acl: deduplicate some SSE and AVX2 code

Vector code reorganisation/deduplication:
To avoid maintaining two nearly identical implementations of calc_addr()
(one for SSE, another for AVX2), replace it with a new macro that suits
both SSE and AVX2 code-paths.
Also remove no needed any more MM_* macros.

Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
This commit is contained in:
Konstantin Ananyev 2015-01-20 18:41:04 +00:00 committed by Thomas Monjalon
parent cf59b29bb9
commit a0e3310e7a
4 changed files with 160 additions and 249 deletions

View File

@ -73,51 +73,19 @@ static const rte_ymm_t ymm_ones_16 = {
},
};
static inline __attribute__((always_inline)) ymm_t
calc_addr_avx2(ymm_t index_mask, ymm_t next_input, ymm_t shuffle_input,
ymm_t ones_16, ymm_t tr_lo, ymm_t tr_hi)
{
ymm_t in, node_type, r, t;
ymm_t dfa_msk, dfa_ofs, quad_ofs;
ymm_t addr;
const ymm_t range_base = _mm256_set_epi32(
0xffffff0c, 0xffffff08, 0xffffff04, 0xffffff00,
0xffffff0c, 0xffffff08, 0xffffff04, 0xffffff00);
t = _mm256_xor_si256(index_mask, index_mask);
in = _mm256_shuffle_epi8(next_input, shuffle_input);
/* Calc node type and node addr */
node_type = _mm256_andnot_si256(index_mask, tr_lo);
addr = _mm256_and_si256(index_mask, tr_lo);
/* DFA calculations. */
dfa_msk = _mm256_cmpeq_epi32(node_type, t);
r = _mm256_srli_epi32(in, 30);
r = _mm256_add_epi8(r, range_base);
t = _mm256_srli_epi32(in, 24);
r = _mm256_shuffle_epi8(tr_hi, r);
dfa_ofs = _mm256_sub_epi32(t, r);
/* QUAD/SINGLE caluclations. */
t = _mm256_cmpgt_epi8(in, tr_hi);
t = _mm256_sign_epi8(t, t);
t = _mm256_maddubs_epi16(t, t);
quad_ofs = _mm256_madd_epi16(t, ones_16);
/* blend DFA and QUAD/SINGLE. */
t = _mm256_blendv_epi8(quad_ofs, dfa_ofs, dfa_msk);
addr = _mm256_add_epi32(addr, t);
return addr;
}
static const rte_ymm_t ymm_range_base = {
.u32 = {
0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
},
};
/*
* Process 8 transitions in parallel.
* tr_lo contains low 32 bits for 8 transition.
* tr_hi contains high 32 bits for 8 transition.
* next_input contains up to 4 input bytes for 8 flows.
*/
static inline __attribute__((always_inline)) ymm_t
transition8(ymm_t next_input, const uint64_t *trans, ymm_t *tr_lo, ymm_t *tr_hi)
{
@ -126,8 +94,10 @@ transition8(ymm_t next_input, const uint64_t *trans, ymm_t *tr_lo, ymm_t *tr_hi)
tr = (const int32_t *)(uintptr_t)trans;
addr = calc_addr_avx2(ymm_index_mask.y, next_input, ymm_shuffle_input.y,
ymm_ones_16.y, *tr_lo, *tr_hi);
/* Calculate the address (array index) for all 8 transitions. */
ACL_TR_CALC_ADDR(mm256, 256, addr, ymm_index_mask.y, next_input,
ymm_shuffle_input.y, ymm_ones_16.y, ymm_range_base.y,
*tr_lo, *tr_hi);
/* load lower 32 bits of 8 transactions at once. */
*tr_lo = _mm256_i32gather_epi32(tr, addr, sizeof(trans[0]));
@ -140,6 +110,11 @@ transition8(ymm_t next_input, const uint64_t *trans, ymm_t *tr_lo, ymm_t *tr_hi)
return next_input;
}
/*
* Process matches for 8 flows.
