app: rework ring tests

Signed-off-by: Intel
This commit is contained in:
Intel 2013-06-03 00:00:00 +00:00 committed by Thomas Monjalon
parent a8afb5e280
commit ac3fb3019c
8 changed files with 437 additions and 415 deletions

View File

@ -53,6 +53,7 @@ SRCS-$(CONFIG_RTE_APP_TEST) += test_spinlock.c
SRCS-$(CONFIG_RTE_APP_TEST) += test_memory.c
SRCS-$(CONFIG_RTE_APP_TEST) += test_memzone.c
SRCS-$(CONFIG_RTE_APP_TEST) += test_ring.c
SRCS-$(CONFIG_RTE_APP_TEST) += test_ring_perf.c
SRCS-$(CONFIG_RTE_APP_TEST) += test_rwlock.c
SRCS-$(CONFIG_RTE_APP_TEST) += test_timer.c
SRCS-$(CONFIG_RTE_APP_TEST) += test_mempool.c

View File

@ -236,6 +236,12 @@ def all_sockets(num):
"Func" : default_autotest,
"Report" : None,
},
{
"Name" : "Ring autotest",
"Command" : "ring_autotest",
"Func" : default_autotest,
"Report" : None,
},
]
},
{
@ -432,9 +438,9 @@ def all_sockets(num):
"Tests" :
[
{
"Name" : "Ring autotest",
"Command" : "ring_autotest",
"Func" : ring_autotest,
"Name" : "Ring performance autotest",
"Command" : "ring_perf_autotest",
"Func" : default_autotest,
"Report" : None,
},
]

View File

@ -273,7 +273,7 @@ def timer_autotest(child, test_name):
def ring_autotest(child, test_name):
child.sendline(test_name)
index = child.expect(["Test OK", "Test Failed",
pexpect.TIMEOUT], timeout = 1500)
pexpect.TIMEOUT], timeout = 15)
if index == 1:
return -1, "Fail"
elif index == 2:

View File

@ -157,6 +157,8 @@ static void cmd_autotest_parsed(void *parsed_result,
ret |= test_cycles();
if (all || !strcmp(res->autotest, "ring_autotest"))
ret |= test_ring();
if (all || !strcmp(res->autotest, "ring_perf_autotest"))
ret |= test_ring_perf();
if (all || !strcmp(res->autotest, "timer_autotest"))
ret |= test_timer();
if (all || !strcmp(res->autotest, "mempool_autotest"))
@ -211,6 +213,7 @@ cmdline_parse_token_string_t cmd_autotest_autotest =
"version_autotest#eal_fs_autotest#"
"cmdline_autotest#func_reentrancy_autotest#"
"mempool_perf_autotest#hash_perf_autotest#"
"memcpy_perf_autotest#ring_perf_autotest#"
"red_autotest#meter_autotest#sched_autotest#"
"memcpy_perf_autotest#kni_autotest#"
"pm_autotest#acl_autotest#power_autotest#"

View File

@ -60,6 +60,7 @@ int test_cycles(void);
int test_logs(void);
int test_memzone(void);
int test_ring(void);
int test_ring_perf(void);
int test_mempool(void);
int test_mempool_perf(void);
int test_mbuf(void);

