|
|
|
@ -34,17 +34,11 @@ static inline int
|
|
|
|
|
check_rx_thresh(uint16_t nb_desc, uint16_t thresh)
|
|
|
|
|
{
|
|
|
|
|
/* The following constraints must be satisfied:
|
|
|
|
|
* thresh >= AVF_RX_MAX_BURST
|
|
|
|
|
* thresh < rxq->nb_rx_desc
|
|
|
|
|
* (rxq->nb_rx_desc % thresh) == 0
|
|
|
|
|
*/
|
|
|
|
|
if (thresh < AVF_RX_MAX_BURST ||
|
|
|
|
|
thresh >= nb_desc ||
|
|
|
|
|
(nb_desc % thresh != 0)) {
|
|
|
|
|
PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u, "
|
|
|
|
|
"greater than or equal to %u, "
|
|
|
|
|
"and a divisor of %u",
|
|
|
|
|
thresh, nb_desc, AVF_RX_MAX_BURST, nb_desc);
|
|
|
|
|
if (thresh >= nb_desc) {
|
|
|
|
|
PMD_INIT_LOG(ERR, "rx_free_thresh (%u) must be less than %u",
|
|
|
|
|
thresh, nb_desc);
|
|
|
|
|
return -EINVAL;
|
|
|
|
|
}
|
|
|
|
|
return 0;
|
|
|
|
@ -614,3 +608,780 @@ avf_stop_queues(struct rte_eth_dev *dev)
|
|
|
|
|
dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
|
avf_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union avf_rx_desc *rxdp)
|
|
|
|
|
{
|
|
|
|
|
if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
|
|
|
|
|
(1 << AVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
|
|
|
|
|
mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
|
|
|
|
|
mb->vlan_tci =
|
|
|
|
|
rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
|
|
|
|
|
} else {
|
|
|
|
|
mb->vlan_tci = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Translate the rx descriptor status and error fields to pkt flags */
|
|
|
|
|
static inline uint64_t
|
|
|
|
|
avf_rxd_to_pkt_flags(uint64_t qword)
|
|
|
|
|
{
|
|
|
|
|
uint64_t flags;
|
|
|
|
|
uint64_t error_bits = (qword >> AVF_RXD_QW1_ERROR_SHIFT);
|
|
|
|
|
|
|
|
|
|
#define AVF_RX_ERR_BITS 0x3f
|
|
|
|
|
|
|
|
|
|
/* Check if RSS_HASH */
|
|
|
|
|
flags = (((qword >> AVF_RX_DESC_STATUS_FLTSTAT_SHIFT) &
|
|
|
|
|
AVF_RX_DESC_FLTSTAT_RSS_HASH) ==
|
|
|
|
|
AVF_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
|
|
|
|
|
|
|
|
|
|
if (likely((error_bits & AVF_RX_ERR_BITS) == 0)) {
|
|
|
|
|
flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
|
|
|
|
|
return flags;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (unlikely(error_bits & (1 << AVF_RX_DESC_ERROR_IPE_SHIFT)))
|
|
|
|
|
flags |= PKT_RX_IP_CKSUM_BAD;
|
|
|
|
|
else
|
|
|
|
|
flags |= PKT_RX_IP_CKSUM_GOOD;
|
|
|
|
|
|
|
|
|
|
if (unlikely(error_bits & (1 << AVF_RX_DESC_ERROR_L4E_SHIFT)))
|
|
|
|
|
flags |= PKT_RX_L4_CKSUM_BAD;
|
|
|
|
|
else
|
|
|
|
|
flags |= PKT_RX_L4_CKSUM_GOOD;
|
|
|
|
|
|
|
|
|
|
/* TODO: Oversize error bit is not processed here */
|
|
|
|
|
|
|
|
|
|
return flags;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* implement recv_pkts */
|
|
|
|
|
uint16_t
|
|
|
|
|
avf_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
|
|
|
|
{
|
|
|
|
|
volatile union avf_rx_desc *rx_ring;
|
|
|
|
|
volatile union avf_rx_desc *rxdp;
|
|
|
|
|
struct avf_rx_queue *rxq;
|
|
|
|
|
union avf_rx_desc rxd;
|
|
|
|
|
struct rte_mbuf *rxe;
|
|
|
|
|
struct rte_eth_dev *dev;
|
|
|
|
|
struct rte_mbuf *rxm;
|
|
|
|
|
struct rte_mbuf *nmb;
|
|
|
|
|
uint16_t nb_rx;
|
|
|
|
|
uint32_t rx_status;
|
|
|
|
|
uint64_t qword1;
|
|
|
|
|
uint16_t rx_packet_len;
|
|
|
|
|
uint16_t rx_id, nb_hold;
|
|
|
|
|
uint64_t dma_addr;
|
|
|
|
|
uint64_t pkt_flags;
|
|
|
|
|
static const uint32_t ptype_tbl[UINT8_MAX + 1] __rte_cache_aligned = {
|
|
|
|
|
/* [0] reserved */
|
|
|
|
|
[1] = RTE_PTYPE_L2_ETHER,
|
|
|
|
|
/* [2] - [21] reserved */
|
|
|
|
|
[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
