4_flow) * entries_num;
|
||||
tbl->flows = rte_zmalloc_socket(__func__,
|
||||
size,
|
||||
RTE_CACHE_LINE_SIZE,
|
||||
socket_id);
|
||||
if (tbl->flows == NULL) {
|
||||
rte_free(tbl->items);
|
||||
rte_free(tbl);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
for (i = 0; i < entries_num; i++)
|
||||
tbl->flows[i].start_index = INVALID_ARRAY_INDEX;
|
||||
tbl->max_flow_num = entries_num;
|
||||
|
||||
return tbl;
|
||||
}
|
||||
|
||||
void
|
||||
gro_vxlan_tcp4_tbl_destroy(void *tbl)
|
||||
{
|
||||
struct gro_vxlan_tcp4_tbl *vxlan_tbl = tbl;
|
||||
|
||||
if (vxlan_tbl) {
|
||||
rte_free(vxlan_tbl->items);
|
||||
rte_free(vxlan_tbl->flows);
|
||||
}
|
||||
rte_free(vxlan_tbl);
|
||||
}
|
||||
|
||||
static inline uint32_t
|
||||
find_an_empty_item(struct gro_vxlan_tcp4_tbl *tbl)
|
||||
{
|
||||
uint32_t max_item_num = tbl->max_item_num, i;
|
||||
|
||||
for (i = 0; i < max_item_num; i++)
|
||||
if (tbl->items[i].inner_item.firstseg == NULL)
|
||||
return i;
|
||||
return INVALID_ARRAY_INDEX;
|
||||
}
|
||||
|
||||
static inline uint32_t
|
||||
find_an_empty_flow(struct gro_vxlan_tcp4_tbl *tbl)
|
||||
{
|
||||
uint32_t max_flow_num = tbl->max_flow_num, i;
|
||||
|
||||
for (i = 0; i < max_flow_num; i++)
|
||||
if (tbl->flows[i].start_index == INVALID_ARRAY_INDEX)
|
||||
return i;
|
||||
return INVALID_ARRAY_INDEX;
|
||||
}
|
||||
|
||||
static inline uint32_t
|
||||
insert_new_item(struct gro_vxlan_tcp4_tbl *tbl,
|
||||
struct rte_mbuf *pkt,
|
||||
uint64_t start_time,
|
||||
uint32_t prev_idx,
|
||||
uint32_t sent_seq,
|
||||
uint16_t outer_ip_id,
|
||||
uint16_t ip_id,
|
||||
uint8_t outer_is_atomic,
|
||||
uint8_t is_atomic)
|
||||
{
|
||||
uint32_t item_idx;
|
||||
|
||||
item_idx = find_an_empty_item(tbl);
|
||||
if (unlikely(item_idx == INVALID_ARRAY_INDEX))
|
||||
return INVALID_ARRAY_INDEX;
|
||||
|
||||
tbl->items[item_idx].inner_item.firstseg = pkt;
|
||||
tbl->items[item_idx].inner_item.lastseg = rte_pktmbuf_lastseg(pkt);
|
||||
tbl->items[item_idx].inner_item.start_time = start_time;
|
||||
tbl->items[item_idx].inner_item.next_pkt_idx = INVALID_ARRAY_INDEX;
|
||||
tbl->items[item_idx].inner_item.sent_seq = sent_seq;
|
||||
tbl->items[item_idx].inner_item.ip_id = ip_id;
|
||||
tbl->items[item_idx].inner_item.nb_merged = 1;
|
||||
tbl->items[item_idx].inner_item.is_atomic = is_atomic;
|
||||
tbl->items[item_idx].outer_ip_id = outer_ip_id;
|
||||
tbl->items[item_idx].outer_is_atomic = outer_is_atomic;
|
||||
tbl->item_num++;
|
||||
|
||||
/* If the previous packet exists, chain the new one with it. */
|
||||
if (prev_idx != INVALID_ARRAY_INDEX) {
|
||||
tbl->items[item_idx].inner_item.next_pkt_idx =
|
||||
tbl->items[prev_idx].inner_item.next_pkt_idx;
|
||||
tbl->items[prev_idx].inner_item.next_pkt_idx = item_idx;
|
||||
}
|
||||
|
||||
return item_idx;
|
||||
}
|
||||
|
||||
static inline uint32_t
|
||||
delete_item(struct gro_vxlan_tcp4_tbl *tbl,
|
||||
uint32_t item_idx,
|
||||
uint32_t prev_item_idx)
|
||||
{
|
||||
uint32_t next_idx = tbl->items[item_idx].inner_item.next_pkt_idx;
|
||||
|
||||
/* NULL indicates an empty item. */
|
||||
tbl->items[item_idx].inner_item.firstseg = NULL;
|
||||
tbl->item_num--;
|
||||
if (prev_item_idx != INVALID_ARRAY_INDEX)
|
||||
tbl->items[prev_item_idx].inner_item.next_pkt_idx = next_idx;
|
||||
|
||||
return next_idx;
|
||||
}
|
||||
|
||||
static inline uint32_t
|
||||
insert_new_flow(struct gro_vxlan_tcp4_tbl *tbl,
|
||||
struct vxlan_tcp4_flow_key *src,
|
||||
uint32_t item_idx)
|
||||
{
|
||||
struct vxlan_tcp4_flow_key *dst;
|
||||
uint32_t flow_idx;
|
||||
|
||||
flow_idx = find_an_empty_flow(tbl);
|
||||
if (unlikely(flow_idx == INVALID_ARRAY_INDEX))
|
||||
return INVALID_ARRAY_INDEX;
|
||||
|
||||
dst = &(tbl->flows[flow_idx].key);
|
||||
|
||||
ether_addr_copy(&(src->inner_key.eth_saddr),
|
||||
&(dst->inner_key.eth_saddr));
|
||||
ether_addr_copy(&(src->inner_key.eth_daddr),
|
||||
&(dst->inner_key.eth_daddr));
|
||||
