bpf: support packet data load instructions
To fill the gap with linux kernel eBPF implementation, add support for two non-generic instructions: (BPF_ABS | <size> | BPF_LD) and (BPF_IND | <size> | BPF_LD) which are used to access packet data. These instructions can only be used when BPF context is a pointer to 'struct rte_mbuf' (i.e: RTE_BPF_ARG_PTR_MBUF type). Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
This commit is contained in:
parent
20c19d9df5
commit
b901d92836
@ -43,6 +43,14 @@ struct dummy_net {
|
||||
struct rte_ipv4_hdr ip_hdr;
|
||||
};
|
||||
|
||||
#define DUMMY_MBUF_NUM 2
|
||||
|
||||
/* first mbuf in the packet, should always be at offset 0 */
|
||||
struct dummy_mbuf {
|
||||
struct rte_mbuf mb[DUMMY_MBUF_NUM];
|
||||
uint8_t buf[DUMMY_MBUF_NUM][RTE_MBUF_DEFAULT_BUF_SIZE];
|
||||
};
|
||||
|
||||
#define TEST_FILL_1 0xDEADBEEF
|
||||
|
||||
#define TEST_MUL_1 21
|
||||
@ -2444,6 +2452,413 @@ static const struct rte_bpf_xsym test_call5_xsym[] = {
|
||||
},
|
||||
};
|
||||
|
||||
/* load mbuf (BPF_ABS/BPF_IND) test-cases */
|
||||
static const struct ebpf_insn test_ld_mbuf1_prog[] = {
|
||||
|
||||
/* BPF_ABS/BPF_IND implicitly expect mbuf ptr in R6 */
|
||||
{
|
||||
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
|
||||
.dst_reg = EBPF_REG_6,
|
||||
.src_reg = EBPF_REG_1,
|
||||
},
|
||||
/* load IPv4 version and IHL */
|
||||
{
|
||||
.code = (BPF_LD | BPF_ABS | BPF_B),
|
||||
.imm = offsetof(struct rte_ipv4_hdr, version_ihl),
|
||||
},
|
||||
/* check IP version */
|
||||
{
|
||||
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
|
||||
.dst_reg = EBPF_REG_2,
|
||||
.src_reg = EBPF_REG_0,
|
||||
},
|
||||
{
|
||||
.code = (BPF_ALU | BPF_AND | BPF_K),
|
||||
.dst_reg = EBPF_REG_2,
|
||||
.imm = 0xf0,
|
||||
},
|
||||
{
|
||||
.code = (BPF_JMP | BPF_JEQ | BPF_K),
|
||||
.dst_reg = EBPF_REG_2,
|
||||
.imm = IPVERSION << 4,
|
||||
.off = 2,
|
||||
},
|
||||
/* invalid IP version, return 0 */
|
||||
{
|
||||
.code = (EBPF_ALU64 | BPF_XOR | BPF_X),
|
||||
.dst_reg = EBPF_REG_0,
|
||||
.src_reg = EBPF_REG_0,
|
||||
},
|
||||
{
|
||||
.code = (BPF_JMP | EBPF_EXIT),
|
||||
},
|
||||
/* load 3-rd byte of IP data */
|
||||
{
|
||||
.code = (BPF_ALU | BPF_AND | BPF_K),
|
||||
.dst_reg = EBPF_REG_0,
|
||||
.imm = RTE_IPV4_HDR_IHL_MASK,
|
||||
},
|
||||
{
|
||||
.code = (BPF_ALU | BPF_LSH | BPF_K),
|
||||
.dst_reg = EBPF_REG_0,
|
||||
.imm = 2,
|
||||
},
|
||||
{
|
||||
.code = (BPF_LD | BPF_IND | BPF_B),
|
||||
.src_reg = EBPF_REG_0,
|
||||
.imm = 3,
|
||||
},
|