|
RTE_PTYPE_L4_FRAG,
|
|
|
|
|
[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
|
RTE_PTYPE_L4_NONFRAG,
|
|
|
|
|
[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
|
RTE_PTYPE_L4_UDP,
|
|
|
|
|
/* [25] reserved */
|
|
|
|
|
[26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
|
RTE_PTYPE_L4_TCP,
|
|
|
|
|
[27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
|
RTE_PTYPE_L4_SCTP,
|
|
|
|
|
[28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
|
RTE_PTYPE_L4_ICMP,
|
|
|
|
|
/* All others reserved */
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
nb_rx = 0;
|
|
|
|
|
nb_hold = 0;
|
|
|
|
|
rxq = rx_queue;
|
|
|
|
|
rx_id = rxq->rx_tail;
|
|
|
|
|
rx_ring = rxq->rx_ring;
|
|
|
|
|
|
|
|
|
|
while (nb_rx < nb_pkts) {
|
|
|
|
|
rxdp = &rx_ring[rx_id];
|
|
|
|
|
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
|
|
|
|
|
rx_status = (qword1 & AVF_RXD_QW1_STATUS_MASK) >>
|
|
|
|
|
AVF_RXD_QW1_STATUS_SHIFT;
|
|
|
|
|
|
|
|
|
|
/* Check the DD bit first */
|
|
|
|
|
if (!(rx_status & (1 << AVF_RX_DESC_STATUS_DD_SHIFT)))
|
|
|
|
|
break;
|
|
|
|
|
AVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
|
|
|
|
|
|
|
|
|
|
nmb = rte_mbuf_raw_alloc(rxq->mp);
|
|
|
|
|
if (unlikely(!nmb)) {
|
|
|
|
|
dev = &rte_eth_devices[rxq->port_id];
|
|
|
|
|
dev->data->rx_mbuf_alloc_failed++;
|
|
|
|
|
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
|
|
|
|
|
"queue_id=%u", rxq->port_id, rxq->queue_id);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
rxd = *rxdp;
|
|
|
|
|
nb_hold++;
|
|
|
|
|
rxe = rxq->sw_ring[rx_id];
|
|
|
|
|
rx_id++;
|
|
|
|
|
if (unlikely(rx_id == rxq->nb_rx_desc))
|
|
|
|
|
rx_id = 0;
|
|
|
|
|
|
|
|
|
|
/* Prefetch next mbuf */
|
|
|
|
|
rte_prefetch0(rxq->sw_ring[rx_id]);
|
|
|
|
|
|
|
|
|
|
/* When next RX descriptor is on a cache line boundary,
|
|
|
|
|
* prefetch the next 4 RX descriptors and next 8 pointers
|
|
|
|
|
* to mbufs.
|
|
|
|
|
*/
|
|
|
|
|
if ((rx_id & 0x3) == 0) {
|
|
|
|
|
rte_prefetch0(&rx_ring[rx_id]);
|
|
|
|
|
rte_prefetch0(rxq->sw_ring[rx_id]);
|
|
|
|
|
}
|
|
|
|
|
rxm = rxe;
|
|
|
|
|
rxe = nmb;
|
|
|
|
|
dma_addr =
|
|
|
|
|
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
|
|
|
|
|
rxdp->read.hdr_addr = 0;
|
|
|
|
|
rxdp->read.pkt_addr = dma_addr;
|
|
|
|
|
|
|
|
|
|
rx_packet_len = ((qword1 & AVF_RXD_QW1_LENGTH_PBUF_MASK) >>
|
|
|
|
|
AVF_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
|
|
|
|
|
|
|
|
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
|
|
|
rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
|
|
|
|
|
rxm->nb_segs = 1;
|
|
|
|
|
rxm->next = NULL;
|
|
|
|
|
rxm->pkt_len = rx_packet_len;
|
|
|
|
|
rxm->data_len = rx_packet_len;
|
|
|
|
|
rxm->port = rxq->port_id;
|
|
|
|
|
rxm->ol_flags = 0;
|
|
|
|
|
avf_rxd_to_vlan_tci(rxm, &rxd);
|
|
|
|
|
pkt_flags = avf_rxd_to_pkt_flags(qword1);
|
|
|
|
|
rxm->packet_type =
|
|
|
|
|
ptype_tbl[(uint8_t)((qword1 &
|
|
|
|
|
AVF_RXD_QW1_PTYPE_MASK) >> AVF_RXD_QW1_PTYPE_SHIFT)];
|
|
|
|
|
|
|
|
|
|
if (pkt_flags & PKT_RX_RSS_HASH)
|
|
|
|
|
rxm->hash.rss =
|
|
|
|
|
rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
|
|
|
|
|
|
|
|
|
|
rxm->ol_flags |= pkt_flags;
|
|
|
|
|
|
|
|
|
|
rx_pkts[nb_rx++] = rxm;
|
|
|
|
|
}
|
|
|
|
|
rxq->rx_tail = rx_id;
|
|
|
|
|
|
|
|
|
|
/* If the number of free RX descriptors is greater than the RX free
|
|
|
|
|
* threshold of the queue, advance the receive tail register of queue.
|
|
|
|
|
* Update that register with the value of the last processed RX
|
|
|
|
|
* descriptor minus 1.
