app/compress-perf: add performance measurement

Added performance measurement part into compression perf. test.

Signed-off-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
Signed-off-by: Tomasz Jozwiak <tomaszx.jozwiak@intel.com>
Acked-by: Fiona Trahe <fiona.trahe@intel.com>
Acked-by: Lee Daly <lee.daly@intel.com>
Acked-by: Shally Verma <shally.verma@caviumnetworks.com>
This commit is contained in:
Tomasz Jozwiak 2018-12-12 13:08:02 +01:00 committed by Akhil Goyal
parent e0b6287c03
commit b68a82425d
2 changed files with 884 additions and 6 deletions

View File

@ -565,7 +565,7 @@ comp_perf_options_default(struct comp_test_data *test_data)
test_data->seg_sz = 2048;
test_data->burst_sz = 32;
test_data->pool_sz = 8192;
test_data->max_sgl_segs = UINT16_MAX;
test_data->max_sgl_segs = 16;
test_data->num_iter = 10000;
test_data->huffman_enc = RTE_COMP_HUFFMAN_FIXED;
test_data->test_op = COMPRESS_DECOMPRESS;

View File

@ -5,14 +5,730 @@
#include <rte_malloc.h>
#include <rte_eal.h>
#include <rte_log.h>
#include <rte_cycles.h>
#include <rte_compressdev.h>
#include "comp_perf_options.h"
#define NUM_MAX_XFORMS 16
#define NUM_MAX_INFLIGHT_OPS 512
#define EXPANSE_RATIO 1.05
#define MIN_COMPRESSED_BUF_SIZE 8
#define DIV_CEIL(a, b) ((a) / (b) + ((a) % (b) != 0))
/* Cleanup state machine */
static enum cleanup_st {
ST_CLEAR = 0,
ST_TEST_DATA,
ST_COMPDEV,
ST_INPUT_DATA,
ST_MEMORY_ALLOC,
ST_PREPARE_BUF,
ST_DURING_TEST
} cleanup = ST_CLEAR;
static int
param_range_check(uint16_t size, const struct rte_param_log2_range *range)
{
unsigned int next_size;
/* Check lower/upper bounds */
if (size < range->min)
return -1;
if (size > range->max)
return -1;
/* If range is actually only one value, size is correct */
if (range->increment == 0)
return 0;
/* Check if value is one of the supported sizes */
for (next_size = range->min; next_size <= range->max;
next_size += range->increment)
if (size == next_size)
return 0;
return -1;
}
static int
comp_perf_check_capabilities(struct comp_test_data *test_data)
{
const struct rte_compressdev_capabilities *cap;
cap = rte_compressdev_capability_get(test_data->cdev_id,
RTE_COMP_ALGO_DEFLATE);
if (cap == NULL) {
RTE_LOG(ERR, USER1,
"Compress device does not support DEFLATE\n");
return -1;
}
uint64_t comp_flags = cap->comp_feature_flags;
/* Huffman enconding */
if (test_data->huffman_enc == RTE_COMP_HUFFMAN_FIXED &&
(comp_flags & RTE_COMP_FF_HUFFMAN_FIXED) == 0) {
RTE_LOG(ERR, USER1,
"Compress device does not supported Fixed Huffman\n");
return -1;
}
if (test_data->huffman_enc == RTE_COMP_HUFFMAN_DYNAMIC &&
(comp_flags & RTE_COMP_FF_HUFFMAN_DYNAMIC) == 0) {
RTE_LOG(ERR, USER1,
"Compress device does not supported Dynamic Huffman\n");
return -1;
}
/* Window size */
if (test_data->window_sz != -1) {
if (param_range_check(test_data->window_sz, &cap->window_size)
< 0) {
RTE_LOG(ERR, USER1,
"Compress device does not support "
"this window size\n");
return -1;
}
} else
/* Set window size to PMD maximum if none was specified */
test_data->window_sz = cap->window_size.max;
/* Check if chained mbufs is supported */
if (test_data->max_sgl_segs > 1 &&
(comp_flags & RTE_COMP_FF_OOP_SGL_IN_SGL_OUT) == 0) {
