examples/vhost: refactor vhost data path

Change the vm2vm data path to batch enqueue for better performance.
Support latest async vhost API, refactor vhost async data path,
replace rte_atomicNN_xxx to __atomic_XXX and clean some codes.

Signed-off-by: Cheng Jiang <cheng1.jiang@intel.com>
Reviewed-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
This commit is contained in:
Cheng Jiang 2021-01-12 04:38:57 +00:00 committed by Ferruh Yigit
parent 2aa47e94bf
commit a68ba8e0a6
3 changed files with 178 additions and 68 deletions

View File

@ -11,7 +11,7 @@
#define MAX_VHOST_DEVICE 1024
#define IOAT_RING_SIZE 4096
#define MAX_ENQUEUED_SIZE 256
#define MAX_ENQUEUED_SIZE 512
struct dma_info {
struct rte_pci_addr addr;

View File

@ -14,7 +14,6 @@
#include <sys/param.h>
#include <unistd.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include <rte_log.h>
@ -179,9 +178,22 @@ struct mbuf_table {
struct rte_mbuf *m_table[MAX_PKT_BURST];
};
struct vhost_bufftable {
uint32_t len;
uint64_t pre_tsc;
struct rte_mbuf *m_table[MAX_PKT_BURST];
};
/* TX queue for each data core. */
struct mbuf_table lcore_tx_queue[RTE_MAX_LCORE];
/*
* Vhost TX buffer for each data core.
* Every data core maintains a TX buffer for every vhost device,
* which is used for batch pkts enqueue for higher performance.
*/
struct vhost_bufftable *vhost_txbuff[RTE_MAX_LCORE * MAX_VHOST_DEVICE];
#define MBUF_TABLE_DRAIN_TSC ((rte_get_tsc_hz() + US_PER_S - 1) \
/ US_PER_S * BURST_TX_DRAIN_US)
#define VLAN_HLEN 4
@ -804,43 +816,118 @@ unlink_vmdq(struct vhost_dev *vdev)
}
}
static inline void
free_pkts(struct rte_mbuf **pkts, uint16_t n)
{
while (n--)
rte_pktmbuf_free(pkts[n]);
}
static __rte_always_inline void
virtio_xmit(struct vhost_dev *dst_vdev, struct vhost_dev *src_vdev,
complete_async_pkts(struct vhost_dev *vdev)
{
struct rte_mbuf *p_cpl[MAX_PKT_BURST];
uint16_t complete_count;
complete_count = rte_vhost_poll_enqueue_completed(vdev->vid,
VIRTIO_RXQ, p_cpl, MAX_PKT_BURST);
if (complete_count) {
__atomic_sub_fetch(&vdev->nr_async_pkts, complete_count,
__ATOMIC_SEQ_CST);
free_pkts(p_cpl, complete_count);
}
}
static __rte_always_inline void
sync_virtio_xmit(struct vhost_dev *dst_vdev, struct vhost_dev *src_vdev,
struct rte_mbuf *m)
{
uint16_t ret;
struct rte_mbuf *m_cpl[1], *comp_pkt;
uint32_t nr_comp = 0;
if (builtin_net_driver) {
ret = vs_enqueue_pkts(dst_vdev, VIRTIO_RXQ, &m, 1);
} else if (async_vhost_driver) {
ret = rte_vhost_submit_enqueue_burst(dst_vdev->vid, VIRTIO_RXQ,
&m, 1, &comp_pkt, &nr_comp);
if (nr_comp == 1)
goto done;
if (likely(ret))
dst_vdev->nr_async_pkts++;
while (likely(dst_vdev->nr_async_pkts)) {
if (rte_vhost_poll_enqueue_completed(dst_vdev->vid,
VIRTIO_RXQ, m_cpl, 1))
dst_vdev->nr_async_pkts--;
}
} else {
ret = rte_vhost_enqueue_burst(dst_vdev->vid, VIRTIO_RXQ, &m, 1);
}
done:
if (enable_stats) {
rte_atomic64_inc(&dst_vdev->stats.rx_total_atomic);