||||
{
|
||||
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
|
||||
.dst_reg = EBPF_REG_7,
|
||||
.src_reg = EBPF_REG_0,
|
||||
},
|
||||
/* load IPv4 src addr */
|
||||
{
|
||||
.code = (BPF_LD | BPF_ABS | BPF_W),
|
||||
.imm = offsetof(struct rte_ipv4_hdr, src_addr),
|
||||
},
|
||||
{
|
||||
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
|
||||
.dst_reg = EBPF_REG_7,
|
||||
.src_reg = EBPF_REG_0,
|
||||
},
|
||||
/* load IPv4 total length */
|
||||
{
|
||||
.code = (BPF_LD | BPF_ABS | BPF_H),
|
||||
.imm = offsetof(struct rte_ipv4_hdr, total_length),
|
||||
},
|
||||
{
|
||||
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
|
||||
.dst_reg = EBPF_REG_8,
|
||||
.src_reg = EBPF_REG_0,
|
||||
},
|
||||
/* load last 4 bytes of IP data */
|
||||
{
|
||||
.code = (BPF_LD | BPF_IND | BPF_W),
|
||||
.src_reg = EBPF_REG_8,
|
||||
.imm = -(int32_t)sizeof(uint32_t),
|
||||
},
|
||||
{
|
||||
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
|
||||
.dst_reg = EBPF_REG_7,
|
||||
.src_reg = EBPF_REG_0,
|
||||
},
|
||||
/* load 2 bytes from the middle of IP data */
|
||||
{
|
||||
.code = (EBPF_ALU64 | BPF_RSH | BPF_K),
|
||||
.dst_reg = EBPF_REG_8,
|
||||
.imm = 1,
|
||||
},
|
||||
{
|
||||
.code = (BPF_LD | BPF_IND | BPF_H),
|
||||
.src_reg = EBPF_REG_8,
|
||||
},
|
||||
{
|
||||
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
|
||||
.dst_reg = EBPF_REG_0,
|
||||
.src_reg = EBPF_REG_7,
|
||||
},
|
||||
{
|
||||
.code = (BPF_JMP | EBPF_EXIT),
|
||||
},
|
||||
};
|
||||
|
||||
static void
|
||||
dummy_mbuf_prep(struct rte_mbuf *mb, uint8_t buf[], uint32_t buf_len,
|
||||
uint32_t data_len)
|
||||
{
|
||||
uint32_t i;
|
||||
uint8_t *db;
|
||||
|
||||
mb->buf_addr = buf;
|
||||
mb->buf_iova = (uintptr_t)buf;
|
||||
mb->buf_len = buf_len;
|
||||
rte_mbuf_refcnt_set(mb, 1);
|
||||
|
||||
/* set pool pointer to dummy value, test doesn't use it */
|
||||
mb->pool = (void *)buf;
|
||||
|
||||
rte_pktmbuf_reset(mb);
|
||||
db = (uint8_t *)rte_pktmbuf_append(mb, data_len);
|
||||
|
||||
for (i = 0; i != data_len; i++)
|
||||
db[i] = i;
|
||||
}
|
||||
|
||||
static void
|
||||
test_ld_mbuf1_prepare(void *arg)
|
||||
{
|
||||
struct dummy_mbuf *dm;
|
||||
struct rte_ipv4_hdr *ph;
|
||||
|
||||
const uint32_t plen = 400;
|
||||
const struct rte_ipv4_hdr iph = {
|
||||
.version_ihl = RTE_IPV4_VHL_DEF,
|
||||
.total_length = rte_cpu_to_be_16(plen),
|
||||
.time_to_live = IPDEFTTL,
|
||||
.next_proto_id = IPPROTO_RAW,
|
||||
.src_addr = rte_cpu_to_be_32(RTE_IPV4_LOOPBACK),
|
||||