View File

@ -99,24 +99,7 @@
*
* #. Performance tests.
*
* This test is done on the following configurations:
*
* - One core enqueuing, one core dequeuing
* - One core enqueuing, other cores dequeuing
* - One core dequeuing, other cores enqueuing
* - Half of the cores enqueuing, the other half dequeuing
*
* When only one core enqueues/dequeues, the test is done with the
* SP/SC functions in addition to the MP/MC functions.
*
* The test is done with different bulk size.
*
* On each core, the test enqueues or dequeues objects during
* TIME_S seconds. The number of successes and failures are stored on
* each core, then summed and displayed.
*
* The test checks that the number of enqueues is equal to the
* number of dequeues.
* Tests done in test_ring_perf.c
*/
#define RING_SIZE 4096
@ -128,182 +111,6 @@ static rte_atomic32_t synchro;
static struct rte_ring *r;
struct test_stats {
unsigned enq_success ;
unsigned enq_quota;
unsigned enq_fail;
unsigned deq_success;
unsigned deq_fail;
} __rte_cache_aligned;
static struct test_stats test_stats[RTE_MAX_LCORE];
static int
ring_enqueue_test(int (que_func)(struct rte_ring*, void * const *, unsigned),
void* arg, unsigned bulk_or_burst)
{
unsigned success = 0;
unsigned quota = 0;
unsigned fail = 0;
unsigned i;
unsigned long dummy_obj;
void *obj_table[MAX_BULK];
int ret;
unsigned lcore_id = rte_lcore_id();
unsigned count = *((unsigned*)arg);
uint64_t start_cycles, end_cycles;
uint64_t time_diff = 0, hz = rte_get_hpet_hz();
/* init dummy object table */
for (i = 0; i< MAX_BULK; i++) {
dummy_obj = lcore_id + 0x1000 + i;
obj_table[i] = (void *)dummy_obj;
}
/* wait synchro for slaves */
if (lcore_id != rte_get_master_lcore())
while (rte_atomic32_read(&synchro) == 0);
start_cycles = rte_get_hpet_cycles();
/* enqueue as many object as possible */
while (time_diff/hz < TIME_S) {
for (i = 0; likely(i < N); i++) {
ret = que_func(r, obj_table, count);
/*
* bulk_or_burst
* 1: for bulk operation
* 0: for burst operation
*/
if (bulk_or_burst) {
/* The *count* objects enqueued, unless fail */
if (ret == 0)
success += count;
else if (ret == -EDQUOT)
quota += count;
else
fail++;
} else {
/* The actual objects enqueued */
if (ret != 0)
success += (ret & RTE_RING_SZ_MASK);
else
fail++;
}
}
end_cycles = rte_get_hpet_cycles();
time_diff = end_cycles - start_cycles;
}
/* write statistics in a shared structure */
test_stats[lcore_id].enq_success = success;
test_stats[lcore_id].enq_quota = quota;
test_stats[lcore_id].enq_fail = fail;
return 0;
}
static int
ring_dequeue_test(int (que_func)(struct rte_ring*, void **, unsigned),
void* arg, unsigned bulk_or_burst)
{
unsigned success = 0;
unsigned fail = 0;
unsigned i;
void *obj_table[MAX_BULK];
int ret;
unsigned lcore_id = rte_lcore_id();
unsigned count = *((unsigned*)arg);
uint64_t start_cycles, end_cycles;
uint64_t time_diff = 0, hz = rte_get_hpet_hz();
/* wait synchro for slaves */
if (lcore_id != rte_get_master_lcore())
while (rte_atomic32_read(&synchro) == 0);
start_cycles = rte_get_hpet_cycles();
/* dequeue as many object as possible */
while (time_diff/hz < TIME_S) {
for (i = 0; likely(i < N); i++) {
ret = que_func(r, obj_table, count);
/*
* bulk_or_burst
* 1: for bulk operation
* 0: for burst operation
*/
if (bulk_or_burst) {
if (ret == 0)
success += count;
else
fail++;
} else {
if (ret != 0)
success += ret;
else
fail++;
}
}
end_cycles = rte_get_hpet_cycles();