|
|
|
|
|
*/
|
|
|
|
|
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
|
|
|
|
|
if (nb_hold > rxq->rx_free_thresh) {
|
|
|
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
|
|
|
|
|
"nb_hold=%u nb_rx=%u",
|
|
|
|
|
rxq->port_id, rxq->queue_id,
|
|
|
|
|
rx_id, nb_hold, nb_rx);
|
|
|
|
|
rx_id = (uint16_t)((rx_id == 0) ?
|
|
|
|
|
(rxq->nb_rx_desc - 1) : (rx_id - 1));
|
|
|
|
|
AVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
|
|
|
|
|
nb_hold = 0;
|
|
|
|
|
}
|
|
|
|
|
rxq->nb_rx_hold = nb_hold;
|
|
|
|
|
|
|
|
|
|
return nb_rx;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* implement recv_scattered_pkts */
|
|
|
|
|
uint16_t
|
|
|
|
|
avf_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
|
|
|
|
|
uint16_t nb_pkts)
|
|
|
|
|
{
|
|
|
|
|
struct avf_rx_queue *rxq = rx_queue;
|
|
|
|
|
union avf_rx_desc rxd;
|
|
|
|
|
struct rte_mbuf *rxe;
|
|
|
|
|
struct rte_mbuf *first_seg = rxq->pkt_first_seg;
|
|
|
|
|
struct rte_mbuf *last_seg = rxq->pkt_last_seg;
|
|
|
|
|
struct rte_mbuf *nmb, *rxm;
|
|
|
|
|
uint16_t rx_id = rxq->rx_tail;
|
|
|
|
|
uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
|
|
|
|
|
struct rte_eth_dev *dev;
|
|
|
|
|
uint32_t rx_status;
|
|
|
|
|
uint64_t qword1;
|
|
|
|
|
uint64_t dma_addr;
|
|
|
|
|
uint64_t pkt_flags;
|
|
|
|
|
|
|
|
|
|
volatile union avf_rx_desc *rx_ring = rxq->rx_ring;
|
|
|
|
|
volatile union avf_rx_desc *rxdp;
|
|
|
|
|
static const uint32_t ptype_tbl[UINT8_MAX + 1] __rte_cache_aligned = {
|
|
|
|
|
/* [0] reserved */
|
|
|
|
|
[1] = RTE_PTYPE_L2_ETHER,
|
|
|
|
|
/* [2] - [21] reserved */
|
|
|
|
|
[22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
|
RTE_PTYPE_L4_FRAG,
|
|
|
|
|
[23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
|
RTE_PTYPE_L4_NONFRAG,
|
|
|
|
|
[24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
|
RTE_PTYPE_L4_UDP,
|
|
|
|
|
/* [25] reserved */
|
|
|
|
|
[26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
|
RTE_PTYPE_L4_TCP,
|
|
|
|
|
[27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
|
RTE_PTYPE_L4_SCTP,
|
|
|
|
|
[28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
|
|
|
|
|
RTE_PTYPE_L4_ICMP,
|
|
|
|
|
/* All others reserved */
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
while (nb_rx < nb_pkts) {
|
|
|
|
|
rxdp = &rx_ring[rx_id];
|
|
|
|
|
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
|
|
|
|
|
rx_status = (qword1 & AVF_RXD_QW1_STATUS_MASK) >>
|
|
|
|
|
AVF_RXD_QW1_STATUS_SHIFT;
|
|
|
|
|
|
|
|
|
|
/* Check the DD bit */
|
|
|
|
|
if (!(rx_status & (1 << AVF_RX_DESC_STATUS_DD_SHIFT)))
|
|
|
|
|
break;
|
|
|
|
|
AVF_DUMP_RX_DESC(rxq, rxdp, rx_id);
|
|
|
|
|
|
|
|
|
|
nmb = rte_mbuf_raw_alloc(rxq->mp);
|
|
|
|
|
if (unlikely(!nmb)) {
|
|
|
|
|
PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
|
|
|
|
|
"queue_id=%u", rxq->port_id, rxq->queue_id);
|
|
|
|
|
dev = &rte_eth_devices[rxq->port_id];
|
|
|
|
|
dev->data->rx_mbuf_alloc_failed++;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
rxd = *rxdp;
|
|
|
|
|
nb_hold++;
|
|
|
|
|
rxe = rxq->sw_ring[rx_id];
|
|
|
|
|
rx_id++;
|
|
|
|
|
if (rx_id == rxq->nb_rx_desc)
|
|
|
|
|
rx_id = 0;
|
|
|
|
|
|
|
|
|
|
/* Prefetch next mbuf */
|
|
|
|
|
rte_prefetch0(rxq->sw_ring[rx_id]);
|
|
|
|
|
|
|
|
|
|
/* When next RX descriptor is on a cache line boundary,
|
|
|
|
|
* prefetch the next 4 RX descriptors and next 8 pointers
|
|
|
|
|
* to mbufs.