RTE_LOG(INFO, USER1, "Compress device does not support "
"chained mbufs. Max SGL segments set to 1\n");
test_data->max_sgl_segs = 1;
}
/* Level 0 support */
if (test_data->level.min == 0 &&
(comp_flags & RTE_COMP_FF_NONCOMPRESSED_BLOCKS) == 0) {
RTE_LOG(ERR, USER1, "Compress device does not support "
"level 0 (no compression)\n");
return -1;
}
return 0;
}
static int
comp_perf_allocate_memory(struct comp_test_data *test_data)
{
/* Number of segments for input and output
* (compression and decompression)
*/
uint32_t total_segs = DIV_CEIL(test_data->input_data_sz,
test_data->seg_sz);
test_data->comp_buf_pool = rte_pktmbuf_pool_create("comp_buf_pool",
total_segs,
0, 0, test_data->seg_sz + RTE_PKTMBUF_HEADROOM,
rte_socket_id());
if (test_data->comp_buf_pool == NULL) {
RTE_LOG(ERR, USER1, "Mbuf mempool could not be created\n");
return -1;
}
cleanup = ST_MEMORY_ALLOC;
test_data->decomp_buf_pool = rte_pktmbuf_pool_create("decomp_buf_pool",
total_segs,
0, 0, test_data->seg_sz + RTE_PKTMBUF_HEADROOM,
rte_socket_id());
if (test_data->decomp_buf_pool == NULL) {
RTE_LOG(ERR, USER1, "Mbuf mempool could not be created\n");
return -1;
}
test_data->total_bufs = DIV_CEIL(total_segs, test_data->max_sgl_segs);
test_data->op_pool = rte_comp_op_pool_create("op_pool",
test_data->total_bufs,
0, 0, rte_socket_id());
if (test_data->op_pool == NULL) {
RTE_LOG(ERR, USER1, "Comp op mempool could not be created\n");
return -1;
}
/*
* Compressed data might be a bit larger than input data,
* if data cannot be compressed
*/
test_data->compressed_data = rte_zmalloc_socket(NULL,
test_data->input_data_sz * EXPANSE_RATIO
+ MIN_COMPRESSED_BUF_SIZE, 0,
rte_socket_id());
if (test_data->compressed_data == NULL) {
RTE_LOG(ERR, USER1, "Memory to hold the data from the input "
"file could not be allocated\n");
return -1;
}
test_data->decompressed_data = rte_zmalloc_socket(NULL,
test_data->input_data_sz, 0,
rte_socket_id());
if (test_data->decompressed_data == NULL) {
RTE_LOG(ERR, USER1, "Memory to hold the data from the input "
"file could not be allocated\n");
return -1;
}
test_data->comp_bufs = rte_zmalloc_socket(NULL,
test_data->total_bufs * sizeof(struct rte_mbuf *),
0, rte_socket_id());
if (test_data->comp_bufs == NULL) {
RTE_LOG(ERR, USER1, "Memory to hold the compression mbufs"
" could not be allocated\n");
return -1;
}
test_data->decomp_bufs = rte_zmalloc_socket(NULL,
test_data->total_bufs * sizeof(struct rte_mbuf *),
0, rte_socket_id());
if (test_data->decomp_bufs == NULL) {
RTE_LOG(ERR, USER1, "Memory to hold the decompression mbufs"
" could not be allocated\n");
return -1;
}
return 0;
}
static int
comp_perf_dump_input_data(struct comp_test_data *test_data)
{
FILE *f = fopen(test_data->input_file, "r");
int ret = -1;
if (f == NULL) {
RTE_LOG(ERR, USER1, "Input file could not be opened\n");
return -1;
}
if (fseek(f, 0, SEEK_END) != 0) {
RTE_LOG(ERR, USER1, "Size of input could not be calculated\n");
goto end;
}
size_t actual_file_sz = ftell(f);
/* If extended input data size has not been set,
* input data size = file size
*/
if (test_data->input_data_sz == 0)
test_data->input_data_sz = actual_file_sz;
if (fseek(f, 0, SEEK_SET) != 0) {
