net/ice: support Rx AVX2 vector
Signed-off-by: Wenzhuo Lu <wenzhuo.lu@intel.com> Acked-by: Qi Zhang <qi.z.zhang@intel.com>
This commit is contained in:
parent
f88de4694d
commit
ae60d3c9b2
@ -58,4 +58,23 @@ ifeq ($(CONFIG_RTE_ARCH_X86), y)
|
||||
SRCS-$(CONFIG_RTE_LIBRTE_ICE_PMD) += ice_rxtx_vec_sse.c
|
||||
endif
|
||||
|
||||
ifeq ($(findstring RTE_MACHINE_CPUFLAG_AVX2,$(CFLAGS)),RTE_MACHINE_CPUFLAG_AVX2)
|
||||
CC_AVX2_SUPPORT=1
|
||||
else
|
||||
CC_AVX2_SUPPORT=\
|
||||
$(shell $(CC) -march=core-avx2 -dM -E - </dev/null 2>&1 | \
|
||||
grep -q AVX2 && echo 1)
|
||||
ifeq ($(CC_AVX2_SUPPORT), 1)
|
||||
ifeq ($(CONFIG_RTE_TOOLCHAIN_ICC),y)
|
||||
CFLAGS_ice_rxtx_vec_avx2.o += -march=core-avx2
|
||||
else
|
||||
CFLAGS_ice_rxtx_vec_avx2.o += -mavx2
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
|
||||
ifeq ($(CC_AVX2_SUPPORT), 1)
|
||||
SRCS-$(CONFIG_RTE_LIBRTE_ICE_PMD) += ice_rxtx_vec_avx2.c
|
||||
endif
|
||||
|
||||
include $(RTE_SDK)/mk/rte.lib.mk
|
||||
|
@ -1505,7 +1505,8 @@ ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
|
||||
|
||||
#ifdef RTE_ARCH_X86
|
||||
if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
|
||||
dev->rx_pkt_burst == ice_recv_scattered_pkts_vec)
|
||||
dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
|
||||
dev->rx_pkt_burst == ice_recv_pkts_vec_avx2)
|
||||
return ptypes;
|
||||
#endif
|
||||
|
||||
@ -2243,21 +2244,30 @@ ice_set_rx_function(struct rte_eth_dev *dev)
|
||||
#ifdef RTE_ARCH_X86
|
||||
struct ice_rx_queue *rxq;
|
||||
int i;
|
||||
bool use_avx2 = false;
|
||||
|
||||
if (!ice_rx_vec_dev_check(dev)) {
|
||||
for (i = 0; i < dev->data->nb_rx_queues; i++) {
|
||||
rxq = dev->data->rx_queues[i];
|
||||
(void)ice_rxq_vec_setup(rxq);
|
||||
}
|
||||
|
||||
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
|
||||
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
|
||||
use_avx2 = true;
|
||||
|
||||
if (dev->data->scattered_rx) {
|
||||
PMD_DRV_LOG(DEBUG,
|
||||
"Using Vector Scattered Rx (port %d).",
|
||||
dev->data->port_id);
|
||||
dev->rx_pkt_burst = ice_recv_scattered_pkts_vec;
|
||||
} else {
|
||||
PMD_DRV_LOG(DEBUG, "Using Vector Rx (port %d).",
|
||||
PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
|
||||
use_avx2 ? "avx2 " : "",
|
||||
dev->data->port_id);
|
||||
dev->rx_pkt_burst = ice_recv_pkts_vec;
|
||||
dev->rx_pkt_burst = use_avx2 ?