|
|
|
|
|
*/
|
|
|
|
|
if ((rx_id & 0x3) == 0) {
|
|
|
|
|
rte_prefetch0(&rx_ring[rx_id]);
|
|
|
|
|
rte_prefetch0(rxq->sw_ring[rx_id]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
rxm = rxe;
|
|
|
|
|
rxe = nmb;
|
|
|
|
|
dma_addr =
|
|
|
|
|
rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
|
|
|
|
|
|
|
|
|
|
/* Set data buffer address and data length of the mbuf */
|
|
|
|
|
rxdp->read.hdr_addr = 0;
|
|
|
|
|
rxdp->read.pkt_addr = dma_addr;
|
|
|
|
|
rx_packet_len = (qword1 & AVF_RXD_QW1_LENGTH_PBUF_MASK) >>
|
|
|
|
|
AVF_RXD_QW1_LENGTH_PBUF_SHIFT;
|
|
|
|
|
rxm->data_len = rx_packet_len;
|
|
|
|
|
rxm->data_off = RTE_PKTMBUF_HEADROOM;
|
|
|
|
|
|
|
|
|
|
/* If this is the first buffer of the received packet, set the
|
|
|
|
|
* pointer to the first mbuf of the packet and initialize its
|
|
|
|
|
* context. Otherwise, update the total length and the number
|
|
|
|
|
* of segments of the current scattered packet, and update the
|
|
|
|
|
* pointer to the last mbuf of the current packet.
|
|
|
|
|
*/
|
|
|
|
|
if (!first_seg) {
|
|
|
|
|
first_seg = rxm;
|
|
|
|
|
first_seg->nb_segs = 1;
|
|
|
|
|
first_seg->pkt_len = rx_packet_len;
|
|
|
|
|
} else {
|
|
|
|
|
first_seg->pkt_len =
|
|
|
|
|
(uint16_t)(first_seg->pkt_len +
|
|
|
|
|
rx_packet_len);
|
|
|
|
|
first_seg->nb_segs++;
|
|
|
|
|
last_seg->next = rxm;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If this is not the last buffer of the received packet,
|
|
|
|
|
* update the pointer to the last mbuf of the current scattered
|
|
|
|
|
* packet and continue to parse the RX ring.
|
|
|
|
|
*/
|
|
|
|
|
if (!(rx_status & (1 << AVF_RX_DESC_STATUS_EOF_SHIFT))) {
|
|
|
|
|
last_seg = rxm;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This is the last buffer of the received packet. If the CRC
|
|
|
|
|
* is not stripped by the hardware:
|
|
|
|
|
* - Subtract the CRC length from the total packet length.
|
|
|
|
|
* - If the last buffer only contains the whole CRC or a part
|
|
|
|
|
* of it, free the mbuf associated to the last buffer. If part
|
|
|
|
|
* of the CRC is also contained in the previous mbuf, subtract
|
|
|
|
|
* the length of that CRC part from the data length of the
|
|
|
|
|
* previous mbuf.
|
|
|
|
|
*/
|
|
|
|
|
rxm->next = NULL;
|
|
|
|
|
if (unlikely(rxq->crc_len > 0)) {
|
|
|
|
|
first_seg->pkt_len -= ETHER_CRC_LEN;
|
|
|
|
|
if (rx_packet_len <= ETHER_CRC_LEN) {
|
|
|
|
|
rte_pktmbuf_free_seg(rxm);
|
|
|
|
|
first_seg->nb_segs--;
|
|
|
|
|
last_seg->data_len =
|
|
|
|
|
(uint16_t)(last_seg->data_len -
|
|
|
|
|
(ETHER_CRC_LEN - rx_packet_len));
|
|
|
|
|
last_seg->next = NULL;
|
|
|
|
|
} else
|
|
|
|
|
rxm->data_len = (uint16_t)(rx_packet_len -
|
|
|
|
|
ETHER_CRC_LEN);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
first_seg->port = rxq->port_id;
|
|
|
|
|
first_seg->ol_flags = 0;
|
|
|
|
|
avf_rxd_to_vlan_tci(first_seg, &rxd);
|
|
|
|
|
pkt_flags = avf_rxd_to_pkt_flags(qword1);
|
|
|
|
|
first_seg->packet_type =
|
|
|
|
|
ptype_tbl[(uint8_t)((qword1 &
|
|
|
|
|
AVF_RXD_QW1_PTYPE_MASK) >> AVF_RXD_QW1_PTYPE_SHIFT)];
|
|
|
|
|
|
|
|
|
|
if (pkt_flags & PKT_RX_RSS_HASH)
|
|
|
|
|
first_seg->hash.rss =
|
|
|
|
|
rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
|
|
|
|
|
|
|
|
|
|
first_seg->ol_flags |= pkt_flags;
|
|
|
|
|
|
|
|
|
|
/* Prefetch data of first segment, if configured to do so. */
|
|
|
|
|
rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
|
|
|
|
|
first_seg->data_off));
|
|
|
|
|
rx_pkts[nb_rx++] = first_seg;
|
|
|
|
|
first_seg = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Record index of the next RX descriptor to probe. */
|
|
|
|
|
rxq->rx_tail = rx_id;
|
|
|
|
|
rxq->pkt_first_seg = first_seg;
|
|
|
|
|
rxq->pkt_last_seg = last_seg;
|
|
|
|
|
|
|
|
|
|
/* If the number of free RX descriptors is greater than the RX free
|
|
|
|
|
* threshold of the queue, advance the Receive Descriptor Tail (RDT)
|
|
|
|
|
* register. Update the RDT with the value of the last processed RX
|
|
|
|
|
* descriptor minus 1, to guarantee that the RDT register is never
|
|
|
|
|
* equal to the RDH register, which creates a "full" ring situtation
|
|
|
|
|
* from the hardware point of view.