time_diff = end_cycles - start_cycles;
}
/* write statistics in a shared structure */
test_stats[lcore_id].deq_success = success;
test_stats[lcore_id].deq_fail = fail;
return 0;
}
static int
test_ring_per_core_sp_enqueue(void *arg)
{
return ring_enqueue_test(&rte_ring_sp_enqueue_bulk, arg, 1);
}
static int
test_ring_per_core_mp_enqueue(void *arg)
{
return ring_enqueue_test(&rte_ring_mp_enqueue_bulk, arg, 1);
}
static int
test_ring_per_core_mc_dequeue(void *arg)
{
return ring_dequeue_test(&rte_ring_mc_dequeue_bulk, arg, 1);
}
static int
test_ring_per_core_sc_dequeue(void *arg)
{
return ring_dequeue_test(&rte_ring_sc_dequeue_bulk, arg, 1);
}
static int
test_ring_per_core_sp_enqueue_burst(void *arg)
{
return ring_enqueue_test(&rte_ring_sp_enqueue_burst, arg, 0);
}
static int
test_ring_per_core_mp_enqueue_burst(void *arg)
{
return ring_enqueue_test(&rte_ring_mp_enqueue_burst, arg, 0);
}
static int
test_ring_per_core_mc_dequeue_burst(void *arg)
{
return ring_dequeue_test(&rte_ring_mc_dequeue_burst, arg, 0);
}
static int
test_ring_per_core_sc_dequeue_burst(void *arg)
{
return ring_dequeue_test(&rte_ring_sc_dequeue_burst, arg, 0);
}
#define TEST_RING_VERIFY(exp) \
if (!(exp)) { \
printf("error at %s:%d\tcondition " #exp " failed\n", \
@ -314,166 +121,6 @@ test_ring_per_core_sc_dequeue_burst(void *arg)
#define TEST_RING_FULL_EMTPY_ITER 8
static int
launch_cores(unsigned enq_core_count, unsigned deq_core_count,
unsigned n_enq_bulk, unsigned n_deq_bulk,
int sp, int sc, int bulk_not_burst)
{
void *obj;
unsigned lcore_id;
unsigned rate, deq_remain = 0;
unsigned enq_total, deq_total;
struct test_stats sum;
int (*enq_f)(void *);
int (*deq_f)(void *);
unsigned cores = enq_core_count + deq_core_count;
int ret;
rte_atomic32_set(&synchro, 0);
printf("ring_autotest e/d_core=%u,%u e/d_bulk=%u,%u ",
enq_core_count, deq_core_count, n_enq_bulk, n_deq_bulk);
printf("sp=%d sc=%d ", sp, sc);
if (bulk_not_burst) {
/* set enqueue function to be used */
if (sp)
enq_f = test_ring_per_core_sp_enqueue;
else
enq_f = test_ring_per_core_mp_enqueue;
/* set dequeue function to be used */
if (sc)
deq_f = test_ring_per_core_sc_dequeue;
else
deq_f = test_ring_per_core_mc_dequeue;
} else {
/* set enqueue function to be used */
if (sp)
enq_f = test_ring_per_core_sp_enqueue_burst;
else
enq_f = test_ring_per_core_mp_enqueue_burst;
/* set dequeue function to be used */
if (sc)
deq_f = test_ring_per_core_sc_dequeue_burst;
else
deq_f = test_ring_per_core_mc_dequeue_burst;
}
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (enq_core_count != 0) {
enq_core_count--;
rte_eal_remote_launch(enq_f, &n_enq_bulk, lcore_id);
}
if (deq_core_count != 1) {
deq_core_count--;
rte_eal_remote_launch(deq_f, &n_deq_bulk, lcore_id);
}
}
memset(test_stats, 0, sizeof(test_stats));
/* start synchro and launch test on master */
rte_atomic32_set(&synchro, 1);
ret = deq_f(&n_deq_bulk);
/* wait all cores */
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (cores == 1)
break;
cores--;
if (rte_eal_wait_lcore(lcore_id) < 0)
ret = -1;
}
memset(&sum, 0, sizeof(sum));
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
sum.enq_success += test_stats[lcore_id].enq_success;
sum.enq_quota += test_stats[lcore_id].enq_quota;
sum.enq_fail += test_stats[lcore_id].enq_fail;
sum.deq_success += test_stats[lcore_id].deq_success;
sum.deq_fail += test_stats[lcore_id].deq_fail;
}
/* empty the ring */
while (rte_ring_sc_dequeue(r, &obj) == 0)