dst->inner_key.ip_src_addr = src->inner_key.ip_src_addr;
|
||||
dst->inner_key.ip_dst_addr = src->inner_key.ip_dst_addr;
|
||||
dst->inner_key.recv_ack = src->inner_key.recv_ack;
|
||||
dst->inner_key.src_port = src->inner_key.src_port;
|
||||
dst->inner_key.dst_port = src->inner_key.dst_port;
|
||||
|
||||
dst->vxlan_hdr.vx_flags = src->vxlan_hdr.vx_flags;
|
||||
dst->vxlan_hdr.vx_vni = src->vxlan_hdr.vx_vni;
|
||||
ether_addr_copy(&(src->outer_eth_saddr), &(dst->outer_eth_saddr));
|
||||
ether_addr_copy(&(src->outer_eth_daddr), &(dst->outer_eth_daddr));
|
||||
dst->outer_ip_src_addr = src->outer_ip_src_addr;
|
||||
dst->outer_ip_dst_addr = src->outer_ip_dst_addr;
|
||||
dst->outer_src_port = src->outer_src_port;
|
||||
dst->outer_dst_port = src->outer_dst_port;
|
||||
|
||||
tbl->flows[flow_idx].start_index = item_idx;
|
||||
tbl->flow_num++;
|
||||
|
||||
return flow_idx;
|
||||
}
|
||||
|
||||
static inline int
|
||||
is_same_vxlan_tcp4_flow(struct vxlan_tcp4_flow_key k1,
|
||||
struct vxlan_tcp4_flow_key k2)
|
||||
{
|
||||
return (is_same_ether_addr(&k1.outer_eth_saddr, &k2.outer_eth_saddr) &&
|
||||
is_same_ether_addr(&k1.outer_eth_daddr,
|
||||
&k2.outer_eth_daddr) &&
|
||||
(k1.outer_ip_src_addr == k2.outer_ip_src_addr) &&
|
||||
(k1.outer_ip_dst_addr == k2.outer_ip_dst_addr) &&
|
||||
(k1.outer_src_port == k2.outer_src_port) &&
|
||||
(k1.outer_dst_port == k2.outer_dst_port) &&
|
||||
(k1.vxlan_hdr.vx_flags == k2.vxlan_hdr.vx_flags) &&
|
||||
(k1.vxlan_hdr.vx_vni == k2.vxlan_hdr.vx_vni) &&
|
||||
is_same_tcp4_flow(k1.inner_key, k2.inner_key));
|
||||
}
|
||||
|
||||
static inline int
|
||||
check_vxlan_seq_option(struct gro_vxlan_tcp4_item *item,
|
||||
struct tcp_hdr *tcp_hdr,
|
||||
uint32_t sent_seq,
|
||||
uint16_t outer_ip_id,
|
||||
uint16_t ip_id,
|
||||
uint16_t tcp_hl,
|
||||
uint16_t tcp_dl,
|
||||
uint8_t outer_is_atomic,
|
||||
uint8_t is_atomic)
|
||||
{
|
||||
struct rte_mbuf *pkt = item->inner_item.firstseg;
|
||||
int cmp;
|
||||
uint16_t l2_offset;
|
||||
|
||||
/* Don't merge packets whose outer DF bits are different. */
|
||||
if (unlikely(item->outer_is_atomic ^ outer_is_atomic))
|
||||
return 0;
|
||||
|
||||
l2_offset = pkt->outer_l2_len + pkt->outer_l3_len;
|
||||
cmp = check_seq_option(&item->inner_item, tcp_hdr, sent_seq, ip_id,
|
||||
tcp_hl, tcp_dl, l2_offset, is_atomic);
|
||||
if ((cmp > 0) && (outer_is_atomic ||
|
||||
(outer_ip_id == item->outer_ip_id + 1)))
|
||||
/* Append the new packet. */
|
||||
return 1;
|
||||
else if ((cmp < 0) && (outer_is_atomic ||
|
||||
(outer_ip_id + item->inner_item.nb_merged ==
|
||||
item->outer_ip_id)))
|
||||
/* Prepend the new packet. */
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int
|
||||
merge_two_vxlan_tcp4_packets(struct gro_vxlan_tcp4_item *item,
|
||||
struct rte_mbuf *pkt,
|
||||
int cmp,
|
||||
uint32_t sent_seq,
|
||||
uint16_t outer_ip_id,
|
||||
uint16_t ip_id)
|
||||
{
|
||||
if (merge_two_tcp4_packets(&item->inner_item, pkt, cmp, sent_seq,
|
||||
ip_id, pkt->outer_l2_len +
|
||||
pkt->outer_l3_len)) {
|
||||
/* Update the outer IPv4 ID to the large value. */
|
||||
item->outer_ip_id = cmp > 0 ? outer_ip_id : item->outer_ip_id;
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline void
|
||||
update_vxlan_header(struct gro_vxlan_tcp4_item *item)
|
||||
{
|
||||
struct ipv4_hdr *ipv4_hdr;
|
||||
struct udp_hdr *udp_hdr;
|
||||
struct rte_mbuf *pkt = item->inner_item.firstseg;
|
||||
uint16_t len;
|
||||
|
||||
/* Update the outer IPv4 header. */
|
||||
len = pkt->pkt_len - pkt->outer_l2_len;
|
||||
ipv4_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(pkt, char *) +
|
||||
pkt->outer_l2_len);
|
||||
ipv4_hdr->total_length = rte_cpu_to_be_16(len);
|
||||
|
||||
/* Update the outer UDP header. */
|
||||
len -= pkt->outer_l3_len;
|
||||
udp_hdr = (struct udp_hdr *)((char *)ipv4_hdr + pkt->outer_l3_len);
|
||||
udp_hdr->dgram_len = rte_cpu_to_be_16(len);
|
||||
|
||||
/* Update the inner IPv4 header. */
|
||||
len -= pkt->l2_len;