rte_atomic64_add(&dst_vdev->stats.rx_atomic, ret);
__atomic_add_fetch(&dst_vdev->stats.rx_total_atomic, 1,
__ATOMIC_SEQ_CST);
__atomic_add_fetch(&dst_vdev->stats.rx_atomic, ret,
__ATOMIC_SEQ_CST);
src_vdev->stats.tx_total++;
src_vdev->stats.tx += ret;
}
}
static __rte_always_inline void
drain_vhost(struct vhost_dev *vdev)
{
uint16_t ret;
uint64_t buff_idx = rte_lcore_id() * MAX_VHOST_DEVICE + vdev->vid;
uint16_t nr_xmit = vhost_txbuff[buff_idx]->len;
struct rte_mbuf **m = vhost_txbuff[buff_idx]->m_table;
if (builtin_net_driver) {
ret = vs_enqueue_pkts(vdev, VIRTIO_RXQ, m, nr_xmit);
} else if (async_vhost_driver) {
uint32_t cpu_cpl_nr = 0;
uint16_t enqueue_fail = 0;
struct rte_mbuf *m_cpu_cpl[nr_xmit];
complete_async_pkts(vdev);
ret = rte_vhost_submit_enqueue_burst(vdev->vid, VIRTIO_RXQ,
m, nr_xmit, m_cpu_cpl, &cpu_cpl_nr);
__atomic_add_fetch(&vdev->nr_async_pkts, ret - cpu_cpl_nr,
__ATOMIC_SEQ_CST);
if (cpu_cpl_nr)
free_pkts(m_cpu_cpl, cpu_cpl_nr);
enqueue_fail = nr_xmit - ret;
if (enqueue_fail)
free_pkts(&m[ret], nr_xmit - ret);
} else {
ret = rte_vhost_enqueue_burst(vdev->vid, VIRTIO_RXQ,
m, nr_xmit);
}
if (enable_stats) {
__atomic_add_fetch(&vdev->stats.rx_total_atomic, nr_xmit,
__ATOMIC_SEQ_CST);
__atomic_add_fetch(&vdev->stats.rx_atomic, ret,
__ATOMIC_SEQ_CST);
}
if (!async_vhost_driver)
free_pkts(m, nr_xmit);
}
static __rte_always_inline void
drain_vhost_table(void)
{
uint16_t lcore_id = rte_lcore_id();
struct vhost_bufftable *vhost_txq;
struct vhost_dev *vdev;
uint64_t cur_tsc;
TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) {
vhost_txq = vhost_txbuff[lcore_id * MAX_VHOST_DEVICE
+ vdev->vid];
cur_tsc = rte_rdtsc();
if (unlikely(cur_tsc - vhost_txq->pre_tsc
> MBUF_TABLE_DRAIN_TSC)) {
RTE_LOG_DP(DEBUG, VHOST_DATA,
"Vhost TX queue drained after timeout with burst size %u\n",
vhost_txq->len);
drain_vhost(vdev);
vhost_txq->len = 0;
vhost_txq->pre_tsc = cur_tsc;
}
}
}
/*
* Check if the packet destination MAC address is for a local device. If so then put
* the packet on that devices RX queue. If not then return.
@ -850,7 +937,8 @@ virtio_tx_local(struct vhost_dev *vdev, struct rte_mbuf *m)
{
struct rte_ether_hdr *pkt_hdr;
struct vhost_dev *dst_vdev;
struct vhost_bufftable *vhost_txq;
uint16_t lcore_id = rte_lcore_id();
pkt_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
dst_vdev = find_vhost_dev(&pkt_hdr->d_addr);
@ -873,7 +961,19 @@ virtio_tx_local(struct vhost_dev *vdev, struct rte_mbuf *m)
return 0;
}
virtio_xmit(dst_vdev, vdev, m);
vhost_txq = vhost_txbuff[lcore_id * MAX_VHOST_DEVICE + dst_vdev->vid];
vhost_txq->m_table[vhost_txq->len++] = m;
if (enable_stats) {
vdev->stats.tx_total++;
vdev->stats.tx++;
}
if (unlikely(vhost_txq->len == MAX_PKT_BURST)) {
drain_vhost(dst_vdev);
vhost_txq->len = 0;
vhost_txq->pre_tsc = rte_rdtsc();
}
return 0;
}
@ -944,13 +1044,6 @@ static void virtio_tx_offload(struct rte_mbuf *m)