RTE_LOG(ERR, USER1, "Size of input could not be calculated\n");
goto end;
}
test_data->input_data = rte_zmalloc_socket(NULL,
test_data->input_data_sz, 0, rte_socket_id());
if (test_data->input_data == NULL) {
RTE_LOG(ERR, USER1, "Memory to hold the data from the input "
"file could not be allocated\n");
goto end;
}
size_t remaining_data = test_data->input_data_sz;
uint8_t *data = test_data->input_data;
while (remaining_data > 0) {
size_t data_to_read = RTE_MIN(remaining_data, actual_file_sz);
if (fread(data, data_to_read, 1, f) != 1) {
RTE_LOG(ERR, USER1, "Input file could not be read\n");
goto end;
}
if (fseek(f, 0, SEEK_SET) != 0) {
RTE_LOG(ERR, USER1,
"Size of input could not be calculated\n");
goto end;
}
remaining_data -= data_to_read;
data += data_to_read;
}
if (test_data->input_data_sz > actual_file_sz)
RTE_LOG(INFO, USER1,
"%zu bytes read from file %s, extending the file %.2f times\n",
test_data->input_data_sz, test_data->input_file,
(double)test_data->input_data_sz/actual_file_sz);
else
RTE_LOG(INFO, USER1,
"%zu bytes read from file %s\n",
test_data->input_data_sz, test_data->input_file);
ret = 0;
end:
fclose(f);
return ret;
}
static int
comp_perf_initialize_compressdev(struct comp_test_data *test_data)
{
uint8_t enabled_cdev_count;
uint8_t enabled_cdevs[RTE_COMPRESS_MAX_DEVS];
enabled_cdev_count = rte_compressdev_devices_get(test_data->driver_name,
enabled_cdevs, RTE_COMPRESS_MAX_DEVS);
if (enabled_cdev_count == 0) {
RTE_LOG(ERR, USER1, "No compress devices type %s available\n",
test_data->driver_name);
return -EINVAL;
}
if (enabled_cdev_count > 1)
RTE_LOG(INFO, USER1,
"Only the first compress device will be used\n");
test_data->cdev_id = enabled_cdevs[0];
if (comp_perf_check_capabilities(test_data) < 0)
return -1;
/* Configure compressdev (one device, one queue pair) */
struct rte_compressdev_config config = {
.socket_id = rte_socket_id(),
.nb_queue_pairs = 1,
.max_nb_priv_xforms = NUM_MAX_XFORMS,
.max_nb_streams = 0
};
if (rte_compressdev_configure(test_data->cdev_id, &config) < 0) {
RTE_LOG(ERR, USER1, "Device configuration failed\n");
return -1;
}
if (rte_compressdev_queue_pair_setup(test_data->cdev_id, 0,
NUM_MAX_INFLIGHT_OPS, rte_socket_id()) < 0) {
RTE_LOG(ERR, USER1, "Queue pair setup failed\n");
return -1;
}
if (rte_compressdev_start(test_data->cdev_id) < 0) {
RTE_LOG(ERR, USER1, "Device could not be started\n");
return -1;
}
return 0;
}
static int
prepare_bufs(struct comp_test_data *test_data)
{
uint32_t remaining_data = test_data->input_data_sz;
uint8_t *input_data_ptr = test_data->input_data;
size_t data_sz;
uint8_t *data_addr;
uint32_t i, j;
for (i = 0; i < test_data->total_bufs; i++) {
/* Allocate data in input mbuf and copy data from input file */
test_data->decomp_bufs[i] =
rte_pktmbuf_alloc(test_data->decomp_buf_pool);
if (test_data->decomp_bufs[i] == NULL) {
RTE_LOG(ERR, USER1, "Could not allocate mbuf\n");
return -1;
}
cleanup = ST_PREPARE_BUF;
data_sz = RTE_MIN(remaining_data, test_data->seg_sz);
data_addr = (uint8_t *) rte_pktmbuf_append(
test_data->decomp_bufs[i], data_sz);
if (data_addr == NULL) {
RTE_LOG(ERR, USER1, "Could not append data\n");
return -1;
}
rte_memcpy(data_addr, input_data_ptr, data_sz);