|
||||
ipv4_hdr = (struct ipv4_hdr *)((char *)udp_hdr + pkt->l2_len);
|
||||
ipv4_hdr->total_length = rte_cpu_to_be_16(len);
|
||||
}
|
||||
|
||||
int32_t
|
||||
gro_vxlan_tcp4_reassemble(struct rte_mbuf *pkt,
|
||||
struct gro_vxlan_tcp4_tbl *tbl,
|
||||
uint64_t start_time)
|
||||
{
|
||||
struct ether_hdr *outer_eth_hdr, *eth_hdr;
|
||||
struct ipv4_hdr *outer_ipv4_hdr, *ipv4_hdr;
|
||||
struct tcp_hdr *tcp_hdr;
|
||||
struct udp_hdr *udp_hdr;
|
||||
struct vxlan_hdr *vxlan_hdr;
|
||||
uint32_t sent_seq;
|
||||
uint16_t tcp_dl, frag_off, outer_ip_id, ip_id;
|
||||
uint8_t outer_is_atomic, is_atomic;
|
||||
|
||||
struct vxlan_tcp4_flow_key key;
|
||||
uint32_t cur_idx, prev_idx, item_idx;
|
||||
uint32_t i, max_flow_num, remaining_flow_num;
|
||||
int cmp;
|
||||
uint16_t hdr_len;
|
||||
uint8_t find;
|
||||
|
||||
outer_eth_hdr = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
|
||||
outer_ipv4_hdr = (struct ipv4_hdr *)((char *)outer_eth_hdr +
|
||||
pkt->outer_l2_len);
|
||||
udp_hdr = (struct udp_hdr *)((char *)outer_ipv4_hdr +
|
||||
pkt->outer_l3_len);
|
||||
vxlan_hdr = (struct vxlan_hdr *)((char *)udp_hdr +
|
||||
sizeof(struct udp_hdr));
|
||||
eth_hdr = (struct ether_hdr *)((char *)vxlan_hdr +
|
||||
sizeof(struct vxlan_hdr));
|
||||
ipv4_hdr = (struct ipv4_hdr *)((char *)udp_hdr + pkt->l2_len);
|
||||
tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + pkt->l3_len);
|
||||
|
||||
/*
|
||||
* Don't process the packet which has FIN, SYN, RST, PSH, URG,
|
||||
* ECE or CWR set.
|
||||
*/
|
||||
if (tcp_hdr->tcp_flags != TCP_ACK_FLAG)
|
||||
return -1;
|
||||
|
||||
hdr_len = pkt->outer_l2_len + pkt->outer_l3_len + pkt->l2_len +
|
||||
pkt->l3_len + pkt->l4_len;
|
||||
/*
|
||||
* Don't process the packet whose payload length is less than or
|
||||
* equal to 0.
|
||||
*/
|
||||
tcp_dl = pkt->pkt_len - hdr_len;
|
||||
if (tcp_dl <= 0)
|
||||
return -1;
|
||||
|
||||
/*
|
||||
* Save IPv4 ID for the packet whose DF bit is 0. For the packet
|
||||
* whose DF bit is 1, IPv4 ID is ignored.
|
||||
*/
|
||||
frag_off = rte_be_to_cpu_16(outer_ipv4_hdr->fragment_offset);
|
||||
outer_is_atomic = (frag_off & IPV4_HDR_DF_FLAG) == IPV4_HDR_DF_FLAG;
|
||||
outer_ip_id = outer_is_atomic ? 0 :
|
||||
rte_be_to_cpu_16(outer_ipv4_hdr->packet_id);
|
||||
frag_off = rte_be_to_cpu_16(ipv4_hdr->fragment_offset);
|
||||
is_atomic = (frag_off & IPV4_HDR_DF_FLAG) == IPV4_HDR_DF_FLAG;
|
||||
ip_id = is_atomic ? 0 : rte_be_to_cpu_16(ipv4_hdr->packet_id);
|
||||
|
||||
sent_seq = rte_be_to_cpu_32(tcp_hdr->sent_seq);
|
||||
|
||||
ether_addr_copy(&(eth_hdr->s_addr), &(key.inner_key.eth_saddr));
|
||||
ether_addr_copy(&(eth_hdr->d_addr), &(key.inner_key.eth_daddr));
|
||||
key.inner_key.ip_src_addr = ipv4_hdr->src_addr;
|
||||
key.inner_key.ip_dst_addr = ipv4_hdr->dst_addr;
|
||||
key.inner_key.recv_ack = tcp_hdr->recv_ack;
|
||||
key.inner_key.src_port = tcp_hdr->src_port;
|
||||
key.inner_key.dst_port = tcp_hdr->dst_port;
|
||||
|
||||
key.vxlan_hdr.vx_flags = vxlan_hdr->vx_flags;
|
||||
key.vxlan_hdr.vx_vni = vxlan_hdr->vx_vni;
|
||||
ether_addr_copy(&(outer_eth_hdr->s_addr), &(key.outer_eth_saddr));
|
||||
ether_addr_copy(&(outer_eth_hdr->d_addr), &(key.outer_eth_daddr));
|
||||
key.outer_ip_src_addr = outer_ipv4_hdr->src_addr;
|
||||
key.outer_ip_dst_addr = outer_ipv4_hdr->dst_addr;
|
||||
key.outer_src_port = udp_hdr->src_port;
|
||||
key.outer_dst_port = udp_hdr->dst_port;
|
||||
|
||||
/* Search for a matched flow. */
|
||||
max_flow_num = tbl->max_flow_num;
|
||||
remaining_flow_num = tbl->flow_num;
|
||||
find = 0;
|
||||
for (i = 0; i < max_flow_num && remaining_flow_num; i++) {
|
||||
if (tbl->flows[i].start_index != INVALID_ARRAY_INDEX) {
|
||||
if (is_same_vxlan_tcp4_flow(tbl->flows[i].key, key)) {
|
||||
find = 1;
|
||||
break;
|
||||
}
|
||||
remaining_flow_num--;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Can't find a matched flow. Insert a new flow and store the
|
||||
* packet into the flow.