* tr_lo contains low 32 bits for 8 transition.
* tr_hi contains high 32 bits for 8 transition.
*/
static inline void
acl_process_matches_avx2x8(const struct rte_acl_ctx *ctx,
struct parms *parms, struct acl_flow_data *flows, uint32_t slot,
@ -155,6 +130,11 @@ acl_process_matches_avx2x8(const struct rte_acl_ctx *ctx,
l0 = _mm256_castsi256_si128(*tr_lo);
for (i = 0; i != RTE_DIM(tr) / 2; i++) {
/*
* Extract low 32bits of each transition.
* That's enough to process the match.
*/
tr[i] = (uint32_t)_mm_cvtsi128_si32(l0);
tr[i + 4] = (uint32_t)_mm_cvtsi128_si32(l1);
@ -167,12 +147,14 @@ acl_process_matches_avx2x8(const struct rte_acl_ctx *ctx,
ctx, parms, flows, resolve_priority_sse);
}
/* Collect new transitions into 2 YMM registers. */
t0 = _mm256_set_epi64x(tr[5], tr[4], tr[1], tr[0]);
t1 = _mm256_set_epi64x(tr[7], tr[6], tr[3], tr[2]);
lo = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0x88);
hi = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0xdd);
/* For each transition: put low 32 into tr_lo and high 32 into tr_hi */
ACL_TR_HILO(mm256, __m256, t0, t1, lo, hi);
/* Keep transitions wth NOMATCH intact. */
*tr_lo = _mm256_blendv_epi8(*tr_lo, lo, matches);
*tr_hi = _mm256_blendv_epi8(*tr_hi, hi, matches);
}
@ -200,6 +182,9 @@ acl_match_check_avx2x8(const struct rte_acl_ctx *ctx, struct parms *parms,
}
}
/*
* Execute trie traversal for up to 16 flows in parallel.
*/
static inline int
search_avx2x16(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t total_packets, uint32_t categories)
@ -225,16 +210,14 @@ search_avx2x16(const struct rte_acl_ctx *ctx, const uint8_t **data,
t1 = _mm256_set_epi64x(index_array[7], index_array[6],
index_array[3], index_array[2]);
tr_lo[0] = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0x88);
tr_hi[0] = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0xdd);
ACL_TR_HILO(mm256, __m256, t0, t1, tr_lo[0], tr_hi[0]);
t0 = _mm256_set_epi64x(index_array[13], index_array[12],
index_array[9], index_array[8]);
t1 = _mm256_set_epi64x(index_array[15], index_array[14],
index_array[11], index_array[10]);
tr_lo[1] = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0x88);
tr_hi[1] = (ymm_t)_mm256_shuffle_ps((__m256)t0, (__m256)t1, 0xdd);
ACL_TR_HILO(mm256, __m256, t0, t1, tr_lo[1], tr_hi[1]);
/* Check for any matches. */
acl_match_check_avx2x8(ctx, parms, &flows, 0, &tr_lo[0], &tr_hi[0],

View File

@ -67,6 +67,12 @@ static const rte_xmm_t xmm_index_mask = {
},
};
static const rte_xmm_t xmm_range_base = {
.u32 = {
0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
},
};
/*
* Resolve priority for multiple results (sse version).