tcp_hdr->cksum = get_psd_sum(l3_hdr, m->ol_flags);
}
static inline void
free_pkts(struct rte_mbuf **pkts, uint16_t n)
{
while (n--)
rte_pktmbuf_free(pkts[n]);
}
static __rte_always_inline void
do_drain_mbuf_table(struct mbuf_table *tx_q)
{
@ -983,16 +1076,14 @@ virtio_tx_route(struct vhost_dev *vdev, struct rte_mbuf *m, uint16_t vlan_tag)
TAILQ_FOREACH(vdev2, &vhost_dev_list, global_vdev_entry) {
if (vdev2 != vdev)
virtio_xmit(vdev2, vdev, m);
sync_virtio_xmit(vdev2, vdev, m);
}
goto queue2nic;
}
/*check if destination is local VM*/
if ((vm2vm_mode == VM2VM_SOFTWARE) && (virtio_tx_local(vdev, m) == 0)) {
rte_pktmbuf_free(m);
if ((vm2vm_mode == VM2VM_SOFTWARE) && (virtio_tx_local(vdev, m) == 0))
return;
}
if (unlikely(vm2vm_mode == VM2VM_HARDWARE)) {
if (unlikely(find_local_dest(vdev, m, &offset,
@ -1077,32 +1168,15 @@ drain_mbuf_table(struct mbuf_table *tx_q)
}
}
static __rte_always_inline void
complete_async_pkts(struct vhost_dev *vdev, uint16_t qid)
{
struct rte_mbuf *p_cpl[MAX_PKT_BURST];
uint16_t complete_count;
complete_count = rte_vhost_poll_enqueue_completed(vdev->vid,
qid, p_cpl, MAX_PKT_BURST);
vdev->nr_async_pkts -= complete_count;
if (complete_count)
free_pkts(p_cpl, complete_count);
}
static __rte_always_inline void
drain_eth_rx(struct vhost_dev *vdev)
{
uint16_t rx_count, enqueue_count;
struct rte_mbuf *pkts[MAX_PKT_BURST], *comp_pkts[MAX_PKT_BURST];
uint32_t nr_comp = 0;
struct rte_mbuf *pkts[MAX_PKT_BURST];
rx_count = rte_eth_rx_burst(ports[0], vdev->vmdq_rx_q,
pkts, MAX_PKT_BURST);
while (likely(vdev->nr_async_pkts))
complete_async_pkts(vdev, VIRTIO_RXQ);
if (!rx_count)
return;
@ -1128,22 +1202,34 @@ drain_eth_rx(struct vhost_dev *vdev)
enqueue_count = vs_enqueue_pkts(vdev, VIRTIO_RXQ,
pkts, rx_count);
} else if (async_vhost_driver) {
uint32_t cpu_cpl_nr = 0;
uint16_t enqueue_fail = 0;
struct rte_mbuf *m_cpu_cpl[MAX_PKT_BURST];
complete_async_pkts(vdev);
enqueue_count = rte_vhost_submit_enqueue_burst(vdev->vid,
VIRTIO_RXQ, pkts, rx_count, comp_pkts,
&nr_comp);
if (nr_comp > 0) {
free_pkts(comp_pkts, nr_comp);
enqueue_count -= nr_comp;
}
vdev->nr_async_pkts += enqueue_count;
VIRTIO_RXQ, pkts, rx_count,
m_cpu_cpl, &cpu_cpl_nr);
__atomic_add_fetch(&vdev->nr_async_pkts,
enqueue_count - cpu_cpl_nr,
__ATOMIC_SEQ_CST);
if (cpu_cpl_nr)
free_pkts(m_cpu_cpl, cpu_cpl_nr);
enqueue_fail = rx_count - enqueue_count;
if (enqueue_fail)
free_pkts(&pkts[enqueue_count], enqueue_fail);
} else {
enqueue_count = rte_vhost_enqueue_burst(vdev->vid, VIRTIO_RXQ,
pkts, rx_count);
}
if (enable_stats) {
rte_atomic64_add(&vdev->stats.rx_total_atomic, rx_count);
rte_atomic64_add(&vdev->stats.rx_atomic, enqueue_count);
__atomic_add_fetch(&vdev->stats.rx_total_atomic, rx_count,
__ATOMIC_SEQ_CST);
__atomic_add_fetch(&vdev->stats.rx_atomic, enqueue_count,
__ATOMIC_SEQ_CST);
}
if (!async_vhost_driver)