|
||||
ice_recv_pkts_vec_avx2 :
|
||||
ice_recv_pkts_vec;
|
||||
}
|
||||
|
||||
return;
|
||||
|
@ -179,4 +179,6 @@ uint16_t ice_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts);
|
||||
uint16_t ice_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
|
||||
uint16_t nb_pkts);
|
||||
uint16_t ice_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts);
|
||||
#endif /* _ICE_RXTX_H_ */
|
||||
|
622
drivers/net/ice/ice_rxtx_vec_avx2.c
Normal file
622
drivers/net/ice/ice_rxtx_vec_avx2.c
Normal file
@ -0,0 +1,622 @@
|
||||
/* SPDX-License-Identifier: BSD-3-Clause
|
||||
* Copyright(c) 2019 Intel Corporation
|
||||
*/
|
||||
|
||||
#include "ice_rxtx_vec_common.h"
|
||||
|
||||
#include <x86intrin.h>
|
||||
|
||||
#ifndef __INTEL_COMPILER
|
||||
#pragma GCC diagnostic ignored "-Wcast-qual"
|
||||
#endif
|
||||
|
||||
static inline void
|
||||
ice_rxq_rearm(struct ice_rx_queue *rxq)
|
||||
{
|
||||
int i;
|
||||
uint16_t rx_id;
|
||||
volatile union ice_rx_desc *rxdp;
|
||||
struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
|
||||
|
||||
rxdp = rxq->rx_ring + rxq->rxrearm_start;
|
||||
|
||||
/* Pull 'n' more MBUFs into the software ring */
|
||||
if (rte_mempool_get_bulk(rxq->mp,
|
||||
(void *)rxep,
|
||||
ICE_RXQ_REARM_THRESH) < 0) {
|
||||
if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
|
||||
rxq->nb_rx_desc) {
|
||||
__m128i dma_addr0;
|
||||
|
||||
dma_addr0 = _mm_setzero_si128();
|
||||
for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
|
||||
rxep[i].mbuf = &rxq->fake_mbuf;
|
||||
_mm_store_si128((__m128i *)&rxdp[i].read,
|
||||
dma_addr0);
|
||||
}
|
||||
}
|
||||
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
|
||||
ICE_RXQ_REARM_THRESH;
|
||||
return;
|
||||
}
|
||||
|
||||
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
|
||||
struct rte_mbuf *mb0, *mb1;
|
||||
__m128i dma_addr0, dma_addr1;
|
||||
__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
|
||||
RTE_PKTMBUF_HEADROOM);
|
||||
/* Initialize the mbufs in vector, process 2 mbufs in one loop */
|
||||
for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
|
||||
__m128i vaddr0, vaddr1;
|
||||
|
||||
mb0 = rxep[0].mbuf;
|
||||
mb1 = rxep[1].mbuf;
|
||||
|
||||
/* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
|
||||
offsetof(struct rte_mbuf, buf_addr) + 8);
|
||||
vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
|
||||
vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
|
||||
|
||||
/* convert pa to dma_addr hdr/data */
|
||||
dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
|
||||
dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
|
||||
|
||||
/* add headroom to pa values */
|
||||
dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
|
||||
dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
|
||||
|
||||
/* flush desc with pa dma_addr */
|
||||
_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
|
||||
_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
|
||||
}
|
||||
#else
|
||||
struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
|
||||
__m256i dma_addr0_1, dma_addr2_3;
|
||||
__m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
|
||||
/* Initialize the mbufs in vector, process 4 mbufs in one loop */
|
||||
for (i = 0; i < ICE_RXQ_REARM_THRESH;
|
||||
i += 4, rxep += 4, rxdp += 4) {
|
||||
__m128i vaddr0, vaddr1, vaddr2, vaddr3;
|
||||
__m256i vaddr0_1, vaddr2_3;
|
||||
|
||||
mb0 = rxep[0].mbuf;
|
||||
mb1 = rxep[1].mbuf;
|
||||
mb2 = rxep[2].mbuf;
|
||||
mb3 = rxep[3].mbuf;
|
||||
|
||||
/* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
|
||||
offsetof(struct rte_mbuf, buf_addr) + 8);
|
||||
vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
|
||||
vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
|
||||
vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
|
||||
vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
|
||||
|
||||
/**
|
||||
* merge 0 & 1, by casting 0 to 256-bit and inserting 1
|
||||
* into the high lanes. Similarly for 2 & 3
|
||||
*/
|
||||
vaddr0_1 =
|
||||
_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
|
||||
vaddr1, 1);
|
||||
vaddr2_3 =
|
||||
_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