|
||||
*/
|
||||
if (find == 0) {
|
||||
item_idx = insert_new_item(tbl, pkt, start_time,
|
||||
INVALID_ARRAY_INDEX, sent_seq, outer_ip_id,
|
||||
ip_id, outer_is_atomic, is_atomic);
|
||||
if (item_idx == INVALID_ARRAY_INDEX)
|
||||
return -1;
|
||||
if (insert_new_flow(tbl, &key, item_idx) ==
|
||||
INVALID_ARRAY_INDEX) {
|
||||
/*
|
||||
* Fail to insert a new flow, so
|
||||
* delete the inserted packet.
|
||||
*/
|
||||
delete_item(tbl, item_idx, INVALID_ARRAY_INDEX);
|
||||
return -1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Check all packets in the flow and try to find a neighbor. */
|
||||
cur_idx = tbl->flows[i].start_index;
|
||||
prev_idx = cur_idx;
|
||||
do {
|
||||
cmp = check_vxlan_seq_option(&(tbl->items[cur_idx]), tcp_hdr,
|
||||
sent_seq, outer_ip_id, ip_id, pkt->l4_len,
|
||||
tcp_dl, outer_is_atomic, is_atomic);
|
||||
if (cmp) {
|
||||
if (merge_two_vxlan_tcp4_packets(&(tbl->items[cur_idx]),
|
||||
pkt, cmp, sent_seq,
|
||||
outer_ip_id, ip_id))
|
||||
return 1;
|
||||
/*
|
||||
* Can't merge two packets, as the packet
|
||||
* length will be greater than the max value.
|
||||
* Insert the packet into the flow.
|
||||
*/
|
||||
if (insert_new_item(tbl, pkt, start_time, prev_idx,
|
||||
sent_seq, outer_ip_id,
|
||||
ip_id, outer_is_atomic,
|
||||
is_atomic) ==
|
||||
INVALID_ARRAY_INDEX)
|
||||
return -1;
|
||||
return 0;
|
||||
}
|
||||
prev_idx = cur_idx;
|
||||
cur_idx = tbl->items[cur_idx].inner_item.next_pkt_idx;
|
||||
} while (cur_idx != INVALID_ARRAY_INDEX);
|
||||
|
||||
/* Can't find neighbor. Insert the packet into the flow. */
|
||||
if (insert_new_item(tbl, pkt, start_time, prev_idx, sent_seq,
|
||||
outer_ip_id, ip_id, outer_is_atomic,
|
||||
is_atomic) == INVALID_ARRAY_INDEX)
|
||||
return -1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint16_t
|
||||
gro_vxlan_tcp4_tbl_timeout_flush(struct gro_vxlan_tcp4_tbl *tbl,
|
||||
uint64_t flush_timestamp,
|
||||
struct rte_mbuf **out,
|
||||
uint16_t nb_out)
|
||||
{
|
||||
uint16_t k = 0;
|
||||
uint32_t i, j;
|
||||
uint32_t max_flow_num = tbl->max_flow_num;
|
||||
|
||||
for (i = 0; i < max_flow_num; i++) {
|
||||
if (unlikely(tbl->flow_num == 0))
|
||||
return k;
|
||||
|
||||
j = tbl->flows[i].start_index;
|
||||
while (j != INVALID_ARRAY_INDEX) {
|
||||
if (tbl->items[j].inner_item.start_time <=
|
||||
flush_timestamp) {
|
||||
out[k++] = tbl->items[j].inner_item.firstseg;
|
||||
if (tbl->items[j].inner_item.nb_merged > 1)
|
||||
update_vxlan_header(&(tbl->items[j]));
|
||||
/*
|
||||
* Delete the item and get the next packet
|
||||
* index.
|
||||
*/
|
||||
j = delete_item(tbl, j, INVALID_ARRAY_INDEX);
|
||||
tbl->flows[i].start_index = j;
|
||||
if (j == INVALID_ARRAY_INDEX)
|
||||
tbl->flow_num--;
|
||||
|
||||
if (unlikely(k == nb_out))
|
||||
return k;
|
||||
} else
|
||||
/*
|
||||
* The left packets in the flow won't be
|
||||
* timeout. Go to check other flows.