@ -1212,7 +1298,7 @@ switch_worker(void *arg __rte_unused)
while(1) {
drain_mbuf_table(tx_q);
drain_vhost_table();
/*
* Inform the configuration core that we have exited the
* linked list and that no devices are in use if requested.
@ -1253,6 +1339,7 @@ destroy_device(int vid)
{
struct vhost_dev *vdev = NULL;
int lcore;
uint16_t i;
TAILQ_FOREACH(vdev, &vhost_dev_list, global_vdev_entry) {
if (vdev->vid == vid)
@ -1266,6 +1353,9 @@ destroy_device(int vid)
rte_pause();
}
for (i = 0; i < RTE_MAX_LCORE; i++)
rte_free(vhost_txbuff[i * MAX_VHOST_DEVICE + vid]);
if (builtin_net_driver)
vs_vhost_net_remove(vdev);
@ -1308,6 +1398,7 @@ static int
new_device(int vid)
{
int lcore, core_add = 0;
uint16_t i;
uint32_t device_num_min = num_devices;
struct vhost_dev *vdev;
vdev = rte_zmalloc("vhost device", sizeof(*vdev), RTE_CACHE_LINE_SIZE);
@ -1319,6 +1410,19 @@ new_device(int vid)
}
vdev->vid = vid;
for (i = 0; i < RTE_MAX_LCORE; i++) {
vhost_txbuff[i * MAX_VHOST_DEVICE + vid]
= rte_zmalloc("vhost bufftable",
sizeof(struct vhost_bufftable),
RTE_CACHE_LINE_SIZE);
if (vhost_txbuff[i * MAX_VHOST_DEVICE + vid] == NULL) {
RTE_LOG(INFO, VHOST_DATA,
"(%d) couldn't allocate memory for vhost TX\n", vid);
return -1;
}
}
if (builtin_net_driver)
vs_vhost_net_setup(vdev);
@ -1353,12 +1457,15 @@ new_device(int vid)
if (async_vhost_driver) {
struct rte_vhost_async_features f;
struct rte_vhost_async_channel_ops channel_ops;
if (strncmp(dma_type, "ioat", 4) == 0) {
channel_ops.transfer_data = ioat_transfer_data_cb;
channel_ops.check_completed_copies =
ioat_check_completed_copies_cb;
f.async_inorder = 1;
f.async_threshold = 256;
return rte_vhost_async_channel_register(vid, VIRTIO_RXQ,
f.intval, &channel_ops);
}
@ -1402,8 +1509,10 @@ print_stats(__rte_unused void *arg)
tx = vdev->stats.tx;
tx_dropped = tx_total - tx;
rx_total = rte_atomic64_read(&vdev->stats.rx_total_atomic);
rx = rte_atomic64_read(&vdev->stats.rx_atomic);
rx_total = __atomic_load_n(&vdev->stats.rx_total_atomic,
__ATOMIC_SEQ_CST);
rx = __atomic_load_n(&vdev->stats.rx_atomic,
__ATOMIC_SEQ_CST);
rx_dropped = rx_total - rx;
printf("Statistics for device %d\n"
@ -1602,6 +1711,7 @@ main(int argc, char *argv[])
/* Register vhost user driver to handle vhost messages. */
for (i = 0; i < nb_sockets; i++) {
char *file = socket_files + i * PATH_MAX;
if (async_vhost_driver)
flags = flags | RTE_VHOST_USER_ASYNC_COPY;

View File

@ -21,8 +21,8 @@ enum {VIRTIO_RXQ, VIRTIO_TXQ, VIRTIO_QNUM};
struct device_statistics {
uint64_t tx;
uint64_t tx_total;
rte_atomic64_t rx_atomic;
rte_atomic64_t rx_total_atomic;
uint64_t rx_atomic;
uint64_t rx_total_atomic;
};
struct vhost_queue {
@ -51,7 +51,7 @@ struct vhost_dev {
uint64_t features;
size_t hdr_len;
uint16_t nr_vrings;
uint16_t nr_async_pkts;
uint64_t nr_async_pkts;
struct rte_vhost_memory *mem;
struct device_statistics stats;
TAILQ_ENTRY(vhost_dev) global_vdev_entry;