|
||||
vaddr3, 1);
|
||||
|
||||
/* convert pa to dma_addr hdr/data */
|
||||
dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
|
||||
dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
|
||||
|
||||
/* add headroom to pa values */
|
||||
dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
|
||||
dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
|
||||
|
||||
/* flush desc with pa dma_addr */
|
||||
_mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
|
||||
_mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
|
||||
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
|
||||
rxq->rxrearm_start = 0;
|
||||
|
||||
rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;
|
||||
|
||||
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
|
||||
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
|
||||
|
||||
/* Update the tail pointer on the NIC */
|
||||
ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
|
||||
}
|
||||
|
||||
#define PKTLEN_SHIFT 10
|
||||
|
||||
static inline uint16_t
|
||||
_ice_recv_raw_pkts_vec_avx2(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts, uint8_t *split_packet)
|
||||
{
|
||||
#define ICE_DESCS_PER_LOOP_AVX 8
|
||||
|
||||
const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
|
||||
const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
|
||||
0, rxq->mbuf_initializer);
|
||||
struct ice_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
|
||||
volatile union ice_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
|
||||
const int avx_aligned = ((rxq->rx_tail & 1) == 0);
|
||||
|
||||
rte_prefetch0(rxdp);
|
||||
|
||||
/* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP_AVX */
|
||||
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP_AVX);
|
||||
|
||||
/* See if we need to rearm the RX queue - gives the prefetch a bit
|
||||
* of time to act
|
||||
*/
|
||||
if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
|
||||
ice_rxq_rearm(rxq);
|
||||
|
||||
/* Before we start moving massive data around, check to see if
|
||||
* there is actually a packet available
|
||||
*/
|
||||
if (!(rxdp->wb.qword1.status_error_len &
|
||||
rte_cpu_to_le_32(1 << ICE_RX_DESC_STATUS_DD_S)))
|
||||
return 0;
|
||||
|
||||
/* constants used in processing loop */
|
||||
const __m256i crc_adjust =
|
||||
_mm256_set_epi16
|
||||
(/* first descriptor */
|
||||
0, 0, 0, /* ignore non-length fields */
|
||||
-rxq->crc_len, /* sub crc on data_len */
|
||||
0, /* ignore high-16bits of pkt_len */
|
||||
-rxq->crc_len, /* sub crc on pkt_len */
|
||||
0, 0, /* ignore pkt_type field */
|
||||
/* second descriptor */
|
||||
0, 0, 0, /* ignore non-length fields */
|
||||
-rxq->crc_len, /* sub crc on data_len */
|
||||
0, /* ignore high-16bits of pkt_len */
|
||||
-rxq->crc_len, /* sub crc on pkt_len */
|
||||
0, 0 /* ignore pkt_type field */
|
||||
);
|
||||
|
||||
/* 8 packets DD mask, LSB in each 32-bit value */
|
||||
const __m256i dd_check = _mm256_set1_epi32(1);
|
||||
|
||||
/* 8 packets EOP mask, second-LSB in each 32-bit value */
|
||||
const __m256i eop_check = _mm256_slli_epi32(dd_check,
|
||||
ICE_RX_DESC_STATUS_EOF_S);
|
||||
|
||||
/* mask to shuffle from desc. to mbuf (2 descriptors)*/
|
||||
const __m256i shuf_msk =
|
||||
_mm256_set_epi8
|
||||
(/* first descriptor */
|
||||
7, 6, 5, 4, /* octet 4~7, 32bits rss */
|
||||
3, 2, /* octet 2~3, low 16 bits vlan_macip */
|
||||
15, 14, /* octet 15~14, 16 bits data_len */
|
||||
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
|
||||
15, 14, /* octet 15~14, low 16 bits pkt_len */
|
||||
0xFF, 0xFF, /* pkt_type set as unknown */
|
||||
0xFF, 0xFF, /*pkt_type set as unknown */
|
||||
/* second descriptor */
|
||||
7, 6, 5, 4, /* octet 4~7, 32bits rss */
|
||||
3, 2, /* octet 2~3, low 16 bits vlan_macip */
|
||||
15, 14, /* octet 15~14, 16 bits data_len */
|
||||
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
|
||||
15, 14, /* octet 15~14, low 16 bits pkt_len */
|
||||
0xFF, 0xFF, /* pkt_type set as unknown */
|
||||
0xFF, 0xFF /*pkt_type set as unknown */
|
||||
);
|
||||
/**
|
||||
* compile-time check the above crc and shuffle layout is correct.