deq_remain += 1;
if (ret < 0) {
printf("per-lcore test returned -1\n");
return -1;
}
enq_total = sum.enq_success + sum.enq_quota;
deq_total = sum.deq_success + deq_remain;
rate = deq_total/TIME_S;
printf("rate_persec=%u\n", rate);
if (enq_total != deq_total) {
printf("invalid enq/deq_success counter: %u %u\n",
enq_total, deq_total);
return -1;
}
return 0;
}
static int
do_one_ring_test2(unsigned enq_core_count, unsigned deq_core_count,
unsigned n_enq_bulk, unsigned n_deq_bulk, unsigned bulk_or_burst)
{
int sp, sc;
int do_sp, do_sc;
int ret;
do_sp = (enq_core_count == 1) ? 1 : 0;
do_sc = (deq_core_count == 1) ? 1 : 0;
for (sp = 0; sp <= do_sp; sp ++) {
for (sc = 0; sc <= do_sc; sc ++) {
ret = launch_cores(enq_core_count, deq_core_count,
n_enq_bulk, n_deq_bulk, sp, sc, bulk_or_burst);
if (ret < 0)
return -1;
}
}
return 0;
}
static int
do_one_ring_test(unsigned enq_core_count, unsigned deq_core_count,
unsigned bulk_or_burst)
{
unsigned bulk_enqueue_tab[] = { 1, 2, 4, 32, 0 };
unsigned bulk_dequeue_tab[] = { 1, 2, 4, 32, 0 };
unsigned *bulk_enqueue_ptr;
unsigned *bulk_dequeue_ptr;
int ret;
for (bulk_enqueue_ptr = bulk_enqueue_tab;
*bulk_enqueue_ptr;
bulk_enqueue_ptr++) {
for (bulk_dequeue_ptr = bulk_dequeue_tab;
*bulk_dequeue_ptr;
bulk_dequeue_ptr++) {
ret = do_one_ring_test2(enq_core_count, deq_core_count,
*bulk_enqueue_ptr,
*bulk_dequeue_ptr,
bulk_or_burst);
if (ret < 0)
return -1;
}
}
return 0;
}
static int
check_live_watermark_change(__attribute__((unused)) void *dummy)
{
@ -1681,8 +1328,6 @@ test_ring_basic_ex(void)
int
test_ring(void)
{
unsigned enq_core_count, deq_core_count;
/* some more basic operations */
if (test_ring_basic_ex() < 0)
return -1;
@ -1737,58 +1382,6 @@ test_ring(void)
else
printf ( "Test detected NULL ring lookup \n");
printf("start performance tests \n");
/* one lcore for enqueue, one for dequeue */
enq_core_count = 1;
deq_core_count = 1;
if (do_one_ring_test(enq_core_count, deq_core_count, 1) < 0)
return -1;
/* max cores for enqueue, one for dequeue */
enq_core_count = rte_lcore_count() - 1;
deq_core_count = 1;
if (do_one_ring_test(enq_core_count, deq_core_count, 1) < 0)
return -1;
/* max cores for dequeue, one for enqueue */
enq_core_count = 1;
deq_core_count = rte_lcore_count() - 1;
if (do_one_ring_test(enq_core_count, deq_core_count, 1) < 0)
return -1;
/* half for enqueue and half for dequeue */
enq_core_count = rte_lcore_count() / 2;
deq_core_count = rte_lcore_count() / 2;
if (do_one_ring_test(enq_core_count, deq_core_count, 1) < 0)
return -1;
printf("start performance tests - burst operations \n");
/* one lcore for enqueue, one for dequeue */
enq_core_count = 1;
deq_core_count = 1;
if (do_one_ring_test(enq_core_count, deq_core_count, 0) < 0)
return -1;
/* max cores for enqueue, one for dequeue */
enq_core_count = rte_lcore_count() - 1;
deq_core_count = 1;
if (do_one_ring_test(enq_core_count, deq_core_count, 0) < 0)
return -1;
/* max cores for dequeue, one for enqueue */
enq_core_count = 1;
deq_core_count = rte_lcore_count() - 1;
if (do_one_ring_test(enq_core_count, deq_core_count, 0) < 0)
return -1;
/* half for enqueue and half for dequeue */
enq_core_count = rte_lcore_count() / 2;
deq_core_count = rte_lcore_count() / 2;
if (do_one_ring_test(enq_core_count, deq_core_count, 0) < 0)
return -1;
/* test of creating ring with wrong size */
if (test_ring_creation_with_wrong_size() < 0)
return -1;

