crypto/qat: add ECDSA algorithm

This patch adds ECDSA algorithm to Intel
QuickAssist Technology PMD.

Signed-off-by: Arek Kusztal <arkadiuszx.kusztal@intel.com>
This commit is contained in:
Arek Kusztal 2022-02-21 10:48:29 +00:00 committed by Akhil Goyal
parent 7b012789ad
commit b5324d3854
5 changed files with 196 additions and 2 deletions

View File

@ -175,6 +175,7 @@ The QAT ASYM PMD has support for:
* ``RTE_CRYPTO_ASYM_XFORM_MODEX``
* ``RTE_CRYPTO_ASYM_XFORM_MODINV``
* ``RTE_CRYPTO_ASYM_XFORM_RSA``
* ``RTE_CRYPTO_ASYM_XFORM_ECDSA``
Limitations
~~~~~~~~~~~

View File

@ -136,9 +136,10 @@ New Features
* Added AES-CMAC support in CN9K & CN10K.
* Added ESN and anti-replay support in lookaside protocol (IPsec) for CN10K.
* **Added support for CPM2.0b devices to Intel QuickAssist Technology PMD.**
* **Updated Intel QuickAssist Technology crypto PMD.**
* CPM2.0b (4942) devices are now enabled for QAT crypto PMD.
* Added support for CPM2.0b (4942) devices.
* Added ECDSA algorithm support.
* **Added an API to retrieve event port id of ethdev Rx adapter.**

View File

@ -212,4 +212,44 @@ get_rsa_crt_function(struct rte_crypto_asym_xform *xform)
return qat_function;
}
static struct qat_asym_function
get_ecdsa_verify_function(struct rte_crypto_asym_xform *xform)
{
struct qat_asym_function qat_function;
switch (xform->ec.curve_id) {
case RTE_CRYPTO_EC_GROUP_SECP256R1:
qat_function.func_id = PKE_ECDSA_VERIFY_GFP_L256;
qat_function.bytesize = 32;
break;
case RTE_CRYPTO_EC_GROUP_SECP521R1:
qat_function.func_id = PKE_ECDSA_VERIFY_GFP_521;
qat_function.bytesize = 66;
break;
default:
qat_function.func_id = 0;
}
return qat_function;
}
static struct qat_asym_function
get_ecdsa_function(struct rte_crypto_asym_xform *xform)
{
struct qat_asym_function qat_function;
switch (xform->ec.curve_id) {
case RTE_CRYPTO_EC_GROUP_SECP256R1:
qat_function.func_id = PKE_ECDSA_SIGN_RS_GFP_L256;
qat_function.bytesize = 32;
break;
case RTE_CRYPTO_EC_GROUP_SECP521R1:
qat_function.func_id = PKE_ECDSA_SIGN_RS_GFP_521;
qat_function.bytesize = 66;
break;
default:
qat_function.func_id = 0;
}
return qat_function;
}
#endif

View File

@ -31,14 +31,24 @@ static const struct rte_driver cryptodev_qat_asym_driver = {
.alias = qat_asym_drv_name
};
/*
* Macros with suffix _F are used with some of predefinded identifiers:
* - cookie->input_buffer
* - qat_alg_bytesize
*/
#if RTE_LOG_DP_LEVEL >= RTE_LOG_DEBUG
#define HEXDUMP(name, where, size) QAT_DP_HEXDUMP_LOG(DEBUG, name, \
where, size)
#define HEXDUMP_OFF(name, where, size, idx) QAT_DP_HEXDUMP_LOG(DEBUG, name, \
&where[idx * size], size)
#define HEXDUMP_OFF_F(name, idx) QAT_DP_HEXDUMP_LOG(DEBUG, name, \
&cookie->input_buffer[idx * qat_alg_bytesize], \
qat_alg_bytesize)
#else