|
||||
* NOTE: the first field (lowest address) is given last in set_epi
|
||||
* calls above.
|
||||
*/
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
|
||||
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
|
||||
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
|
||||
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
|
||||
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
|
||||
|
||||
/* Status/Error flag masks */
|
||||
/**
|
||||
* mask everything except RSS, flow director and VLAN flags
|
||||
* bit2 is for VLAN tag, bit11 for flow director indication
|
||||
* bit13:12 for RSS indication. Bits 3-5 of error
|
||||
* field (bits 22-24) are for IP/L4 checksum errors
|
||||
*/
|
||||
const __m256i flags_mask =
|
||||
_mm256_set1_epi32((1 << 2) | (1 << 11) |
|
||||
(3 << 12) | (7 << 22));
|
||||
/**
|
||||
* data to be shuffled by result of flag mask. If VLAN bit is set,
|
||||
* (bit 2), then position 4 in this array will be used in the
|
||||
* destination
|
||||
*/
|
||||
const __m256i vlan_flags_shuf =
|
||||
_mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
|
||||
0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
|
||||
/**
|
||||
* data to be shuffled by result of flag mask, shifted down 11.
|
||||
* If RSS/FDIR bits are set, shuffle moves appropriate flags in
|
||||
* place.
|
||||
*/
|
||||
const __m256i rss_flags_shuf =
|
||||
_mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
|
||||
PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
|
||||
0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
|
||||
0, 0, 0, 0, PKT_RX_FDIR, 0);
|
||||
|
||||
/**
|
||||
* data to be shuffled by the result of the flags mask shifted by 22
|
||||
* bits. This gives use the l3_l4 flags.
|
||||
*/
|
||||
const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
|
||||
/* shift right 1 bit to make sure it not exceed 255 */
|
||||
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
|
||||
PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
|
||||
PKT_RX_L4_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
|
||||
PKT_RX_IP_CKSUM_BAD >> 1,
|
||||
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
|
||||
/* second 128-bits */
|
||||
0, 0, 0, 0, 0, 0, 0, 0,
|
||||
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
|
||||
PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
|
||||
PKT_RX_L4_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
|
||||
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
|
||||
PKT_RX_IP_CKSUM_BAD >> 1,
|
||||
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
|
||||
|
||||
const __m256i cksum_mask =
|
||||
_mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
|
||||
PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
|
||||
PKT_RX_EIP_CKSUM_BAD);
|
||||
|
||||
RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
|
||||
|
||||
uint16_t i, received;
|
||||
|
||||
for (i = 0, received = 0; i < nb_pkts;
|
||||
i += ICE_DESCS_PER_LOOP_AVX,
|
||||
rxdp += ICE_DESCS_PER_LOOP_AVX) {
|
||||
/* step 1, copy over 8 mbuf pointers to rx_pkts array */
|
||||
_mm256_storeu_si256((void *)&rx_pkts[i],
|
||||
_mm256_loadu_si256((void *)&sw_ring[i]));
|
||||
#ifdef RTE_ARCH_X86_64
|
||||
_mm256_storeu_si256
|
||||
((void *)&rx_pkts[i + 4],
|
||||
_mm256_loadu_si256((void *)&sw_ring[i + 4]));
|
||||
#endif
|
||||
|
||||
__m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
|
||||
#ifdef RTE_LIBRTE_ICE_16BYTE_RX_DESC
|
||||
/* for AVX we need alignment otherwise loads are not atomic */
|
||||
if (avx_aligned) {
|
||||
/* load in descriptors, 2 at a time, in reverse order */
|
||||
raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
|
||||
rte_compiler_barrier();
|
||||
raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
|
||||
rte_compiler_barrier();
|
||||
raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
|
||||
rte_compiler_barrier();
|
||||
raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
const __m128i raw_desc7 =
|
||||
_mm_load_si128((void *)(rxdp + 7));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc6 =
|
||||
_mm_load_si128((void *)(rxdp + 6));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc5 =
|
||||
_mm_load_si128((void *)(rxdp + 5));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc4 =
|
||||
_mm_load_si128((void *)(rxdp + 4));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc3 =
|
||||
_mm_load_si128((void *)(rxdp + 3));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc2 =
|
||||
_mm_load_si128((void *)(rxdp + 2));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc1 =