* This consists comparing the priority of the current traversal with the
@ -90,25 +96,28 @@ resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
(xmm_t *)(&parms[n].cmplt->priority[x]);
/* get results and priorities for completed trie */
results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
results = _mm_loadu_si128(
(const xmm_t *)&p[transition].results[x]);
priority = _mm_loadu_si128(
(const xmm_t *)&p[transition].priority[x]);
/* if this is not the first completed trie */
if (parms[n].cmplt->count != ctx->num_tries) {
/* get running best results and their priorities */
results1 = MM_LOADU(saved_results);
priority1 = MM_LOADU(saved_priority);
results1 = _mm_loadu_si128(saved_results);
priority1 = _mm_loadu_si128(saved_priority);
/* select results that are highest priority */
selector = MM_CMPGT32(priority1, priority);
results = MM_BLENDV8(results, results1, selector);
priority = MM_BLENDV8(priority, priority1, selector);
selector = _mm_cmpgt_epi32(priority1, priority);
results = _mm_blendv_epi8(results, results1, selector);
priority = _mm_blendv_epi8(priority, priority1,
selector);
}
/* save running best results and their priorities */
MM_STOREU(saved_results, results);
MM_STOREU(saved_priority, priority);
_mm_storeu_si128(saved_results, results);
_mm_storeu_si128(saved_priority, priority);
}
}
@ -122,11 +131,11 @@ acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx,
uint64_t transition1, transition2;
/* extract transition from low 64 bits. */
transition1 = MM_CVT64(*indices);
transition1 = _mm_cvtsi128_si64(*indices);
/* extract transition from high 64 bits. */
*indices = MM_SHUFFLE32(*indices, SHUFFLE32_SWAP64);
transition2 = MM_CVT64(*indices);
*indices = _mm_shuffle_epi32(*indices, SHUFFLE32_SWAP64);
transition2 = _mm_cvtsi128_si64(*indices);
transition1 = acl_match_check(transition1, slot, ctx,
parms, flows, resolve_priority_sse);
@ -134,7 +143,7 @@ acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx,
parms, flows, resolve_priority_sse);
/* update indices with new transitions. */
*indices = MM_SET64(transition2, transition1);
*indices = _mm_set_epi64x(transition2, transition1);
}
/*
@ -148,98 +157,24 @@ acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
xmm_t temp;
/* put low 32 bits of each transition into one register */
temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, (__m128)*indices2,
temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2,
0x88);
/* test for match node */
temp = MM_AND(match_mask, temp);
temp = _mm_and_si128(match_mask, temp);
while (!MM_TESTZ(temp, temp)) {
while (!_mm_testz_si128(temp, temp)) {
acl_process_matches(indices1, slot, ctx, parms, flows);
acl_process_matches(indices2, slot + 2, ctx, parms, flows);
temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1,
temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1,
(__m128)*indices2,
0x88);
temp = MM_AND(match_mask, temp);
temp = _mm_and_si128(match_mask, temp);
}
}
/*
* Calculate the address of the next transition for
* all types of nodes. Note that only DFA nodes and range
* nodes actually transition to another node. Match
* nodes don't move.
*/
static inline __attribute__((always_inline)) xmm_t
calc_addr_sse(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
xmm_t ones_16, xmm_t tr_lo, xmm_t tr_hi)
{
xmm_t addr, node_types;
xmm_t dfa_msk, dfa_ofs, quad_ofs;
xmm_t in, r, t;
const xmm_t range_base = _mm_set_epi32(0xffffff0c, 0xffffff08,
0xffffff04, 0xffffff00);
/*
* Note that no transition is done for a match
* node and therefore a stream freezes when
* it reaches a match.
*/
t = MM_XOR(index_mask, index_mask);
/* shuffle input byte to all 4 positions of 32 bit value */
in = MM_SHUFFLE8(next_input, shuffle_input);
/* Calc node type and node addr */
node_types = MM_ANDNOT(index_mask, tr_lo);
addr = MM_AND(index_mask, tr_lo);
/*
* Calc addr for DFAs - addr = dfa_index + input_byte
*/
/* mask for DFA type (0) nodes */
dfa_msk = MM_CMPEQ32(node_types, t);
r = _mm_srli_epi32(in, 30);
r = _mm_add_epi8(r, range_base);
t = _mm_srli_epi32(in, 24);
r = _mm_shuffle_epi8(tr_hi, r);
dfa_ofs = _mm_sub_epi32(t, r);
/*
* Calculate number of range boundaries that are less than the
* input value. Range boundaries for each node are in signed 8 bit,
* ordered from -128 to 127 in the indices2 register.