418
app/test/test_ring_perf.c Normal file
View File

@ -0,0 +1,418 @@
/*-
* BSD LICENSE
*
* Copyright(c) 2010-2013 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <stdio.h>
#include <inttypes.h>
#include <rte_ring.h>
#include <rte_cycles.h>
#include <rte_launch.h>
#include <cmdline_parse.h>
#include "test.h"
/*
* Ring
* ====
*
* Measures performance of various operations using rdtsc
* * Empty ring dequeue
* * Enqueue/dequeue of bursts in 1 threads
* * Enqueue/dequeue of bursts in 2 threads
*/
#define RING_NAME "RING_PERF"
#define RING_SIZE 4096
#define MAX_BURST 32
/*
* the sizes to enqueue and dequeue in testing
* (marked volatile so they won't be seen as compile-time constants)
*/
static const volatile unsigned bulk_sizes[] = { 8, 32 };
/* The ring structure used for tests */
static struct rte_ring *r;
struct lcore_pair {
unsigned c1, c2;
};
static volatile unsigned lcore_count = 0;
/**** Functions to analyse our core mask to get cores for different tests ***/
static int
get_two_hyperthreads(struct lcore_pair *lcp)
{
unsigned id1, id2;
unsigned c1, c2, s1, s2;
RTE_LCORE_FOREACH(id1) {
/* inner loop just re-reads all id's. We could skip the first few
* elements, but since number of cores is small there is little point
*/
RTE_LCORE_FOREACH(id2) {
if (id1 == id2)
continue;
c1 = lcore_config[id1].core_id;
c2 = lcore_config[id2].core_id;
s1 = lcore_config[id1].socket_id;
s2 = lcore_config[id2].socket_id;
if ((c1 == c2) && (s1 == s2)){
lcp->c1 = id1;
lcp->c2 = id2;
return 0;
}
}
}
return 1;
}
static int
get_two_cores(struct lcore_pair *lcp)
{
unsigned id1, id2;
unsigned c1, c2, s1, s2;
RTE_LCORE_FOREACH(id1) {
RTE_LCORE_FOREACH(id2) {
if (id1 == id2)
continue;
c1 = lcore_config[id1].core_id;
c2 = lcore_config[id2].core_id;
s1 = lcore_config[id1].socket_id;
s2 = lcore_config[id2].socket_id;
if ((c1 != c2) && (s1 == s2)){
lcp->c1 = id1;
lcp->c2 = id2;
return 0;
}
}
}
return 1;
}
static int
get_two_sockets(struct lcore_pair *lcp)
{
unsigned id1, id2;
unsigned s1, s2;
RTE_LCORE_FOREACH(id1) {
RTE_LCORE_FOREACH(id2) {
if (id1 == id2)
continue;
s1 = lcore_config[id1].socket_id;
s2 = lcore_config[id2].socket_id;
if (s1 != s2){
lcp->c1 = id1;
lcp->c2 = id2;
return 0;
}
}
}
return 1;
}
/* Get cycle counts for dequeuing from an empty ring. Should be 2 or 3 cycles */
static void
test_empty_dequeue(void)
{
const unsigned iter_shift = 26;
const unsigned iterations = 1<<iter_shift;
unsigned i = 0;
void *burst[MAX_BURST];
const uint64_t sc_start = rte_rdtsc();
for (i = 0; i < iterations; i++)
rte_ring_sc_dequeue_bulk(r, burst, bulk_sizes[0]);
const uint64_t sc_end = rte_rdtsc();
const uint64_t mc_start = rte_rdtsc();
for (i = 0; i < iterations; i++)
rte_ring_mc_dequeue_bulk(r, burst, bulk_sizes[0]);
const uint64_t mc_end = rte_rdtsc();
printf("SC empty dequeue: %.2F\n",
(double)(sc_end-sc_start) / iterations);
printf("MC empty dequeue: %.2F\n",
(double)(mc_end-mc_start) / iterations);
}
/*
* for the separate enqueue and dequeue threads they take in one param
* and return two. Input = burst size, output = cycle average for sp/sc & mp/mc
*/
struct thread_params {
unsigned size; /* input value, the burst size */
double spsc, mpmc; /* output value, the single or multi timings */
};
/*
* Function that uses rdtsc to measure timing for ring enqueue. Needs pair
* thread running dequeue_bulk function
*/
static int
enqueue_bulk(void *p)
{
const unsigned iter_shift = 23;
const unsigned iterations = 1<<iter_shift;
struct thread_params *params = p;
const unsigned size = params->size;
unsigned i;
void *burst[MAX_BURST] = {0};