|
|
|
|
|
*/
|
|
|
|
|
nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
|
|
|
|
|
if (nb_hold > rxq->rx_free_thresh) {
|
|
|
|
|
PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
|
|
|
|
|
"nb_hold=%u nb_rx=%u",
|
|
|
|
|
rxq->port_id, rxq->queue_id,
|
|
|
|
|
rx_id, nb_hold, nb_rx);
|
|
|
|
|
rx_id = (uint16_t)(rx_id == 0 ?
|
|
|
|
|
(rxq->nb_rx_desc - 1) : (rx_id - 1));
|
|
|
|
|
AVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
|
|
|
|
|
nb_hold = 0;
|
|
|
|
|
}
|
|
|
|
|
rxq->nb_rx_hold = nb_hold;
|
|
|
|
|
|
|
|
|
|
return nb_rx;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline int
|
|
|
|
|
avf_xmit_cleanup(struct avf_tx_queue *txq)
|
|
|
|
|
{
|
|
|
|
|
struct avf_tx_entry *sw_ring = txq->sw_ring;
|
|
|
|
|
uint16_t last_desc_cleaned = txq->last_desc_cleaned;
|
|
|
|
|
uint16_t nb_tx_desc = txq->nb_tx_desc;
|
|
|
|
|
uint16_t desc_to_clean_to;
|
|
|
|
|
uint16_t nb_tx_to_clean;
|
|
|
|
|
|
|
|
|
|
volatile struct avf_tx_desc *txd = txq->tx_ring;
|
|
|
|
|
|
|
|
|
|
desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->rs_thresh);
|
|
|
|
|
if (desc_to_clean_to >= nb_tx_desc)
|
|
|
|
|
desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
|
|
|
|
|
|
|
|
|
|
desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
|
|
|
|
|
if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
|
|
|
|
|
rte_cpu_to_le_64(AVF_TXD_QW1_DTYPE_MASK)) !=
|
|
|
|
|
rte_cpu_to_le_64(AVF_TX_DESC_DTYPE_DESC_DONE)) {
|
|
|
|
|
PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
|
|
|
|
|
"(port=%d queue=%d)", desc_to_clean_to,
|
|
|
|
|
txq->port_id, txq->queue_id);
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (last_desc_cleaned > desc_to_clean_to)
|
|
|
|
|
nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
|
|
|
|
|
desc_to_clean_to);
|
|
|
|
|
else
|
|
|
|
|
nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
|
|
|
|
|
last_desc_cleaned);
|
|
|
|
|
|
|
|
|
|
txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
|
|
|
|
|
|
|
|
|
|
txq->last_desc_cleaned = desc_to_clean_to;
|
|
|
|
|
txq->nb_free = (uint16_t)(txq->nb_free + nb_tx_to_clean);
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Check if the context descriptor is needed for TX offloading */
|
|
|
|
|
static inline uint16_t
|
|
|
|
|
avf_calc_context_desc(uint64_t flags)
|
|
|
|
|
{
|
|
|
|
|
static uint64_t mask = PKT_TX_TCP_SEG;
|
|
|
|
|
|
|
|
|
|
return (flags & mask) ? 1 : 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
|
avf_txd_enable_checksum(uint64_t ol_flags,
|
|
|
|
|
uint32_t *td_cmd,
|
|
|
|
|
uint32_t *td_offset,
|
|
|
|
|
union avf_tx_offload tx_offload)
|
|
|
|
|
{
|
|
|
|
|
/* Set MACLEN */
|
|
|
|
|
*td_offset |= (tx_offload.l2_len >> 1) <<
|
|
|
|
|
AVF_TX_DESC_LENGTH_MACLEN_SHIFT;
|
|
|
|
|
|
|
|
|
|
/* Enable L3 checksum offloads */
|
|
|
|
|
if (ol_flags & PKT_TX_IP_CKSUM) {
|
|
|
|
|
*td_cmd |= AVF_TX_DESC_CMD_IIPT_IPV4_CSUM;
|
|
|
|
|
*td_offset |= (tx_offload.l3_len >> 2) <<
|
|
|
|
|
AVF_TX_DESC_LENGTH_IPLEN_SHIFT;
|
|
|
|
|
} else if (ol_flags & PKT_TX_IPV4) {
|
|
|
|
|
*td_cmd |= AVF_TX_DESC_CMD_IIPT_IPV4;
|
|
|
|
|
*td_offset |= (tx_offload.l3_len >> 2) <<
|
|
|
|
|
AVF_TX_DESC_LENGTH_IPLEN_SHIFT;
|
|
|
|
|
} else if (ol_flags & PKT_TX_IPV6) {
|
|
|
|
|
*td_cmd |= AVF_TX_DESC_CMD_IIPT_IPV6;
|
|
|
|
|
*td_offset |= (tx_offload.l3_len >> 2) <<
|
|
|
|
|
AVF_TX_DESC_LENGTH_IPLEN_SHIFT;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (ol_flags & PKT_TX_TCP_SEG) {
|
|
|
|
|
*td_cmd |= AVF_TX_DESC_CMD_L4T_EOFT_TCP;
|
|
|
|
|
*td_offset |= (tx_offload.l4_len >> 2) <<
|
|
|
|
|
AVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Enable L4 checksum offloads */
|
|
|
|
|
switch (ol_flags & PKT_TX_L4_MASK) {
|
|
|
|
|
case PKT_TX_TCP_CKSUM:
|
|
|
|
|
*td_cmd |= AVF_TX_DESC_CMD_L4T_EOFT_TCP;
|
|
|
|
|
*td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
|
|
|
|
|
AVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
|
|
|
break;
|
|
|
|
|
case PKT_TX_SCTP_CKSUM:
|
|
|
|
|
*td_cmd |= AVF_TX_DESC_CMD_L4T_EOFT_SCTP;
|
|
|
|
|
*td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
|
|
|
|
|
AVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
|
|
|
break;
|
|
|
|
|
case PKT_TX_UDP_CKSUM:
|
|
|
|
|
*td_cmd |= AVF_TX_DESC_CMD_L4T_EOFT_UDP;
|
|
|
|
|
*td_offset |= (sizeof(struct udp_hdr) >> 2) <<
|
|
|
|
|
AVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* set TSO context descriptor
|
|
|
|
|
* support IP -> L4 and IP -> IP -> L4
|
|
|
|
|
*/
|
|
|
|
|
static inline uint64_t
|
|
|
|
|
avf_set_tso_ctx(struct rte_mbuf *mbuf, union avf_tx_offload tx_offload)
|
|
|
|
|
{
|
|
|
|
|
uint64_t ctx_desc = 0;
|
|
|
|
|
uint32_t cd_cmd, hdr_len, cd_tso_len;
|
|
|
|
|
|
|
|
|
|
if (!tx_offload.l4_len) {
|
|
|
|
|
PMD_TX_LOG(DEBUG, "L4 length set to 0");
|
|
|
|
|
return ctx_desc;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* in case of non tunneling packet, the outer_l2_len and
|
|
|
|
|
* outer_l3_len must be 0.
|
|
|
|
|
*/
|
|
|
|
|
hdr_len = tx_offload.l2_len +
|
|
|
|
|
tx_offload.l3_len +
|
|
|
|
|
tx_offload.l4_len;
|
|
|
|
|
|
|
|
|
|
cd_cmd = AVF_TX_CTX_DESC_TSO;
|
|
|
|
|
cd_tso_len = mbuf->pkt_len - hdr_len;
|
|
|
|
|
ctx_desc |= ((uint64_t)cd_cmd << AVF_TXD_CTX_QW1_CMD_SHIFT) |
|
|
|
|
|
((uint64_t)cd_tso_len << AVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
|
|
|
|
|
((uint64_t)mbuf->tso_segsz << AVF_TXD_CTX_QW1_MSS_SHIFT);
|
|
|
|
|
|
|
|
|
|
return ctx_desc;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Construct the tx flags */
|
|
|
|
|
static inline uint64_t
|
|
|
|
|
avf_build_ctob(uint32_t td_cmd, uint32_t td_offset, unsigned int size,
|
|
|
|
|
uint32_t td_tag)
|
|
|
|
|
{
|
|
|
|
|
return rte_cpu_to_le_64(AVF_TX_DESC_DTYPE_DATA |
|
|
|
|
|
((uint64_t)td_cmd << AVF_TXD_QW1_CMD_SHIFT) |
|
|
|
|
|
((uint64_t)td_offset <<
|
|
|
|
|
AVF_TXD_QW1_OFFSET_SHIFT) |
|
|
|
|
|
((uint64_t)size <<
|
|
|
|
|
AVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
|
|
|
|
|
((uint64_t)td_tag <<
|
|
|
|
|
AVF_TXD_QW1_L2TAG1_SHIFT));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* TX function */
|
|
|
|
|
uint16_t
|
|
|
|
|
avf_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
|
|
|
|
|
{
|
|
|
|
|
volatile struct avf_tx_desc *txd;
|
|
|
|
|
volatile struct avf_tx_desc *txr;
|
|
|
|
|
struct avf_tx_queue *txq;
|
|
|
|
|
struct avf_tx_entry *sw_ring;
|
|
|
|
|
struct avf_tx_entry *txe, *txn;
|
|
|
|
|
struct rte_mbuf *tx_pkt;
|
|
|
|
|
struct rte_mbuf *m_seg;
|
|
|
|
|
uint16_t tx_id;
|
|
|
|
|
uint16_t nb_tx;
|
|
|
|
|
uint32_t td_cmd;
|
|
|
|
|
uint32_t td_offset;
|
|
|
|
|
uint32_t td_tag;
|
|
|
|
|
uint64_t ol_flags;
|
|
|
|
|
uint16_t nb_used;
|
|
|
|
|
uint16_t nb_ctx;
|
|
|
|
|
uint16_t tx_last;
|
|
|
|
|
uint16_t slen;
|
|
|
|
|
uint64_t buf_dma_addr;
|
|
|
|
|
union avf_tx_offload tx_offload = {0};
|
|
|
|
|
|
|
|
|
|
txq = tx_queue;
|
|
|
|
|
sw_ring = txq->sw_ring;
|
|
|
|
|
txr = txq->tx_ring;
|
|
|
|
|
tx_id = txq->tx_tail;
|
|
|
|
|
txe = &sw_ring[tx_id];
|
|
|
|
|
|
|
|
|
|
/* Check if the descriptor ring needs to be cleaned. */
|
|
|
|
|
if (txq->nb_free < txq->free_thresh)
|
|
|
|
|
avf_xmit_cleanup(txq);
|
|
|
|
|
|
|
|
|
|
for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
|
|
|
|
|
td_cmd = 0;
|
|
|
|
|
td_tag = 0;
|
|
|
|
|
td_offset = 0;
|
|
|
|
|
|
|
|
|
|
tx_pkt = *tx_pkts++;
|
|
|
|
|
RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
|
|
|
|
|
|
|
|
|
|
ol_flags = tx_pkt->ol_flags;
|
|
|
|
|
tx_offload.l2_len = tx_pkt->l2_len;
|
|
|
|
|
tx_offload.l3_len = tx_pkt->l3_len;
|
|
|
|
|
tx_offload.l4_len = tx_pkt->l4_len;
|
|
|
|
|
tx_offload.tso_segsz = tx_pkt->tso_segsz;
|
|
|
|
|
|
|
|
|
|
/* Calculate the number of context descriptors needed. */
|
|
|
|
|
nb_ctx = avf_calc_context_desc(ol_flags);
|
|
|
|
|
|
|
|
|
|
/* The number of descriptors that must be allocated for
|
|
|
|
|
* a packet equals to the number of the segments of that
|
|
|
|
|
* packet plus 1 context descriptor if needed.