|
||||
*/
|
||||
break;
|
||||
}
|
||||
}
|
||||
return k;
|
||||
}
|
||||
|
||||
uint32_t
|
||||
gro_vxlan_tcp4_tbl_pkt_count(void *tbl)
|
||||
{
|
||||
struct gro_vxlan_tcp4_tbl *gro_tbl = tbl;
|
||||
|
||||
if (gro_tbl)
|
||||
return gro_tbl->item_num;
|
||||
|
||||
return 0;
|
||||
}
|
156
lib/librte_gro/gro_vxlan_tcp4.h
Normal file
156
lib/librte_gro/gro_vxlan_tcp4.h
Normal file
@ -0,0 +1,156 @@
|
||||
/* SPDX-License-Identifier: BSD-3-Clause
|
||||
* Copyright(c) 2018 Intel Corporation
|
||||
*/
|
||||
|
||||
#ifndef _GRO_VXLAN_TCP4_H_
|
||||
#define _GRO_VXLAN_TCP4_H_
|
||||
|
||||
#include "gro_tcp4.h"
|
||||
|
||||
#define GRO_VXLAN_TCP4_TBL_MAX_ITEM_NUM (1024UL * 1024UL)
|
||||
|
||||
/* Header fields representing a VxLAN flow */
|
||||
struct vxlan_tcp4_flow_key {
|
||||
struct tcp4_flow_key inner_key;
|
||||
struct vxlan_hdr vxlan_hdr;
|
||||
|
||||
struct ether_addr outer_eth_saddr;
|
||||
struct ether_addr outer_eth_daddr;
|
||||
|
||||
uint32_t outer_ip_src_addr;
|
||||
uint32_t outer_ip_dst_addr;
|
||||
|
||||
/* Outer UDP ports */
|
||||
uint16_t outer_src_port;
|
||||
uint16_t outer_dst_port;
|
||||
|
||||
};
|
||||
|
||||
struct gro_vxlan_tcp4_flow {
|
||||
struct vxlan_tcp4_flow_key key;
|
||||
/*
|
||||
* The index of the first packet in the flow. INVALID_ARRAY_INDEX
|
||||
* indicates an empty flow.
|
||||
*/
|
||||
uint32_t start_index;
|
||||
};
|
||||
|
||||
struct gro_vxlan_tcp4_item {
|
||||
struct gro_tcp4_item inner_item;
|
||||
/* IPv4 ID in the outer IPv4 header */
|
||||
uint16_t outer_ip_id;
|
||||
/* Indicate if outer IPv4 ID can be ignored */
|
||||
uint8_t outer_is_atomic;
|
||||
};
|
||||
|
||||
/*
|
||||
* VxLAN (with an outer IPv4 header and an inner TCP/IPv4 packet)
|
||||
* reassembly table structure
|
||||
*/
|
||||
struct gro_vxlan_tcp4_tbl {
|
||||
/* item array */
|
||||
struct gro_vxlan_tcp4_item *items;
|
||||
/* flow array */
|
||||
struct gro_vxlan_tcp4_flow *flows;
|
||||
/* current item number */
|
||||
uint32_t item_num;
|
||||
/* current flow number */
|
||||
uint32_t flow_num;
|
||||
/* the maximum item number */
|
||||
uint32_t max_item_num;
|
||||
/* the maximum flow number */
|
||||
uint32_t max_flow_num;
|
||||
};
|
||||
|
||||
/**
|
||||
* This function creates a VxLAN reassembly table for VxLAN packets
|
||||
* which have an outer IPv4 header and an inner TCP/IPv4 packet.
|
||||
*
|
||||
* @param socket_id
|
||||
* Socket index for allocating the table
|
||||
* @param max_flow_num
|
||||
* The maximum number of flows in the table
|
||||
* @param max_item_per_flow
|
||||
* The maximum number of packets per flow
|
||||
*
|
||||
* @return
|
||||
* - Return the table pointer on success.
|
||||
* - Return NULL on failure.
|
||||
*/
|
||||
void *gro_vxlan_tcp4_tbl_create(uint16_t socket_id,
|
||||
uint16_t max_flow_num,
|
||||
uint16_t max_item_per_flow);
|
||||
|
||||
/**
|
||||
* This function destroys a VxLAN reassembly table.
|
||||
*
|
||||
* @param tbl
|
||||
* Pointer pointing to the VxLAN reassembly table
|
||||
*/
|
||||
void gro_vxlan_tcp4_tbl_destroy(void *tbl);
|
||||
|
||||
/**
|
||||
* This function merges a VxLAN packet which has an outer IPv4 header and
|
||||
* an inner TCP/IPv4 packet. It doesn't process the packet, whose TCP
|
||||
* header has SYN, FIN, RST, PSH, CWR, ECE or URG bit set, or which
|
||||
* doesn't have payload.
|
||||
*
|
||||
* This function doesn't check if the packet has correct checksums and
|
||||
* doesn't re-calculate checksums for the merged packet. Additionally,
|
||||
* it assumes the packets are complete (i.e., MF==0 && frag_off==0), when
|
||||
* IP fragmentation is possible (i.e., DF==0). It returns the packet, if
|
||||
* the packet has invalid parameters (e.g. SYN bit is set) or there is no
|
||||
* available space in the table.