if ( __sync_add_and_fetch(&lcore_count, 1) != 2 )
while(lcore_count != 2)
rte_pause();
const uint64_t sp_start = rte_rdtsc();
for (i = 0; i < iterations; i++)
while (rte_ring_sp_enqueue_bulk(r, burst, size) != 0)
rte_pause();
const uint64_t sp_end = rte_rdtsc();
const uint64_t mp_start = rte_rdtsc();
for (i = 0; i < iterations; i++)
while (rte_ring_mp_enqueue_bulk(r, burst, size) != 0)
rte_pause();
const uint64_t mp_end = rte_rdtsc();
params->spsc = ((double)(sp_end - sp_start))/(iterations*size);
params->mpmc = ((double)(mp_end - mp_start))/(iterations*size);
return 0;
}
/*
* Function that uses rdtsc to measure timing for ring dequeue. Needs pair
* thread running enqueue_bulk function
*/
static int
dequeue_bulk(void *p)
{
const unsigned iter_shift = 23;
const unsigned iterations = 1<<iter_shift;
struct thread_params *params = p;
const unsigned size = params->size;
unsigned i;
void *burst[MAX_BURST] = {0};
if ( __sync_add_and_fetch(&lcore_count, 1) != 2 )
while(lcore_count != 2)
rte_pause();
const uint64_t sc_start = rte_rdtsc();
for (i = 0; i < iterations; i++)
while (rte_ring_sc_dequeue_bulk(r, burst, size) != 0)
rte_pause();
const uint64_t sc_end = rte_rdtsc();
const uint64_t mc_start = rte_rdtsc();
for (i = 0; i < iterations; i++)
while (rte_ring_mc_dequeue_bulk(r, burst, size) != 0)
rte_pause();
const uint64_t mc_end = rte_rdtsc();
params->spsc = ((double)(sc_end - sc_start))/(iterations*size);
params->mpmc = ((double)(mc_end - mc_start))/(iterations*size);
return 0;
}
/*
* Function that calls the enqueue and dequeue bulk functions on pairs of cores.
* used to measure ring perf between hyperthreads, cores and sockets.
*/
static void
run_on_core_pair(struct lcore_pair *cores,
lcore_function_t f1, lcore_function_t f2)
{
struct thread_params param1 = {.size = 0}, param2 = {.size = 0};
unsigned i;
for (i = 0; i < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); i++) {
lcore_count = 0;
param1.size = param2.size = bulk_sizes[i];
if (cores->c1 == rte_get_master_lcore()) {
rte_eal_remote_launch(f2, &param2, cores->c2);
f1(&param1);
rte_eal_wait_lcore(cores->c2);
} else {
rte_eal_remote_launch(f1, &param1, cores->c1);
rte_eal_remote_launch(f2, &param2, cores->c2);
rte_eal_wait_lcore(cores->c1);
rte_eal_wait_lcore(cores->c2);
}
printf("SP/SC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[i],
param1.spsc + param2.spsc);
printf("MP/MC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[i],
param1.mpmc + param2.mpmc);
}
}
/*
* Test function that determines how long an enqueue + dequeue of a single item
* takes on a single lcore. Result is for comparison with the bulk enq+deq.
*/
static void
test_single_enqueue_dequeue(void)
{
const unsigned iter_shift = 24;
const unsigned iterations = 1<<iter_shift;
unsigned i = 0;
void *burst = NULL;
const uint64_t sc_start = rte_rdtsc();
for (i = 0; i < iterations; i++) {
rte_ring_sp_enqueue(r, burst);
rte_ring_sc_dequeue(r, &burst);
}
const uint64_t sc_end = rte_rdtsc();
const uint64_t mc_start = rte_rdtsc();
for (i = 0; i < iterations; i++) {
rte_ring_mp_enqueue(r, burst);
rte_ring_mc_dequeue(r, &burst);
}
const uint64_t mc_end = rte_rdtsc();
printf("SP/SC single enq/dequeue: %"PRIu64"\n",
(sc_end-sc_start) >> iter_shift);
printf("MP/MC single enq/dequeue: %"PRIu64"\n",
(mc_end-mc_start) >> iter_shift);
}
/*
* Test that does both enqueue and dequeue on a core using the burst() API calls
* instead of the bulk() calls used in other tests. Results should be the same
* as for the bulk function called on a single lcore.
*/
static void