* This is effectively a popcnt of bytes that are greater than the
* input byte.
*/
/* check ranges */
t = MM_CMPGT8(in, tr_hi);
/* convert -1 to 1 (bytes greater than input byte */
t = MM_SIGN8(t, t);
/* horizontal add pairs of bytes into words */
t = MM_MADD8(t, t);
/* horizontal add pairs of words into dwords */
quad_ofs = MM_MADD16(t, ones_16);
/* blend DFA and QUAD/SINGLE. */
t = _mm_blendv_epi8(quad_ofs, dfa_ofs, dfa_msk);
/* add index into node position */
return MM_ADD32(addr, t);
}
/*
* Process 4 transitions (in 2 SIMD registers) in parallel
* Process 4 transitions (in 2 XMM registers) in parallel
*/
static inline __attribute__((always_inline)) xmm_t
transition4(xmm_t next_input, const uint64_t *trans,
@ -249,39 +184,36 @@ transition4(xmm_t next_input, const uint64_t *trans,
uint64_t trans0, trans2;
/* Shuffle low 32 into tr_lo and high 32 into tr_hi */
tr_lo = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2,
0x88);
tr_hi = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2,
0xdd);
ACL_TR_HILO(mm, __m128, *indices1, *indices2, tr_lo, tr_hi);
/* Calculate the address (array index) for all 4 transitions. */
addr = calc_addr_sse(xmm_index_mask.x, next_input, xmm_shuffle_input.x,
xmm_ones_16.x, tr_lo, tr_hi);
ACL_TR_CALC_ADDR(mm, 128, addr, xmm_index_mask.x, next_input,
xmm_shuffle_input.x, xmm_ones_16.x, xmm_range_base.x,
tr_lo, tr_hi);
/* Gather 64 bit transitions and pack back into 2 registers. */
trans0 = trans[MM_CVT32(addr)];
trans0 = trans[_mm_cvtsi128_si32(addr)];
/* get slot 2 */
/* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
trans2 = trans[MM_CVT32(addr)];
addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT2);
trans2 = trans[_mm_cvtsi128_si32(addr)];
/* get slot 1 */
/* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
*indices1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT1);
*indices1 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans0);
/* get slot 3 */
/* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
*indices2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT3);
*indices2 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans2);
return MM_SRL32(next_input, CHAR_BIT);
return _mm_srli_epi32(next_input, CHAR_BIT);
}
/*
@ -314,11 +246,11 @@ search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
* indices4 contains index_array[6,7]
*/
indices1 = MM_LOADU((xmm_t *) &index_array[0]);
indices2 = MM_LOADU((xmm_t *) &index_array[2]);
indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]);
indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]);
indices3 = MM_LOADU((xmm_t *) &index_array[4]);
indices4 = MM_LOADU((xmm_t *) &index_array[6]);
indices3 = _mm_loadu_si128((xmm_t *) &index_array[4]);
indices4 = _mm_loadu_si128((xmm_t *) &index_array[6]);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows,
@ -332,14 +264,14 @@ search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
input0 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
input1 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 4));
input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 1), 1);
input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 5), 1);
input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 2), 2);
input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 6), 2);