|
||||
_mm_load_si128((void *)(rxdp + 1));
|
||||
rte_compiler_barrier();
|
||||
const __m128i raw_desc0 =
|
||||
_mm_load_si128((void *)(rxdp + 0));
|
||||
|
||||
raw_desc6_7 =
|
||||
_mm256_inserti128_si256
|
||||
(_mm256_castsi128_si256(raw_desc6),
|
||||
raw_desc7, 1);
|
||||
raw_desc4_5 =
|
||||
_mm256_inserti128_si256
|
||||
(_mm256_castsi128_si256(raw_desc4),
|
||||
raw_desc5, 1);
|
||||
raw_desc2_3 =
|
||||
_mm256_inserti128_si256
|
||||
(_mm256_castsi128_si256(raw_desc2),
|
||||
raw_desc3, 1);
|
||||
raw_desc0_1 =
|
||||
_mm256_inserti128_si256
|
||||
(_mm256_castsi128_si256(raw_desc0),
|
||||
raw_desc1, 1);
|
||||
}
|
||||
|
||||
if (split_packet) {
|
||||
int j;
|
||||
|
||||
for (j = 0; j < ICE_DESCS_PER_LOOP_AVX; j++)
|
||||
rte_mbuf_prefetch_part2(rx_pkts[i + j]);
|
||||
}
|
||||
|
||||
/**
|
||||
* convert descriptors 4-7 into mbufs, adjusting length and
|
||||
* re-arranging fields. Then write into the mbuf
|
||||
*/
|
||||
const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7,
|
||||
PKTLEN_SHIFT);
|
||||
const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5,
|
||||
PKTLEN_SHIFT);
|
||||
const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7,
|
||||
len6_7, 0x80);
|
||||
const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5,
|
||||
len4_5, 0x80);
|
||||
__m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
|
||||
__m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);
|
||||
|
||||
mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
|
||||
mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
|
||||
/**
|
||||
* to get packet types, shift 64-bit values down 30 bits
|
||||
* and so ptype is in lower 8-bits in each
|
||||
*/
|
||||
const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
|
||||
const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
|
||||
const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
|
||||
const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
|
||||
const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
|
||||
const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
|
||||
|
||||
mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4);
|
||||
mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0);
|
||||
mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4);
|
||||
mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0);
|
||||
/* merge the status bits into one register */
|
||||
const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
|
||||
desc4_5);
|
||||
|
||||
/**
|
||||
* convert descriptors 0-3 into mbufs, adjusting length and
|
||||
* re-arranging fields. Then write into the mbuf
|
||||
*/
|
||||
const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3,
|
||||
PKTLEN_SHIFT);
|
||||
const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1,
|
||||
PKTLEN_SHIFT);
|
||||
const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3,
|
||||
len2_3, 0x80);
|
||||
const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1,
|
||||
len0_1, 0x80);
|
||||
__m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
|
||||
__m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);
|
||||
|
||||
mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
|
||||
mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
|
||||
/* get the packet types */
|
||||
const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
|
||||
const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
|
||||
const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
|
||||
const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
|
||||
const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
|
||||
const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
|
||||
|
||||
mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4);
|
||||
mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0);
|
||||
mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4);
|
||||
mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0);
|
||||
/* merge the status bits into one register */
|
||||
const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
|
||||
desc0_1);
|
||||
|
||||
/**
|
||||
* take the two sets of status bits and merge to one
|
||||
* After merge, the packets status flags are in the
|
||||
* order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
|
||||
*/
|
||||
__m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
|
||||
status0_3);
|
||||
|
||||
/* now do flag manipulation */
|
||||
|
||||
/* get only flag/error bits we want */
|
||||
const __m256i flag_bits =
|
||||
_mm256_and_si256(status0_7, flags_mask);
|