|
||||
*
|
||||
* @param pkt
|
||||
* Packet to reassemble
|
||||
* @param tbl
|
||||
* Pointer pointing to the VxLAN reassembly table
|
||||
* @start_time
|
||||
* The time when the packet is inserted into the table
|
||||
*
|
||||
* @return
|
||||
* - Return a positive value if the packet is merged.
|
||||
* - Return zero if the packet isn't merged but stored in the table.
|
||||
* - Return a negative value for invalid parameters or no available
|
||||
* space in the table.
|
||||
*/
|
||||
int32_t gro_vxlan_tcp4_reassemble(struct rte_mbuf *pkt,
|
||||
struct gro_vxlan_tcp4_tbl *tbl,
|
||||
uint64_t start_time);
|
||||
|
||||
/**
|
||||
* This function flushes timeout packets in the VxLAN reassembly table,
|
||||
* and without updating checksums.
|
||||
*
|
||||
* @param tbl
|
||||
* Pointer pointing to a VxLAN GRO table
|
||||
* @param flush_timestamp
|
||||
* This function flushes packets which are inserted into the table
|
||||
* before or at the flush_timestamp.
|
||||
* @param out
|
||||
* Pointer array used to keep flushed packets
|
||||
* @param nb_out
|
||||
* The element number in 'out'. It also determines the maximum number of
|
||||
* packets that can be flushed finally.
|
||||
*
|
||||
* @return
|
||||
* The number of flushed packets
|
||||
*/
|
||||
uint16_t gro_vxlan_tcp4_tbl_timeout_flush(struct gro_vxlan_tcp4_tbl *tbl,
|
||||
uint64_t flush_timestamp,
|
||||
struct rte_mbuf **out,
|
||||
uint16_t nb_out);
|
||||
|
||||
/**
|
||||
* This function returns the number of the packets in a VxLAN
|
||||
* reassembly table.
|
||||
*
|
||||
* @param tbl
|
||||
* Pointer pointing to the VxLAN reassembly table
|
||||
*
|
||||
* @return
|
||||
* The number of packets in the table
|
||||
*/
|
||||
uint32_t gro_vxlan_tcp4_tbl_pkt_count(void *tbl);
|
||||
#endif
|
@ -9,6 +9,7 @@
|
||||
|
||||
#include "rte_gro.h"
|
||||
#include "gro_tcp4.h"
|
||||
#include "gro_vxlan_tcp4.h"
|
||||
|
||||
typedef void *(*gro_tbl_create_fn)(uint16_t socket_id,
|
||||
uint16_t max_flow_num,
|
||||
@ -17,15 +18,28 @@ typedef void (*gro_tbl_destroy_fn)(void *tbl);
|
||||
typedef uint32_t (*gro_tbl_pkt_count_fn)(void *tbl);
|
||||
|
||||
static gro_tbl_create_fn tbl_create_fn[RTE_GRO_TYPE_MAX_NUM] = {
|
||||
gro_tcp4_tbl_create, NULL};
|
||||
gro_tcp4_tbl_create, gro_vxlan_tcp4_tbl_create, NULL};
|
||||
static gro_tbl_destroy_fn tbl_destroy_fn[RTE_GRO_TYPE_MAX_NUM] = {
|
||||
gro_tcp4_tbl_destroy, NULL};
|
||||
gro_tcp4_tbl_destroy, gro_vxlan_tcp4_tbl_destroy,
|
||||
NULL};
|
||||
static gro_tbl_pkt_count_fn tbl_pkt_count_fn[RTE_GRO_TYPE_MAX_NUM] = {
|
||||
gro_tcp4_tbl_pkt_count, NULL};
|
||||
gro_tcp4_tbl_pkt_count, gro_vxlan_tcp4_tbl_pkt_count,
|
||||
NULL};
|
||||
|
||||
#define IS_IPV4_TCP_PKT(ptype) (RTE_ETH_IS_IPV4_HDR(ptype) && \
|
||||
((ptype & RTE_PTYPE_L4_TCP) == RTE_PTYPE_L4_TCP))
|
||||
|
||||
#define IS_IPV4_VXLAN_TCP4_PKT(ptype) (RTE_ETH_IS_IPV4_HDR(ptype) && \
|
||||
((ptype & RTE_PTYPE_L4_UDP) == RTE_PTYPE_L4_UDP) && \
|
||||
((ptype & RTE_PTYPE_TUNNEL_VXLAN) == \
|
||||
RTE_PTYPE_TUNNEL_VXLAN) && \
|
||||
((ptype & RTE_PTYPE_INNER_L4_TCP) == \
|
||||
RTE_PTYPE_INNER_L4_TCP) && \
|
||||
(((ptype & RTE_PTYPE_INNER_L3_MASK) & \
|
||||
(RTE_PTYPE_INNER_L3_IPV4 | \
|
||||
RTE_PTYPE_INNER_L3_IPV4_EXT | \
|
||||
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN)) != 0))
|
||||
|
||||
/*
|
||||
* GRO context structure. It keeps the table structures, which are
|
||||
* used to merge packets, for different GRO types. Before using