input_data_ptr += data_sz;
remaining_data -= data_sz;
/* Already one segment in the mbuf */
uint16_t segs_per_mbuf = 1;
/* Chain mbufs if needed for input mbufs */
while (segs_per_mbuf < test_data->max_sgl_segs
&& remaining_data > 0) {
struct rte_mbuf *next_seg =
rte_pktmbuf_alloc(test_data->decomp_buf_pool);
if (next_seg == NULL) {
RTE_LOG(ERR, USER1,
"Could not allocate mbuf\n");
return -1;
}
data_sz = RTE_MIN(remaining_data, test_data->seg_sz);
data_addr = (uint8_t *)rte_pktmbuf_append(next_seg,
data_sz);
if (data_addr == NULL) {
RTE_LOG(ERR, USER1, "Could not append data\n");
return -1;
}
rte_memcpy(data_addr, input_data_ptr, data_sz);
input_data_ptr += data_sz;
remaining_data -= data_sz;
if (rte_pktmbuf_chain(test_data->decomp_bufs[i],
next_seg) < 0) {
RTE_LOG(ERR, USER1, "Could not chain mbufs\n");
return -1;
}
segs_per_mbuf++;
}
/* Allocate data in output mbuf */
test_data->comp_bufs[i] =
rte_pktmbuf_alloc(test_data->comp_buf_pool);
if (test_data->comp_bufs[i] == NULL) {
RTE_LOG(ERR, USER1, "Could not allocate mbuf\n");
return -1;
}
data_addr = (uint8_t *) rte_pktmbuf_append(
test_data->comp_bufs[i],
test_data->seg_sz);
if (data_addr == NULL) {
RTE_LOG(ERR, USER1, "Could not append data\n");
return -1;
}
/* Chain mbufs if needed for output mbufs */
for (j = 1; j < segs_per_mbuf; j++) {
struct rte_mbuf *next_seg =
rte_pktmbuf_alloc(test_data->comp_buf_pool);
if (next_seg == NULL) {
RTE_LOG(ERR, USER1,
"Could not allocate mbuf\n");
return -1;
}
data_addr = (uint8_t *)rte_pktmbuf_append(next_seg,
test_data->seg_sz);
if (data_addr == NULL) {
RTE_LOG(ERR, USER1, "Could not append data\n");
return -1;
}
if (rte_pktmbuf_chain(test_data->comp_bufs[i],
next_seg) < 0) {
RTE_LOG(ERR, USER1, "Could not chain mbufs\n");
return -1;
}
}
}
return 0;
}
static void
free_bufs(struct comp_test_data *test_data)
{
uint32_t i;
for (i = 0; i < test_data->total_bufs; i++) {
rte_pktmbuf_free(test_data->comp_bufs[i]);
rte_pktmbuf_free(test_data->decomp_bufs[i]);
}
}
static int
main_loop(struct comp_test_data *test_data, uint8_t level,
enum rte_comp_xform_type type,
uint8_t *output_data_ptr,
size_t *output_data_sz,
unsigned int benchmarking)
{
uint8_t dev_id = test_data->cdev_id;
uint32_t i, iter, num_iter;
struct rte_comp_op **ops, **deq_ops;
void *priv_xform = NULL;
struct rte_comp_xform xform;
size_t output_size = 0;
struct rte_mbuf **input_bufs, **output_bufs;
int res = 0;
int allocated = 0;
if (test_data == NULL || !test_data->burst_sz) {
RTE_LOG(ERR, USER1,
"Unknown burst size\n");
return -1;
}
ops = rte_zmalloc_socket(NULL,
2 * test_data->total_bufs * sizeof(struct rte_comp_op *),
0, rte_socket_id());
if (ops == NULL) {
RTE_LOG(ERR, USER1,
"Can't allocate memory for ops strucures\n");
return -1;
}
deq_ops = &ops[test_data->total_bufs];
if (type == RTE_COMP_COMPRESS) {
xform = (struct rte_comp_xform) {
.type = RTE_COMP_COMPRESS,
.compress = {
.algo = RTE_COMP_ALGO_DEFLATE,
.deflate.huffman = test_data->huffman_enc,
.level = level,
.window_size = test_data->window_sz,
.chksum = RTE_COMP_CHECKSUM_NONE,
.hash_algo = RTE_COMP_HASH_ALGO_NONE
}
};
input_bufs = test_data->decomp_bufs;
output_bufs = test_data->comp_bufs;
} else {