.dst_addr = rte_cpu_to_be_32(RTE_IPV4_BROADCAST),
|
||||
};
|
||||
|
||||
dm = arg;
|
||||
memset(dm, 0, sizeof(*dm));
|
||||
|
||||
dummy_mbuf_prep(&dm->mb[0], dm->buf[0], sizeof(dm->buf[0]),
|
||||
plen / 2 + 1);
|
||||
dummy_mbuf_prep(&dm->mb[1], dm->buf[1], sizeof(dm->buf[0]),
|
||||
plen / 2 - 1);
|
||||
|
||||
rte_pktmbuf_chain(&dm->mb[0], &dm->mb[1]);
|
||||
|
||||
ph = rte_pktmbuf_mtod(dm->mb, typeof(ph));
|
||||
memcpy(ph, &iph, sizeof(iph));
|
||||
}
|
||||
|
||||
static uint64_t
|
||||
test_ld_mbuf1(const struct rte_mbuf *pkt)
|
||||
{
|
||||
uint64_t n, v;
|
||||
const uint8_t *p8;
|
||||
const uint16_t *p16;
|
||||
const uint32_t *p32;
|
||||
struct dummy_offset dof;
|
||||
|
||||
/* load IPv4 version and IHL */
|
||||
p8 = rte_pktmbuf_read(pkt,
|
||||
offsetof(struct rte_ipv4_hdr, version_ihl), sizeof(*p8),
|
||||
&dof);
|
||||
if (p8 == NULL)
|
||||
return 0;
|
||||
|
||||
/* check IP version */
|
||||
if ((p8[0] & 0xf0) != IPVERSION << 4)
|
||||
return 0;
|
||||
|
||||
n = (p8[0] & RTE_IPV4_HDR_IHL_MASK) * RTE_IPV4_IHL_MULTIPLIER;
|
||||
|
||||
/* load 3-rd byte of IP data */
|
||||
p8 = rte_pktmbuf_read(pkt, n + 3, sizeof(*p8), &dof);
|
||||
if (p8 == NULL)
|
||||
return 0;
|
||||
|
||||
v = p8[0];
|
||||
|
||||
/* load IPv4 src addr */
|
||||
p32 = rte_pktmbuf_read(pkt,
|
||||
offsetof(struct rte_ipv4_hdr, src_addr), sizeof(*p32),
|
||||
&dof);
|
||||
if (p32 == NULL)
|
||||
return 0;
|
||||
|
||||
v += rte_be_to_cpu_32(p32[0]);
|
||||
|
||||
/* load IPv4 total length */
|
||||
p16 = rte_pktmbuf_read(pkt,
|
||||
offsetof(struct rte_ipv4_hdr, total_length), sizeof(*p16),
|
||||
&dof);
|
||||
if (p16 == NULL)
|
||||
return 0;
|
||||
|
||||
n = rte_be_to_cpu_16(p16[0]);
|
||||
|
||||
/* load last 4 bytes of IP data */
|
||||
p32 = rte_pktmbuf_read(pkt, n - sizeof(*p32), sizeof(*p32), &dof);
|
||||
if (p32 == NULL)
|
||||
return 0;
|
||||
|
||||
v += rte_be_to_cpu_32(p32[0]);
|
||||
|
||||
/* load 2 bytes from the middle of IP data */
|
||||
p16 = rte_pktmbuf_read(pkt, n / 2, sizeof(*p16), &dof);
|
||||
if (p16 == NULL)
|
||||
return 0;
|
||||
|
||||
v += rte_be_to_cpu_16(p16[0]);
|
||||
return v;
|
||||
}
|
||||
|
||||
static int
|
||||
test_ld_mbuf1_check(uint64_t rc, const void *arg)
|
||||
{
|
||||
const struct dummy_mbuf *dm;
|
||||
uint64_t v;
|
||||
|
||||
dm = arg;
|
||||
v = test_ld_mbuf1(dm->mb);
|
||||
return cmp_res(__func__, v, rc, arg, arg, 0);
|
||||
}
|
||||
|
||||
/*
|
||||
* same as ld_mbuf1, but then trancate the mbuf by 1B,
|
||||
* so load of last 4B fail.