||||
/* set vlan and rss flags */
|
||||
const __m256i vlan_flags =
|
||||
_mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
|
||||
const __m256i rss_flags =
|
||||
_mm256_shuffle_epi8(rss_flags_shuf,
|
||||
_mm256_srli_epi32(flag_bits, 11));
|
||||
/**
|
||||
* l3_l4_error flags, shuffle, then shift to correct adjustment
|
||||
* of flags in flags_shuf, and finally mask out extra bits
|
||||
*/
|
||||
__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
|
||||
_mm256_srli_epi32(flag_bits, 22));
|
||||
l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
|
||||
l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
|
||||
|
||||
/* merge flags */
|
||||
const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
|
||||
_mm256_or_si256(rss_flags, vlan_flags));
|
||||
/**
|
||||
* At this point, we have the 8 sets of flags in the low 16-bits
|
||||
* of each 32-bit value in vlan0.
|
||||
* We want to extract these, and merge them with the mbuf init
|
||||
* data so we can do a single write to the mbuf to set the flags
|
||||
* and all the other initialization fields. Extracting the
|
||||
* appropriate flags means that we have to do a shift and blend
|
||||
* for each mbuf before we do the write. However, we can also
|
||||
* add in the previously computed rx_descriptor fields to
|
||||
* make a single 256-bit write per mbuf
|
||||
*/
|
||||
/* check the structure matches expectations */
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
|
||||
offsetof(struct rte_mbuf, rearm_data) + 8);
|
||||
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
|
||||
RTE_ALIGN(offsetof(struct rte_mbuf,
|
||||
rearm_data),
|
||||
16));
|
||||
/* build up data and do writes */
|
||||
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
|
||||
rearm6, rearm7;
|
||||
rearm6 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_slli_si256(mbuf_flags, 8),
|
||||
0x04);
|
||||
rearm4 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_slli_si256(mbuf_flags, 4),
|
||||
0x04);
|
||||
rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
|
||||
rearm0 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_srli_si256(mbuf_flags, 4),
|
||||
0x04);
|
||||
/* permute to add in the rx_descriptor e.g. rss fields */
|
||||
rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
|
||||
rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
|
||||
rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
|
||||
rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
|
||||
/* write to mbuf */
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
|
||||
rearm6);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data,
|
||||
rearm4);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data,
|
||||
rearm2);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data,
|
||||
rearm0);
|
||||
|
||||
/* repeat for the odd mbufs */
|
||||
const __m256i odd_flags =
|
||||
_mm256_castsi128_si256
|
||||
(_mm256_extracti128_si256(mbuf_flags, 1));
|
||||
rearm7 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_slli_si256(odd_flags, 8),
|
||||
0x04);
|
||||
rearm5 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_slli_si256(odd_flags, 4),
|
||||
0x04);
|
||||
rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
|
||||
rearm1 = _mm256_blend_epi32(mbuf_init,
|
||||
_mm256_srli_si256(odd_flags, 4),
|
||||
0x04);
|
||||
/* since odd mbufs are already in hi 128-bits use blend */
|
||||
rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
|
||||
rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
|
||||
rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
|
||||
rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
|
||||
/* again write to mbufs */
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
|
||||
rearm7);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data,
|
||||
rearm5);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data,
|
||||
rearm3);
|
||||
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data,
|
||||
rearm1);
|
||||
|
||||
/* extract and record EOP bit */
|
||||
if (split_packet) {
|
||||
const __m128i eop_mask =
|
||||
_mm_set1_epi16(1 << ICE_RX_DESC_STATUS_EOF_S);
|
||||
const __m256i eop_bits256 = _mm256_and_si256(status0_7,
|
||||
eop_check);
|
||||
/* pack status bits into a single 128-bit register */
|
||||
const __m128i eop_bits =
|
||||
_mm_packus_epi32
|
||||
(_mm256_castsi256_si128(eop_bits256),
|
||||
_mm256_extractf128_si256(eop_bits256,
|
||||
1));
|
||||
/**
|
||||
* flip bits, and mask out the EOP bit, which is now
|
||||
* a split-packet bit i.e. !EOP, rather than EOP one.