xform = (struct rte_comp_xform) {
.type = RTE_COMP_DECOMPRESS,
.decompress = {
.algo = RTE_COMP_ALGO_DEFLATE,
.chksum = RTE_COMP_CHECKSUM_NONE,
.window_size = test_data->window_sz,
.hash_algo = RTE_COMP_HASH_ALGO_NONE
}
};
input_bufs = test_data->comp_bufs;
output_bufs = test_data->decomp_bufs;
}
/* Create private xform */
if (rte_compressdev_private_xform_create(dev_id, &xform,
&priv_xform) < 0) {
RTE_LOG(ERR, USER1, "Private xform could not be created\n");
res = -1;
goto end;
}
uint64_t tsc_start, tsc_end, tsc_duration;
tsc_start = tsc_end = tsc_duration = 0;
if (benchmarking) {
tsc_start = rte_rdtsc();
num_iter = test_data->num_iter;
} else
num_iter = 1;
for (iter = 0; iter < num_iter; iter++) {
uint32_t total_ops = test_data->total_bufs;
uint32_t remaining_ops = test_data->total_bufs;
uint32_t total_deq_ops = 0;
uint32_t total_enq_ops = 0;
uint16_t ops_unused = 0;
uint16_t num_enq = 0;
uint16_t num_deq = 0;
output_size = 0;
while (remaining_ops > 0) {
uint16_t num_ops = RTE_MIN(remaining_ops,
test_data->burst_sz);
uint16_t ops_needed = num_ops - ops_unused;
/*
* Move the unused operations from the previous
* enqueue_burst call to the front, to maintain order
*/
if ((ops_unused > 0) && (num_enq > 0)) {
size_t nb_b_to_mov =
ops_unused * sizeof(struct rte_comp_op *);
memmove(ops, &ops[num_enq], nb_b_to_mov);
}
/* Allocate compression operations */
if (ops_needed && !rte_comp_op_bulk_alloc(
test_data->op_pool,
&ops[ops_unused],
ops_needed)) {
RTE_LOG(ERR, USER1,
"Could not allocate enough operations\n");
res = -1;
goto end;
}
allocated += ops_needed;
for (i = 0; i < ops_needed; i++) {
/*
* Calculate next buffer to attach to operation
*/
uint32_t buf_id = total_enq_ops + i +
ops_unused;
uint16_t op_id = ops_unused + i;
/* Reset all data in output buffers */
struct rte_mbuf *m = output_bufs[buf_id];
m->pkt_len = test_data->seg_sz * m->nb_segs;
while (m) {
m->data_len = m->buf_len - m->data_off;
m = m->next;
}
ops[op_id]->m_src = input_bufs[buf_id];
ops[op_id]->m_dst = output_bufs[buf_id];
ops[op_id]->src.offset = 0;
ops[op_id]->src.length =
rte_pktmbuf_pkt_len(input_bufs[buf_id]);
ops[op_id]->dst.offset = 0;
ops[op_id]->flush_flag = RTE_COMP_FLUSH_FINAL;
ops[op_id]->input_chksum = buf_id;
ops[op_id]->private_xform = priv_xform;
}
num_enq = rte_compressdev_enqueue_burst(dev_id, 0, ops,
num_ops);
ops_unused = num_ops - num_enq;
remaining_ops -= num_enq;
total_enq_ops += num_enq;
num_deq = rte_compressdev_dequeue_burst(dev_id, 0,
deq_ops,
test_data->burst_sz);
total_deq_ops += num_deq;
if (benchmarking == 0) {
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
const void *read_data_addr =
rte_pktmbuf_read(op->m_dst, 0,
op->produced, output_data_ptr);
if (read_data_addr == NULL) {
RTE_LOG(ERR, USER1,
"Could not copy buffer in destination\n");
res = -1;
goto end;
}
if (read_data_addr != output_data_ptr)
rte_memcpy(output_data_ptr,
rte_pktmbuf_mtod(
op->m_dst, uint8_t *),
op->produced);
output_data_ptr += op->produced;
output_size += op->produced;
}
}
if (iter == num_iter - 1) {
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
struct rte_mbuf *m = op->m_dst;
m->pkt_len = op->produced;
uint32_t remaining_data = op->produced;