|
||||
@ -109,12 +123,20 @@ rte_gro_reassemble_burst(struct rte_mbuf **pkts,
|
||||
struct gro_tcp4_flow tcp_flows[RTE_GRO_MAX_BURST_ITEM_NUM];
|
||||
struct gro_tcp4_item tcp_items[RTE_GRO_MAX_BURST_ITEM_NUM] = {{0} };
|
||||
|
||||
/* Allocate a reassembly table for VXLAN GRO */
|
||||
struct gro_vxlan_tcp4_tbl vxlan_tbl;
|
||||
struct gro_vxlan_tcp4_flow vxlan_flows[RTE_GRO_MAX_BURST_ITEM_NUM];
|
||||
struct gro_vxlan_tcp4_item vxlan_items[RTE_GRO_MAX_BURST_ITEM_NUM] = {
|
||||
{{0}, 0, 0} };
|
||||
|
||||
struct rte_mbuf *unprocess_pkts[nb_pkts];
|
||||
uint32_t item_num;
|
||||
int32_t ret;
|
||||
uint16_t i, unprocess_num = 0, nb_after_gro = nb_pkts;
|
||||
uint8_t do_tcp4_gro = 0, do_vxlan_gro = 0;
|
||||
|
||||
if (unlikely((param->gro_types & RTE_GRO_TCP_IPV4) == 0))
|
||||
if (unlikely((param->gro_types & (RTE_GRO_IPV4_VXLAN_TCP_IPV4 |
|
||||
RTE_GRO_TCP_IPV4)) == 0))
|
||||
return nb_pkts;
|
||||
|
||||
/* Get the maximum number of packets */
|
||||
@ -122,22 +144,47 @@ rte_gro_reassemble_burst(struct rte_mbuf **pkts,
|
||||
param->max_item_per_flow));
|
||||
item_num = RTE_MIN(item_num, RTE_GRO_MAX_BURST_ITEM_NUM);
|
||||
|
||||
for (i = 0; i < item_num; i++)
|
||||
tcp_flows[i].start_index = INVALID_ARRAY_INDEX;
|
||||
if (param->gro_types & RTE_GRO_IPV4_VXLAN_TCP_IPV4) {
|
||||
for (i = 0; i < item_num; i++)
|
||||
vxlan_flows[i].start_index = INVALID_ARRAY_INDEX;
|
||||
|
||||
tcp_tbl.flows = tcp_flows;
|
||||
tcp_tbl.items = tcp_items;
|
||||
tcp_tbl.flow_num = 0;
|
||||
tcp_tbl.item_num = 0;
|
||||
tcp_tbl.max_flow_num = item_num;
|
||||
tcp_tbl.max_item_num = item_num;
|
||||
vxlan_tbl.flows = vxlan_flows;
|
||||
vxlan_tbl.items = vxlan_items;
|
||||
vxlan_tbl.flow_num = 0;
|
||||
vxlan_tbl.item_num = 0;
|
||||
vxlan_tbl.max_flow_num = item_num;
|
||||
vxlan_tbl.max_item_num = item_num;
|
||||
do_vxlan_gro = 1;
|
||||
}
|
||||
|
||||
if (param->gro_types & RTE_GRO_TCP_IPV4) {
|
||||
for (i = 0; i < item_num; i++)
|
||||
tcp_flows[i].start_index = INVALID_ARRAY_INDEX;
|
||||
|
||||
tcp_tbl.flows = tcp_flows;
|
||||
tcp_tbl.items = tcp_items;
|
||||
tcp_tbl.flow_num = 0;
|
||||
tcp_tbl.item_num = 0;
|
||||
tcp_tbl.max_flow_num = item_num;
|
||||
tcp_tbl.max_item_num = item_num;
|
||||
do_tcp4_gro = 1;
|
||||
}
|
||||
|
||||
for (i = 0; i < nb_pkts; i++) {
|
||||
if (IS_IPV4_TCP_PKT(pkts[i]->packet_type)) {
|
||||
/*
|
||||
* The timestamp is ignored, since all packets
|
||||
* will be flushed from the tables.
|
||||
*/
|
||||
/*
|
||||
* The timestamp is ignored, since all packets
|
||||
* will be flushed from the tables.
|
||||
*/
|
||||
if (IS_IPV4_VXLAN_TCP4_PKT(pkts[i]->packet_type) &&
|
||||
do_vxlan_gro) {
|
||||
ret = gro_vxlan_tcp4_reassemble(pkts[i], &vxlan_tbl, 0);
|
||||
if (ret > 0)
|
||||
/* Merge successfully */
|
||||
nb_after_gro--;
|
||||
else if (ret < 0)
|
||||
unprocess_pkts[unprocess_num++] = pkts[i];
|
||||
} else if (IS_IPV4_TCP_PKT(pkts[i]->packet_type) &&
|
||||
do_tcp4_gro) {
|
||||
ret = gro_tcp4_reassemble(pkts[i], &tcp_tbl, 0);
|
||||
if (ret > 0)
|
||||
/* merge successfully */
|
||||
@ -149,8 +196,16 @@ rte_gro_reassemble_burst(struct rte_mbuf **pkts,
|
||||
}
|
||||
|
||||
if (nb_after_gro < nb_pkts) {
|
||||
i = 0;
|
||||
/* Flush all packets from the tables */
|
||||
i = gro_tcp4_tbl_timeout_flush(&tcp_tbl, 0, pkts, nb_pkts);
|
||||
if (do_vxlan_gro) {
|
||||
i = gro_vxlan_tcp4_tbl_timeout_flush(&vxlan_tbl,
|
||||
0, pkts, nb_pkts);
|
||||