#define HEXDUMP(name, where, size)
#define HEXDUMP_OFF(name, where, size, idx)
#define HEXDUMP_OFF_F(name, idx)
#endif
#define CHECK_IF_NOT_EMPTY(param, name, pname, status) \
@ -79,6 +89,17 @@ static const struct rte_driver cryptodev_qat_asym_driver = {
what.data, \
how)
#define SET_PKE_LN_9A_F(what, idx) \
rte_memcpy(&cookie->input_buffer[idx * qat_alg_bytesize] + \
qat_alg_bytesize - what.length, \
what.data, what.length)
#define SET_PKE_LN_EC_F(what, how, idx) \
rte_memcpy(&cookie->input_buffer[idx * \
RTE_ALIGN_CEIL(how, 8)] + \
RTE_ALIGN_CEIL(how, 8) - how, \
what.data, how)
static void
request_init(struct icp_qat_fw_pke_request *qat_req)
{
@ -544,6 +565,128 @@ rsa_collect(struct rte_crypto_asym_op *asym_op,
return RTE_CRYPTO_OP_STATUS_SUCCESS;
}
static int
ecdsa_set_input(struct rte_crypto_asym_op *asym_op,
struct icp_qat_fw_pke_request *qat_req,
struct qat_asym_op_cookie *cookie,
struct rte_crypto_asym_xform *xform)
{
struct qat_asym_function qat_function;
uint32_t alg_bytesize, qat_alg_bytesize, func_id;
int curve_id;
curve_id = pick_curve(xform);
if (curve_id < 0) {
QAT_LOG(ERR, "Incorrect elliptic curve");
return -EINVAL;
}
switch (asym_op->ecdsa.op_type) {
case RTE_CRYPTO_ASYM_OP_SIGN:
qat_function = get_ecdsa_function(xform);
func_id = qat_function.func_id;
if (func_id == 0) {
QAT_LOG(ERR, "Cannot obtain functionality id");
return -EINVAL;
}
alg_bytesize = qat_function.bytesize;
qat_alg_bytesize = RTE_ALIGN_CEIL(alg_bytesize, 8);
SET_PKE_LN_9A_F(asym_op->ecdsa.pkey, 0);
SET_PKE_LN_9A_F(asym_op->ecdsa.message, 1);
SET_PKE_LN_9A_F(asym_op->ecdsa.k, 2);
SET_PKE_LN_EC_F(curve[curve_id].b, alg_bytesize, 3);
SET_PKE_LN_EC_F(curve[curve_id].a, alg_bytesize, 4);
SET_PKE_LN_EC_F(curve[curve_id].p, alg_bytesize, 5);
SET_PKE_LN_EC_F(curve[curve_id].n, alg_bytesize, 6);
SET_PKE_LN_EC_F(curve[curve_id].y, alg_bytesize, 7);
SET_PKE_LN_EC_F(curve[curve_id].x, alg_bytesize, 8);
cookie->alg_bytesize = alg_bytesize;
qat_req->pke_hdr.cd_pars.func_id = func_id;
qat_req->input_param_count =
QAT_ASYM_ECDSA_RS_SIGN_IN_PARAMS;
qat_req->output_param_count =
QAT_ASYM_ECDSA_RS_SIGN_OUT_PARAMS;
HEXDUMP_OFF_F("ECDSA d", 0);
HEXDUMP_OFF_F("ECDSA e", 1);
HEXDUMP_OFF_F("ECDSA k", 2);
HEXDUMP_OFF_F("ECDSA b", 3);
HEXDUMP_OFF_F("ECDSA a", 4);
HEXDUMP_OFF_F("ECDSA n", 5);
HEXDUMP_OFF_F("ECDSA y", 6);
HEXDUMP_OFF_F("ECDSA x", 7);
break;
case RTE_CRYPTO_ASYM_OP_VERIFY:
qat_function = get_ecdsa_verify_function(xform);
func_id = qat_function.func_id;
if (func_id == 0) {
QAT_LOG(ERR, "Cannot obtain functionality id");
return -EINVAL;
}
alg_bytesize = qat_function.bytesize;
qat_alg_bytesize = RTE_ALIGN_CEIL(alg_bytesize, 8);
SET_PKE_LN_9A_F(asym_op->ecdsa.message, 10);
SET_PKE_LN_9A_F(asym_op->ecdsa.s, 9);