|
|
|
|
|
*/
|
|
|
|
|
nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
|
|
|
|
|
tx_last = (uint16_t)(tx_id + nb_used - 1);
|
|
|
|
|
|
|
|
|
|
/* Circular ring */
|
|
|
|
|
if (tx_last >= txq->nb_tx_desc)
|
|
|
|
|
tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
|
|
|
|
|
|
|
|
|
|
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u"
|
|
|
|
|
" tx_first=%u tx_last=%u",
|
|
|
|
|
txq->port_id, txq->queue_id, tx_id, tx_last);
|
|
|
|
|
|
|
|
|
|
if (nb_used > txq->nb_free) {
|
|
|
|
|
if (avf_xmit_cleanup(txq)) {
|
|
|
|
|
if (nb_tx == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
goto end_of_tx;
|
|
|
|
|
}
|
|
|
|
|
if (unlikely(nb_used > txq->rs_thresh)) {
|
|
|
|
|
while (nb_used > txq->nb_free) {
|
|
|
|
|
if (avf_xmit_cleanup(txq)) {
|
|
|
|
|
if (nb_tx == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
goto end_of_tx;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Descriptor based VLAN insertion */
|
|
|
|
|
if (ol_flags & PKT_TX_VLAN_PKT) {
|
|
|
|
|
td_cmd |= AVF_TX_DESC_CMD_IL2TAG1;
|
|
|
|
|
td_tag = tx_pkt->vlan_tci;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* According to datasheet, the bit2 is reserved and must be
|
|
|
|
|
* set to 1.
|
|
|
|
|
*/
|
|
|
|
|
td_cmd |= 0x04;
|
|
|
|
|
|
|
|
|
|
/* Enable checksum offloading */
|
|
|
|
|
if (ol_flags & AVF_TX_CKSUM_OFFLOAD_MASK)
|
|
|
|
|
avf_txd_enable_checksum(ol_flags, &td_cmd,
|
|
|
|
|
&td_offset, tx_offload);
|
|
|
|
|
|
|
|
|
|
if (nb_ctx) {
|
|
|
|
|
/* Setup TX context descriptor if required */
|
|
|
|
|
volatile struct avf_tx_context_desc *ctx_txd =
|
|
|
|
|
(volatile struct avf_tx_context_desc *)
|
|
|
|
|
&txr[tx_id];
|
|
|
|
|
uint16_t cd_l2tag2 = 0;
|
|
|
|
|
uint64_t cd_type_cmd_tso_mss =
|
|
|
|
|
AVF_TX_DESC_DTYPE_CONTEXT;
|
|
|
|
|
|
|
|
|
|
txn = &sw_ring[txe->next_id];
|
|
|
|
|
RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
|
|
|
|
|
if (txe->mbuf) {
|
|
|
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
|
|
|
txe->mbuf = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* TSO enabled */
|
|
|
|
|
if (ol_flags & PKT_TX_TCP_SEG)
|
|
|
|
|
cd_type_cmd_tso_mss |=
|
|
|
|
|
avf_set_tso_ctx(tx_pkt, tx_offload);
|
|
|
|
|
|
|
|
|
|
AVF_DUMP_TX_DESC(txq, ctx_txd, tx_id);
|
|
|
|
|
txe->last_id = tx_last;
|
|
|
|
|
tx_id = txe->next_id;
|
|
|
|
|
txe = txn;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
m_seg = tx_pkt;
|
|
|
|
|
do {
|
|
|
|
|
txd = &txr[tx_id];
|
|
|
|
|
txn = &sw_ring[txe->next_id];
|
|
|
|
|
|
|
|
|
|
if (txe->mbuf)
|
|
|
|
|
rte_pktmbuf_free_seg(txe->mbuf);
|
|
|
|
|
txe->mbuf = m_seg;
|
|
|
|
|
|
|
|
|
|
/* Setup TX Descriptor */
|
|
|
|
|
slen = m_seg->data_len;
|
|
|
|
|
buf_dma_addr = rte_mbuf_data_iova(m_seg);
|
|
|
|
|
txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
|
|
|
|
|
txd->cmd_type_offset_bsz = avf_build_ctob(td_cmd,
|
|
|
|
|
td_offset,
|
|
|
|
|
slen,
|
|
|
|
|
td_tag);
|
|
|
|
|
|
|
|
|
|
AVF_DUMP_TX_DESC(txq, txd, tx_id);
|
|
|
|
|
txe->last_id = tx_last;
|
|
|
|
|
tx_id = txe->next_id;
|
|
|
|
|
txe = txn;
|
|
|
|
|
m_seg = m_seg->next;
|
|
|
|
|
} while (m_seg);
|
|
|