test_burst_enqueue_dequeue(void)
{
const unsigned iter_shift = 23;
const unsigned iterations = 1<<iter_shift;
unsigned sz, i = 0;
void *burst[MAX_BURST] = {0};
for (sz = 0; sz < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); sz++) {
const uint64_t sc_start = rte_rdtsc();
for (i = 0; i < iterations; i++) {
rte_ring_sp_enqueue_burst(r, burst, bulk_sizes[sz]);
rte_ring_sc_dequeue_burst(r, burst, bulk_sizes[sz]);
}
const uint64_t sc_end = rte_rdtsc();
const uint64_t mc_start = rte_rdtsc();
for (i = 0; i < iterations; i++) {
rte_ring_mp_enqueue_burst(r, burst, bulk_sizes[sz]);
rte_ring_mc_dequeue_burst(r, burst, bulk_sizes[sz]);
}
const uint64_t mc_end = rte_rdtsc();
uint64_t mc_avg = ((mc_end-mc_start) >> iter_shift) / bulk_sizes[sz];
uint64_t sc_avg = ((sc_end-sc_start) >> iter_shift) / bulk_sizes[sz];
printf("SP/SC burst enq/dequeue (size: %u): %"PRIu64"\n", bulk_sizes[sz],
sc_avg);
printf("MP/MC burst enq/dequeue (size: %u): %"PRIu64"\n", bulk_sizes[sz],
mc_avg);
}
}
/* Times enqueue and dequeue on a single lcore */
static void
test_bulk_enqueue_dequeue(void)
{
const unsigned iter_shift = 23;
const unsigned iterations = 1<<iter_shift;
unsigned sz, i = 0;
void *burst[MAX_BURST] = {0};
for (sz = 0; sz < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); sz++) {
const uint64_t sc_start = rte_rdtsc();
for (i = 0; i < iterations; i++) {
rte_ring_sp_enqueue_bulk(r, burst, bulk_sizes[sz]);
rte_ring_sc_dequeue_bulk(r, burst, bulk_sizes[sz]);
}
const uint64_t sc_end = rte_rdtsc();
const uint64_t mc_start = rte_rdtsc();
for (i = 0; i < iterations; i++) {
rte_ring_mp_enqueue_bulk(r, burst, bulk_sizes[sz]);
rte_ring_mc_dequeue_bulk(r, burst, bulk_sizes[sz]);
}
const uint64_t mc_end = rte_rdtsc();
double sc_avg = ((double)(sc_end-sc_start) /
(iterations * bulk_sizes[sz]));
double mc_avg = ((double)(mc_end-mc_start) /
(iterations * bulk_sizes[sz]));
printf("SP/SC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[sz],
sc_avg);
printf("MP/MC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[sz],
mc_avg);
}
}
int
test_ring_perf(void)
{
struct lcore_pair cores;
r = rte_ring_create(RING_NAME, RING_SIZE, rte_socket_id(), 0);
if (r == NULL && (r = rte_ring_lookup(RING_NAME)) == NULL)
return -1;
printf("### Testing single element and burst enq/deq ###\n");
test_single_enqueue_dequeue();
test_burst_enqueue_dequeue();
printf("\n### Testing empty dequeue ###\n");
test_empty_dequeue();
printf("\n### Testing using a single lcore ###\n");
test_bulk_enqueue_dequeue();
if (get_two_hyperthreads(&cores) == 0) {
printf("\n### Testing using two hyperthreads ###\n");
run_on_core_pair(&cores, enqueue_bulk, dequeue_bulk);
}
if (get_two_cores(&cores) == 0) {
printf("\n### Testing using two physical cores ###\n");
run_on_core_pair(&cores, enqueue_bulk, dequeue_bulk);
}
if (get_two_sockets(&cores) == 0) {
printf("\n### Testing using two NUMA nodes ###\n");
run_on_core_pair(&cores, enqueue_bulk, dequeue_bulk);
}
return 0;
}

View File

@ -50,10 +50,10 @@ DIR := $(shell basename $(RTE_OUTPUT))
PHONY: test fast_test
coverage: BLACKLIST=-Mempool_perf,Memcpy_perf,Hash_perf
fast_test: BLACKLIST=-Ring,Mempool_perf,Memcpy_perf,Hash_perf,Lpm6
ring_test: WHITELIST=Ring
fast_test: BLACKLIST=-Ring_perf,Mempool_perf,Memcpy_perf,Hash_perf,Lpm6
ring_test: WHITELIST=Ring,Ring_perf
mempool_test: WHITELIST=Mempool,Mempool_perf
perf_test:WHITELIST=Mempool_perf,Memcpy_perf,Hash_perf,Ring
perf_test:WHITELIST=Mempool_perf,Memcpy_perf,Hash_perf,Ring_perf
test fast_test ring_test mempool_test perf_test:
@mkdir -p $(AUTOTEST_DIR) ; \
cd $(AUTOTEST_DIR) ; \