|
||||
*/
|
||||
__m128i split_bits = _mm_andnot_si128(eop_bits,
|
||||
eop_mask);
|
||||
/**
|
||||
* eop bits are out of order, so we need to shuffle them
|
||||
* back into order again. In doing so, only use low 8
|
||||
* bits, which acts like another pack instruction
|
||||
* The original order is (hi->lo): 1,3,5,7,0,2,4,6
|
||||
* [Since we use epi8, the 16-bit positions are
|
||||
* multiplied by 2 in the eop_shuffle value.]
|
||||
*/
|
||||
__m128i eop_shuffle =
|
||||
_mm_set_epi8(/* zero hi 64b */
|
||||
0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFF,
|
||||
/* move values to lo 64b */
|
||||
8, 0, 10, 2,
|
||||
12, 4, 14, 6);
|
||||
split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
|
||||
*(uint64_t *)split_packet =
|
||||
_mm_cvtsi128_si64(split_bits);
|
||||
split_packet += ICE_DESCS_PER_LOOP_AVX;
|
||||
}
|
||||
|
||||
/* perform dd_check */
|
||||
status0_7 = _mm256_and_si256(status0_7, dd_check);
|
||||
status0_7 = _mm256_packs_epi32(status0_7,
|
||||
_mm256_setzero_si256());
|
||||
|
||||
uint64_t burst = __builtin_popcountll
|
||||
(_mm_cvtsi128_si64
|
||||
(_mm256_extracti128_si256
|
||||
(status0_7, 1)));
|
||||
burst += __builtin_popcountll
|
||||
(_mm_cvtsi128_si64
|
||||
(_mm256_castsi256_si128(status0_7)));
|
||||
received += burst;
|
||||
if (burst != ICE_DESCS_PER_LOOP_AVX)
|
||||
break;
|
||||
}
|
||||
|
||||
/* update tail pointers */
|
||||
rxq->rx_tail += received;
|
||||
rxq->rx_tail &= (rxq->nb_rx_desc - 1);
|
||||
if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
|
||||
rxq->rx_tail--;
|
||||
received--;
|
||||
}
|
||||
rxq->rxrearm_nb += received;
|
||||
return received;
|
||||
}
|
||||
|
||||
/**
|
||||
* Notice:
|
||||
* - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
|
||||
*/
|
||||
uint16_t
|
||||
ice_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts)
|
||||
{
|
||||
return _ice_recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
|
||||
}
|
@ -14,4 +14,19 @@ includes += include_directories('base')
|
||||
|
||||
if arch_subdir == 'x86'
|
||||
sources += files('ice_rxtx_vec_sse.c')
|
||||
|
||||
# compile AVX2 version if either:
|
||||
# a. we have AVX supported in minimum instruction set baseline
|
||||
# b. it's not minimum instruction set, but supported by compiler
|
||||
if dpdk_conf.has('RTE_MACHINE_CPUFLAG_AVX2')
|
||||
sources += files('ice_rxtx_vec_avx2.c')
|
||||
elif cc.has_argument('-mavx2')
|
||||
ice_avx2_lib = static_library('ice_avx2_lib',
|
||||
'ice_rxtx_vec_avx2.c',
|
||||
dependencies: [static_rte_ethdev,
|
||||
static_rte_kvargs, static_rte_hash],
|
||||
include_directories: includes,
|
||||
c_args: [cflags, '-mavx2'])
|
||||
objs += ice_avx2_lib.extract_objects('ice_rxtx_vec_avx2.c')
|
||||
endif
|
||||
endif
|
||||
|
Loading…
Reference in New Issue
Block a user