|
|
|
|
|
|
|
/* The last packet data descriptor needs End Of Packet (EOP) */
|
|
|
|
|
td_cmd |= AVF_TX_DESC_CMD_EOP;
|
|
|
|
|
txq->nb_used = (uint16_t)(txq->nb_used + nb_used);
|
|
|
|
|
txq->nb_free = (uint16_t)(txq->nb_free - nb_used);
|
|
|
|
|
|
|
|
|
|
if (txq->nb_used >= txq->rs_thresh) {
|
|
|
|
|
PMD_TX_LOG(DEBUG, "Setting RS bit on TXD id="
|
|
|
|
|
"%4u (port=%d queue=%d)",
|
|
|
|
|
tx_last, txq->port_id, txq->queue_id);
|
|
|
|
|
|
|
|
|
|
td_cmd |= AVF_TX_DESC_CMD_RS;
|
|
|
|
|
|
|
|
|
|
/* Update txq RS bit counters */
|
|
|
|
|
txq->nb_used = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
txd->cmd_type_offset_bsz |=
|
|
|
|
|
rte_cpu_to_le_64(((uint64_t)td_cmd) <<
|
|
|
|
|
AVF_TXD_QW1_CMD_SHIFT);
|
|
|
|
|
AVF_DUMP_TX_DESC(txq, txd, tx_id);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
end_of_tx:
|
|
|
|
|
rte_wmb();
|
|
|
|
|
|
|
|
|
|
PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
|
|
|
|
|
txq->port_id, txq->queue_id, tx_id, nb_tx);
|
|
|
|
|
|
|
|
|
|
AVF_PCI_REG_WRITE_RELAXED(txq->qtx_tail, tx_id);
|
|
|
|
|
txq->tx_tail = tx_id;
|
|
|
|
|
|
|
|
|
|
return nb_tx;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* TX prep functions */
|
|
|
|
|
uint16_t
|
|
|
|
|
avf_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
|
|
|
|
|
uint16_t nb_pkts)
|
|
|
|
|
{
|
|
|
|
|
int i, ret;
|
|
|
|
|
uint64_t ol_flags;
|
|
|
|
|
struct rte_mbuf *m;
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < nb_pkts; i++) {
|
|
|
|
|
m = tx_pkts[i];
|
|
|
|
|
ol_flags = m->ol_flags;
|
|
|
|
|
|
|
|
|
|
/* Check condition for nb_segs > AVF_TX_MAX_MTU_SEG. */
|
|
|
|
|
if (!(ol_flags & PKT_TX_TCP_SEG)) {
|
|
|
|
|
if (m->nb_segs > AVF_TX_MAX_MTU_SEG) {
|
|
|
|
|
rte_errno = -EINVAL;
|
|
|
|
|
return i;
|
|
|
|
|
}
|
|
|
|
|
} else if ((m->tso_segsz < AVF_MIN_TSO_MSS) ||
|
|
|
|
|
(m->tso_segsz > AVF_MAX_TSO_MSS)) {
|
|
|
|
|
/* MSS outside the range are considered malicious */
|
|
|
|
|
rte_errno = -EINVAL;
|
|
|
|
|
return i;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (ol_flags & AVF_TX_OFFLOAD_NOTSUP_MASK) {
|
|
|
|
|
rte_errno = -ENOTSUP;
|
|
|
|
|
return i;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
|
|
|
|
|
ret = rte_validate_tx_offload(m);
|
|
|
|
|
if (ret != 0) {
|
|
|
|
|
rte_errno = ret;
|
|
|
|
|
return i;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
ret = rte_net_intel_cksum_prepare(m);
|
|
|
|
|
if (ret != 0) {
|
|
|
|
|
rte_errno = ret;
|
|
|
|
|
return i;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return i;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* choose rx function*/
|
|
|
|
|
void
|
|
|
|
|
avf_set_rx_function(struct rte_eth_dev *dev)
|
|
|
|
|
{
|
|
|
|
|
if (dev->data->scattered_rx)
|
|
|
|
|
dev->rx_pkt_burst = avf_recv_scattered_pkts;
|
|
|
|
|
else
|
|
|
|
|
dev->rx_pkt_burst = avf_recv_pkts;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* choose tx function*/
|
|
|
|
|
void
|
|
|
|
|
avf_set_tx_function(struct rte_eth_dev *dev)
|
|
|
|
|
{
|
|
|
|
|
dev->tx_pkt_burst = avf_xmit_pkts;
|
|
|
|
|
dev->tx_pkt_prepare = avf_prep_pkts;
|
|
|
|
|
}
|
|
|
|
|