uint16_t data_to_append;
while (remaining_data > 0) {
data_to_append =
RTE_MIN(remaining_data,
test_data->seg_sz);
m->data_len = data_to_append;
remaining_data -=
data_to_append;
m = m->next;
}
}
}
rte_mempool_put_bulk(test_data->op_pool,
(void **)deq_ops, num_deq);
allocated -= num_deq;
}
/* Dequeue the last operations */
while (total_deq_ops < total_ops) {
num_deq = rte_compressdev_dequeue_burst(dev_id, 0,
deq_ops, test_data->burst_sz);
total_deq_ops += num_deq;
if (benchmarking == 0) {
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
const void *read_data_addr =
rte_pktmbuf_read(op->m_dst,
op->dst.offset,
op->produced,
output_data_ptr);
if (read_data_addr == NULL) {
RTE_LOG(ERR, USER1,
"Could not copy buffer in destination\n");
res = -1;
goto end;
}
if (read_data_addr != output_data_ptr)
rte_memcpy(output_data_ptr,
rte_pktmbuf_mtod(
op->m_dst, uint8_t *),
op->produced);
output_data_ptr += op->produced;
output_size += op->produced;
}
}
if (iter == num_iter - 1) {
for (i = 0; i < num_deq; i++) {
struct rte_comp_op *op = deq_ops[i];
struct rte_mbuf *m = op->m_dst;
m->pkt_len = op->produced;
uint32_t remaining_data = op->produced;
uint16_t data_to_append;
while (remaining_data > 0) {
data_to_append =
RTE_MIN(remaining_data,
test_data->seg_sz);
m->data_len = data_to_append;
remaining_data -=
data_to_append;
m = m->next;
}
}
}
rte_mempool_put_bulk(test_data->op_pool,
(void **)deq_ops, num_deq);
allocated -= num_deq;
}
}
if (benchmarking) {
tsc_end = rte_rdtsc();
tsc_duration = tsc_end - tsc_start;
if (type == RTE_COMP_COMPRESS)
test_data->comp_tsc_duration[level] =
tsc_duration / num_iter;
else
test_data->decomp_tsc_duration[level] =
tsc_duration / num_iter;
}
if (benchmarking == 0 && output_data_sz)
*output_data_sz = output_size;
end:
rte_mempool_put_bulk(test_data->op_pool, (void **)ops, allocated);
rte_compressdev_private_xform_free(dev_id, priv_xform);
rte_free(ops);
return res;
}
int
main(int argc, char **argv)
{
int ret;
uint8_t level, level_idx = 0;
int ret, i;
struct comp_test_data *test_data;
/* Initialise DPDK EAL */
@ -29,24 +745,186 @@ main(int argc, char **argv)
rte_exit(EXIT_FAILURE, "Cannot reserve memory in socket %d\n",
rte_socket_id());
cleanup = ST_TEST_DATA;
comp_perf_options_default(test_data);
if (comp_perf_options_parse(test_data, argc, argv) < 0) {
RTE_LOG(ERR, USER1,
"Parsing one or more user options failed\n");
ret = EXIT_FAILURE;
goto err;
goto end;
}
if (comp_perf_options_check(test_data) < 0) {
ret = EXIT_FAILURE;
goto err;
goto end;
}
if (comp_perf_initialize_compressdev(test_data) < 0) {
ret = EXIT_FAILURE;
goto end;
}
cleanup = ST_COMPDEV;
if (comp_perf_dump_input_data(test_data) < 0) {
ret = EXIT_FAILURE;
goto end;
}
cleanup = ST_INPUT_DATA;
if (comp_perf_allocate_memory(test_data) < 0) {
ret = EXIT_FAILURE;
goto end;
}
if (prepare_bufs(test_data) < 0) {
ret = EXIT_FAILURE;
goto end;
}
if (test_data->level.inc != 0)
level = test_data->level.min;
else
level = test_data->level.list[0];
size_t comp_data_sz;
size_t decomp_data_sz;
printf("Burst size = %u\n", test_data->burst_sz);
printf("File size = %zu\n", test_data->input_data_sz);
printf("%6s%12s%17s%19s%21s%15s%21s%23s%16s\n",