}
|
||||
if (do_tcp4_gro) {
|
||||
i += gro_tcp4_tbl_timeout_flush(&tcp_tbl, 0,
|
||||
&pkts[i], nb_pkts - i);
|
||||
}
|
||||
/* Copy unprocessed packets */
|
||||
if (unprocess_num > 0) {
|
||||
memcpy(&pkts[i], unprocess_pkts,
|
||||
@ -169,18 +224,33 @@ rte_gro_reassemble(struct rte_mbuf **pkts,
|
||||
{
|
||||
struct rte_mbuf *unprocess_pkts[nb_pkts];
|
||||
struct gro_ctx *gro_ctx = ctx;
|
||||
void *tcp_tbl;
|
||||
void *tcp_tbl, *vxlan_tbl;
|
||||
uint64_t current_time;
|
||||
uint16_t i, unprocess_num = 0;
|
||||
uint8_t do_tcp4_gro, do_vxlan_gro;
|
||||
|
||||
if (unlikely((gro_ctx->gro_types & RTE_GRO_TCP_IPV4) == 0))
|
||||
if (unlikely((gro_ctx->gro_types & (RTE_GRO_IPV4_VXLAN_TCP_IPV4 |
|
||||
RTE_GRO_TCP_IPV4)) == 0))
|
||||
return nb_pkts;
|
||||
|
||||
tcp_tbl = gro_ctx->tbls[RTE_GRO_TCP_IPV4_INDEX];
|
||||
vxlan_tbl = gro_ctx->tbls[RTE_GRO_IPV4_VXLAN_TCP_IPV4_INDEX];
|
||||
|
||||
do_tcp4_gro = (gro_ctx->gro_types & RTE_GRO_TCP_IPV4) ==
|
||||
RTE_GRO_TCP_IPV4;
|
||||
do_vxlan_gro = (gro_ctx->gro_types & RTE_GRO_IPV4_VXLAN_TCP_IPV4) ==
|
||||
RTE_GRO_IPV4_VXLAN_TCP_IPV4;
|
||||
|
||||
current_time = rte_rdtsc();
|
||||
|
||||
for (i = 0; i < nb_pkts; i++) {
|
||||
if (IS_IPV4_TCP_PKT(pkts[i]->packet_type)) {
|
||||
if (IS_IPV4_VXLAN_TCP4_PKT(pkts[i]->packet_type) &&
|
||||
do_vxlan_gro) {
|
||||
if (gro_vxlan_tcp4_reassemble(pkts[i], vxlan_tbl,
|
||||
current_time) < 0)
|
||||
unprocess_pkts[unprocess_num++] = pkts[i];
|
||||
} else if (IS_IPV4_TCP_PKT(pkts[i]->packet_type) &&
|
||||
do_tcp4_gro) {
|
||||
if (gro_tcp4_reassemble(pkts[i], tcp_tbl,
|
||||
current_time) < 0)
|
||||
unprocess_pkts[unprocess_num++] = pkts[i];
|
||||
@ -204,18 +274,27 @@ rte_gro_timeout_flush(void *ctx,
|
||||
{
|
||||
struct gro_ctx *gro_ctx = ctx;
|
||||
uint64_t flush_timestamp;
|
||||
uint16_t num = 0;
|
||||
|
||||
gro_types = gro_types & gro_ctx->gro_types;
|
||||
flush_timestamp = rte_rdtsc() - timeout_cycles;
|
||||
|
||||
if (gro_types & RTE_GRO_TCP_IPV4) {
|
||||
return gro_tcp4_tbl_timeout_flush(
|
||||
gro_ctx->tbls[RTE_GRO_TCP_IPV4_INDEX],
|
||||
flush_timestamp,
|
||||
out, max_nb_out);
|
||||
if (gro_types & RTE_GRO_IPV4_VXLAN_TCP_IPV4) {
|
||||
num = gro_vxlan_tcp4_tbl_timeout_flush(gro_ctx->tbls[
|
||||
RTE_GRO_IPV4_VXLAN_TCP_IPV4_INDEX],
|
||||
flush_timestamp, out, max_nb_out);
|
||||
max_nb_out -= num;
|
||||
}
|
||||
|
||||
return 0;
|
||||
/* If no available space in 'out', stop flushing. */
|
||||
if ((gro_types & RTE_GRO_TCP_IPV4) && max_nb_out > 0) {
|
||||
num += gro_tcp4_tbl_timeout_flush(
|
||||
gro_ctx->tbls[RTE_GRO_TCP_IPV4_INDEX],
|
||||
flush_timestamp,
|
||||
&out[num], max_nb_out);
|
||||
}
|
||||
|
||||
return num;
|
||||
}
|
||||
|
||||
uint64_t
|
||||
|
@ -23,12 +23,15 @@ extern "C" {
|
||||
*/
|
||||
#define RTE_GRO_TYPE_MAX_NUM 64
|
||||
/**< the max number of supported GRO types */
|
||||
#define RTE_GRO_TYPE_SUPPORT_NUM 1
|
||||
#define RTE_GRO_TYPE_SUPPORT_NUM 2
|
||||
/**< the number of currently supported GRO types */
|
||||
|
||||
#define RTE_GRO_TCP_IPV4_INDEX 0
|
||||
#define RTE_GRO_TCP_IPV4 (1ULL << RTE_GRO_TCP_IPV4_INDEX)
|
||||
/**< TCP/IPv4 GRO flag */
|
||||
#define RTE_GRO_IPV4_VXLAN_TCP_IPV4_INDEX 1
|
||||
#define RTE_GRO_IPV4_VXLAN_TCP_IPV4 (1ULL << RTE_GRO_IPV4_VXLAN_TCP_IPV4_INDEX)
|
||||
/**< VxLAN GRO flag. */
|
||||
|
||||
/**
|
||||
* Structure used to create GRO context objects or used to pass
|
||||
|
Loading…
x
Reference in New Issue
Block a user