SET_PKE_LN_9A_F(asym_op->ecdsa.r, 8);
SET_PKE_LN_EC_F(curve[curve_id].n, alg_bytesize, 7);
SET_PKE_LN_EC_F(curve[curve_id].x, alg_bytesize, 6);
SET_PKE_LN_EC_F(curve[curve_id].y, alg_bytesize, 5);
SET_PKE_LN_9A_F(asym_op->ecdsa.q.x, 4);
SET_PKE_LN_9A_F(asym_op->ecdsa.q.y, 3);
SET_PKE_LN_EC_F(curve[curve_id].a, alg_bytesize, 2);
SET_PKE_LN_EC_F(curve[curve_id].b, alg_bytesize, 1);
SET_PKE_LN_EC_F(curve[curve_id].p, alg_bytesize, 0);
cookie->alg_bytesize = alg_bytesize;
qat_req->pke_hdr.cd_pars.func_id = func_id;
qat_req->input_param_count =
QAT_ASYM_ECDSA_RS_VERIFY_IN_PARAMS;
qat_req->output_param_count =
QAT_ASYM_ECDSA_RS_VERIFY_OUT_PARAMS;
HEXDUMP_OFF_F("e", 0);
HEXDUMP_OFF_F("s", 1);
HEXDUMP_OFF_F("r", 2);
HEXDUMP_OFF_F("n", 3);
HEXDUMP_OFF_F("xG", 4);
HEXDUMP_OFF_F("yG", 5);
HEXDUMP_OFF_F("xQ", 6);
HEXDUMP_OFF_F("yQ", 7);
HEXDUMP_OFF_F("a", 8);
HEXDUMP_OFF_F("b", 9);
HEXDUMP_OFF_F("q", 10);
break;
default:
return -1;
}
return 0;
}
static uint8_t
ecdsa_collect(struct rte_crypto_asym_op *asym_op,
struct qat_asym_op_cookie *cookie)
{
uint32_t alg_bytesize = RTE_ALIGN_CEIL(cookie->alg_bytesize, 8);
if (asym_op->rsa.op_type == RTE_CRYPTO_ASYM_OP_SIGN) {
uint8_t *r = asym_op->ecdsa.r.data;
uint8_t *s = asym_op->ecdsa.s.data;
asym_op->ecdsa.r.length = alg_bytesize;
asym_op->ecdsa.s.length = alg_bytesize;
rte_memcpy(r, cookie->output_array[0], alg_bytesize);
rte_memcpy(s, cookie->output_array[1], alg_bytesize);
HEXDUMP("R", cookie->output_array[0],
alg_bytesize);
HEXDUMP("S", cookie->output_array[1],
alg_bytesize);
}
return RTE_CRYPTO_OP_STATUS_SUCCESS;
}
static int
asym_set_input(struct rte_crypto_asym_op *asym_op,
@ -561,6 +704,9 @@ asym_set_input(struct rte_crypto_asym_op *asym_op,
case RTE_CRYPTO_ASYM_XFORM_RSA:
return rsa_set_input(asym_op, qat_req,
cookie, xform);
case RTE_CRYPTO_ASYM_XFORM_ECDSA:
return ecdsa_set_input(asym_op, qat_req,
cookie, xform);
default:
QAT_LOG(ERR, "Invalid/unsupported asymmetric crypto xform");
return -EINVAL;
@ -635,6 +781,8 @@ qat_asym_collect_response(struct rte_crypto_op *rx_op,
return modinv_collect(asym_op, cookie, xform);
case RTE_CRYPTO_ASYM_XFORM_RSA:
return rsa_collect(asym_op, cookie);
case RTE_CRYPTO_ASYM_XFORM_ECDSA:
return ecdsa_collect(asym_op, cookie);
default:
QAT_LOG(ERR, "Not supported xform type");
return RTE_CRYPTO_OP_STATUS_ERROR;

View File

@ -28,6 +28,10 @@ typedef uint64_t large_int_ptr;
#define QAT_ASYM_RSA_NUM_IN_PARAMS 3
#define QAT_ASYM_RSA_NUM_OUT_PARAMS 1
#define QAT_ASYM_RSA_QT_NUM_IN_PARAMS 6
#define QAT_ASYM_ECDSA_RS_SIGN_IN_PARAMS 1
#define QAT_ASYM_ECDSA_RS_SIGN_OUT_PARAMS 2
#define QAT_ASYM_ECDSA_RS_VERIFY_IN_PARAMS 1
#define QAT_ASYM_ECDSA_RS_VERIFY_OUT_PARAMS 0
/**
* helper function to add an asym capability