input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 3), 3);
input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 7), 3);
/* Process the 4 bytes of input on each stream. */
@ -395,8 +327,8 @@ search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
}
indices1 = MM_LOADU((xmm_t *) &index_array[0]);
indices2 = MM_LOADU((xmm_t *) &index_array[2]);
indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]);
indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows,
@ -406,9 +338,9 @@ search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
/* Gather 4 bytes of input data for each stream. */
input = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 1), 1);
input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 2), 2);
input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 3), 3);
/* Process the 4 bytes of input on each stream. */
input = transition4(input, flows.trans, &indices1, &indices2);

View File

@ -44,86 +44,70 @@
extern "C" {
#endif
#define MM_ADD16(a, b) _mm_add_epi16(a, b)
#define MM_ADD32(a, b) _mm_add_epi32(a, b)
#define MM_ALIGNR8(a, b, c) _mm_alignr_epi8(a, b, c)
#define MM_AND(a, b) _mm_and_si128(a, b)
#define MM_ANDNOT(a, b) _mm_andnot_si128(a, b)
#define MM_BLENDV8(a, b, c) _mm_blendv_epi8(a, b, c)
#define MM_CMPEQ16(a, b) _mm_cmpeq_epi16(a, b)
#define MM_CMPEQ32(a, b) _mm_cmpeq_epi32(a, b)
#define MM_CMPEQ8(a, b) _mm_cmpeq_epi8(a, b)
#define MM_CMPGT32(a, b) _mm_cmpgt_epi32(a, b)
#define MM_CMPGT8(a, b) _mm_cmpgt_epi8(a, b)
#define MM_CVT(a) _mm_cvtsi32_si128(a)
#define MM_CVT32(a) _mm_cvtsi128_si32(a)
#define MM_CVTU32(a) _mm_cvtsi32_si128(a)
#define MM_INSERT16(a, c, b) _mm_insert_epi16(a, c, b)
#define MM_INSERT32(a, c, b) _mm_insert_epi32(a, c, b)
#define MM_LOAD(a) _mm_load_si128(a)
#define MM_LOADH_PI(a, b) _mm_loadh_pi(a, b)
#define MM_LOADU(a) _mm_loadu_si128(a)
#define MM_MADD16(a, b) _mm_madd_epi16(a, b)
#define MM_MADD8(a, b) _mm_maddubs_epi16(a, b)
#define MM_MOVEMASK8(a) _mm_movemask_epi8(a)
#define MM_OR(a, b) _mm_or_si128(a, b)
#define MM_SET1_16(a) _mm_set1_epi16(a)
#define MM_SET1_32(a) _mm_set1_epi32(a)
#define MM_SET1_64(a) _mm_set1_epi64(a)
#define MM_SET1_8(a) _mm_set1_epi8(a)
#define MM_SET32(a, b, c, d) _mm_set_epi32(a, b, c, d)
#define MM_SHUFFLE32(a, b) _mm_shuffle_epi32(a, b)
#define MM_SHUFFLE8(a, b) _mm_shuffle_epi8(a, b)
#define MM_SHUFFLEPS(a, b, c) _mm_shuffle_ps(a, b, c)
#define MM_SIGN8(a, b) _mm_sign_epi8(a, b)
#define MM_SLL64(a, b) _mm_sll_epi64(a, b)
#define MM_SRL128(a, b) _mm_srli_si128(a, b)
#define MM_SRL16(a, b) _mm_srli_epi16(a, b)
#define MM_SRL32(a, b) _mm_srli_epi32(a, b)
#define MM_STORE(a, b) _mm_store_si128(a, b)
#define MM_STOREU(a, b) _mm_storeu_si128(a, b)
#define MM_TESTZ(a, b) _mm_testz_si128(a, b)
#define MM_XOR(a, b) _mm_xor_si128(a, b)
#define MM_SET16(a, b, c, d, e, f, g, h) \
_mm_set_epi16(a, b, c, d, e, f, g, h)
#define MM_SET8(c0, c1, c2, c3, c4, c5, c6, c7, \
c8, c9, cA, cB, cC, cD, cE, cF) \
_mm_set_epi8(c0, c1, c2, c3, c4, c5, c6, c7, \
c8, c9, cA, cB, cC, cD, cE, cF)
#ifdef RTE_ARCH_X86_64
#define MM_CVT64(a) _mm_cvtsi128_si64(a)
#else
#define MM_CVT64(a) ({ \
rte_xmm_t m; \
m.m = (a); \
(m.u64[0]); \
})
#endif /*RTE_ARCH_X86_64 */
/*
* Prior to version 12.1 icc doesn't support _mm_set_epi64x.