"Level", "Comp size", "Comp ratio [%]",
"Comp [Cycles/it]", "Comp [Cycles/Byte]", "Comp [Gbps]",
"Decomp [Cycles/it]", "Decomp [Cycles/Byte]", "Decomp [Gbps]");
cleanup = ST_DURING_TEST;
while (level <= test_data->level.max) {
/*
* Run a first iteration, to verify compression and
* get the compression ratio for the level
*/
if (main_loop(test_data, level, RTE_COMP_COMPRESS,
test_data->compressed_data,
&comp_data_sz, 0) < 0) {
ret = EXIT_FAILURE;
goto end;
}
if (main_loop(test_data, level, RTE_COMP_DECOMPRESS,
test_data->decompressed_data,
&decomp_data_sz, 0) < 0) {
ret = EXIT_FAILURE;
goto end;
}
if (decomp_data_sz != test_data->input_data_sz) {
RTE_LOG(ERR, USER1,
"Decompressed data length not equal to input data length\n");
RTE_LOG(ERR, USER1,
"Decompressed size = %zu, expected = %zu\n",
decomp_data_sz, test_data->input_data_sz);
ret = EXIT_FAILURE;
goto end;
} else {
if (memcmp(test_data->decompressed_data,
test_data->input_data,
test_data->input_data_sz) != 0) {
RTE_LOG(ERR, USER1,
"Decompressed data is not the same as file data\n");
ret = EXIT_FAILURE;
goto end;
}
}
double ratio = (double) comp_data_sz /
test_data->input_data_sz * 100;
/*
* Run the tests twice, discarding the first performance
* results, before the cache is warmed up
*/
for (i = 0; i < 2; i++) {
if (main_loop(test_data, level, RTE_COMP_COMPRESS,
NULL, NULL, 1) < 0) {
ret = EXIT_FAILURE;
goto end;
}
}
for (i = 0; i < 2; i++) {
if (main_loop(test_data, level, RTE_COMP_DECOMPRESS,
NULL, NULL, 1) < 0) {
ret = EXIT_FAILURE;
goto end;
}
}
uint64_t comp_tsc_duration =
test_data->comp_tsc_duration[level];
double comp_tsc_byte = (double)comp_tsc_duration /
test_data->input_data_sz;
double comp_gbps = rte_get_tsc_hz() / comp_tsc_byte * 8 /
1000000000;
uint64_t decomp_tsc_duration =
test_data->decomp_tsc_duration[level];
double decomp_tsc_byte = (double)decomp_tsc_duration /
test_data->input_data_sz;
double decomp_gbps = rte_get_tsc_hz() / decomp_tsc_byte * 8 /
1000000000;
printf("%6u%12zu%17.2f%19"PRIu64"%21.2f"
"%15.2f%21"PRIu64"%23.2f%16.2f\n",
level, comp_data_sz, ratio, comp_tsc_duration,
comp_tsc_byte, comp_gbps, decomp_tsc_duration,
decomp_tsc_byte, decomp_gbps);
if (test_data->level.inc != 0)
level += test_data->level.inc;
else {
if (++level_idx == test_data->level.count)
break;
level = test_data->level.list[level_idx];
}
}
ret = EXIT_SUCCESS;
err:
rte_free(test_data);
end:
switch (cleanup) {
case ST_DURING_TEST:
case ST_PREPARE_BUF:
free_bufs(test_data);
/* fallthrough */
case ST_MEMORY_ALLOC:
rte_free(test_data->decomp_bufs);
rte_free(test_data->comp_bufs);
rte_free(test_data->decompressed_data);
rte_free(test_data->compressed_data);
rte_mempool_free(test_data->op_pool);
rte_mempool_free(test_data->decomp_buf_pool);
rte_mempool_free(test_data->comp_buf_pool);
/* fallthrough */
case ST_INPUT_DATA:
rte_free(test_data->input_data);
/* fallthrough */
case ST_COMPDEV:
if (test_data->cdev_id != -1)
rte_compressdev_stop(test_data->cdev_id);
/* fallthrough */
case ST_TEST_DATA:
rte_free(test_data);
/* fallthrough */
case ST_CLEAR:
default:
i = rte_eal_cleanup();
if (i) {
RTE_LOG(ERR, USER1,
"Error from rte_eal_cleanup(), %d\n", i);
ret = i;
}
break;
}
return ret;
}