* Takes 2 SIMD registers containing N transitions eachi (tr0, tr1).
* Shuffles it into different representation:
* lo - contains low 32 bits of given N transitions.
* hi - contains high 32 bits of given N transitions.
*/
#if (defined(__ICC) && __ICC < 1210)
#define ACL_TR_HILO(P, TC, tr0, tr1, lo, hi) do { \
lo = (typeof(lo))_##P##_shuffle_ps((TC)(tr0), (TC)(tr1), 0x88); \
hi = (typeof(hi))_##P##_shuffle_ps((TC)(tr0), (TC)(tr1), 0xdd); \
} while (0)
#define MM_SET64(a, b) ({ \
rte_xmm_t m; \
m.u64[0] = b; \
m.u64[1] = a; \
(m.m); \
})
#else
/*
* Calculate the address of the next transition for
* all types of nodes. Note that only DFA nodes and range
* nodes actually transition to another node. Match
* nodes not supposed to be encountered here.
* For quad range nodes:
* Calculate number of range boundaries that are less than the
* input value. Range boundaries for each node are in signed 8 bit,
* ordered from -128 to 127.
* This is effectively a popcnt of bytes that are greater than the
* input byte.
* Single nodes are processed in the same ways as quad range nodes.
*/
#define ACL_TR_CALC_ADDR(P, S, \
addr, index_mask, next_input, shuffle_input, \
ones_16, range_base, tr_lo, tr_hi) do { \
\
typeof(addr) in, node_type, r, t; \
typeof(addr) dfa_msk, dfa_ofs, quad_ofs; \
\
t = _##P##_xor_si##S(index_mask, index_mask); \
in = _##P##_shuffle_epi8(next_input, shuffle_input); \
\
/* Calc node type and node addr */ \
node_type = _##P##_andnot_si##S(index_mask, tr_lo); \
addr = _##P##_and_si##S(index_mask, tr_lo); \
\
/* mask for DFA type(0) nodes */ \
dfa_msk = _##P##_cmpeq_epi32(node_type, t); \
\
/* DFA calculations. */ \
r = _##P##_srli_epi32(in, 30); \
r = _##P##_add_epi8(r, range_base); \
t = _##P##_srli_epi32(in, 24); \
r = _##P##_shuffle_epi8(tr_hi, r); \
\
dfa_ofs = _##P##_sub_epi32(t, r); \
\
/* QUAD/SINGLE caluclations. */ \
t = _##P##_cmpgt_epi8(in, tr_hi); \
t = _##P##_sign_epi8(t, t); \
t = _##P##_maddubs_epi16(t, t); \
quad_ofs = _##P##_madd_epi16(t, ones_16); \
\
/* blend DFA and QUAD/SINGLE. */ \
t = _##P##_blendv_epi8(quad_ofs, dfa_ofs, dfa_msk); \
\
/* calculate address for next transitions. */ \
addr = _##P##_add_epi32(addr, t); \
} while (0)
#define MM_SET64(a, b) _mm_set_epi64x(a, b)
#endif /* (defined(__ICC) && __ICC < 1210) */
#ifdef __cplusplus
}

View File

@ -109,6 +109,18 @@ typedef union rte_ymm {
})
#endif
/*
* Prior to version 12.1 icc doesn't support _mm_set_epi64x.
*/
#if (defined(__ICC) && __ICC < 1210)
#define _mm_set_epi64x(a, b) ({ \
rte_xmm_t m; \
m.u64[0] = b; \
m.u64[1] = a; \
(m.x); \
})
#endif /* (defined(__ICC) && __ICC < 1210) */
#ifdef __cplusplus
}
#endif