|
||||
*/
|
||||
static void
|
||||
test_ld_mbuf2_prepare(void *arg)
|
||||
{
|
||||
struct dummy_mbuf *dm;
|
||||
|
||||
test_ld_mbuf1_prepare(arg);
|
||||
dm = arg;
|
||||
rte_pktmbuf_trim(dm->mb, 1);
|
||||
}
|
||||
|
||||
static int
|
||||
test_ld_mbuf2_check(uint64_t rc, const void *arg)
|
||||
{
|
||||
return cmp_res(__func__, 0, rc, arg, arg, 0);
|
||||
}
|
||||
|
||||
/* same as test_ld_mbuf1, but now store intermediate results on the stack */
|
||||
static const struct ebpf_insn test_ld_mbuf3_prog[] = {
|
||||
|
||||
/* BPF_ABS/BPF_IND implicitly expect mbuf ptr in R6 */
|
||||
{
|
||||
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
|
||||
.dst_reg = EBPF_REG_6,
|
||||
.src_reg = EBPF_REG_1,
|
||||
},
|
||||
/* load IPv4 version and IHL */
|
||||
{
|
||||
.code = (BPF_LD | BPF_ABS | BPF_B),
|
||||
.imm = offsetof(struct rte_ipv4_hdr, version_ihl),
|
||||
},
|
||||
/* check IP version */
|
||||
{
|
||||
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
|
||||
.dst_reg = EBPF_REG_2,
|
||||
.src_reg = EBPF_REG_0,
|
||||
},
|
||||
{
|
||||
.code = (BPF_ALU | BPF_AND | BPF_K),
|
||||
.dst_reg = EBPF_REG_2,
|
||||
.imm = 0xf0,
|
||||
},
|
||||
{
|
||||
.code = (BPF_JMP | BPF_JEQ | BPF_K),
|
||||
.dst_reg = EBPF_REG_2,
|
||||
.imm = IPVERSION << 4,
|
||||
.off = 2,
|
||||
},
|
||||
/* invalid IP version, return 0 */
|
||||
{
|
||||
.code = (EBPF_ALU64 | BPF_XOR | BPF_X),
|
||||
.dst_reg = EBPF_REG_0,
|
||||
.src_reg = EBPF_REG_0,
|
||||
},
|
||||
{
|
||||
.code = (BPF_JMP | EBPF_EXIT),
|
||||
},
|
||||
/* load 3-rd byte of IP data */
|
||||
{
|
||||
.code = (BPF_ALU | BPF_AND | BPF_K),
|
||||
.dst_reg = EBPF_REG_0,
|
||||
.imm = RTE_IPV4_HDR_IHL_MASK,
|
||||
},
|
||||
{
|
||||
.code = (BPF_ALU | BPF_LSH | BPF_K),
|
||||
.dst_reg = EBPF_REG_0,
|
||||
.imm = 2,
|
||||
},
|
||||
{
|
||||
.code = (BPF_LD | BPF_IND | BPF_B),
|
||||
.src_reg = EBPF_REG_0,
|
||||
.imm = 3,
|
||||
},
|
||||
{
|
||||
.code = (BPF_STX | BPF_MEM | BPF_B),
|
||||
.dst_reg = EBPF_REG_10,
|
||||
.src_reg = EBPF_REG_0,
|
||||
.off = (int16_t)(offsetof(struct dummy_offset, u8) -
|
||||
sizeof(struct dummy_offset)),
|
||||
},
|
||||
/* load IPv4 src addr */
|
||||
{
|
||||
.code = (BPF_LD | BPF_ABS | BPF_W),
|
||||
.imm = offsetof(struct rte_ipv4_hdr, src_addr),
|
||||
},
|
||||
{
|
||||
.code = (BPF_STX | BPF_MEM | BPF_W),
|
||||
.dst_reg = EBPF_REG_10,
|
||||
.src_reg = EBPF_REG_0,
|
||||
.off = (int16_t)(offsetof(struct dummy_offset, u32) -
|
||||
sizeof(struct dummy_offset)),
|
||||
},
|
||||
/* load IPv4 total length */
|
||||
{
|
||||
.code = (BPF_LD | BPF_ABS | BPF_H),
|
||||
.imm = offsetof(struct rte_ipv4_hdr, total_length),
|
||||
},
|
||||
{
|
||||
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
|
||||
.dst_reg = EBPF_REG_8,
|
||||
.src_reg = EBPF_REG_0,
|
||||
},
|
||||
/* load last 4 bytes of IP data */
|
||||
{
|
||||
.code = (BPF_LD | BPF_IND | BPF_W),
|
||||
.src_reg = EBPF_REG_8,
|
||||
.imm = -(int32_t)sizeof(uint32_t),
|
||||
},
|
||||
{
|
||||
.code = (BPF_STX | BPF_MEM | EBPF_DW),
|
||||
.dst_reg = EBPF_REG_10,
|
||||
.src_reg = EBPF_REG_0,
|
||||
.off = (int16_t)(offsetof(struct dummy_offset, u64) -
|
||||
sizeof(struct dummy_offset)),
|
||||
},
|
||||
/* load 2 bytes from the middle of IP data */
|
||||
{
|
||||
.code = (EBPF_ALU64 | BPF_RSH | BPF_K),
|
||||
.dst_reg = EBPF_REG_8,
|
||||
.imm = 1,
|
||||
},
|
||||
{
|
||||
.code = (BPF_LD | BPF_IND | BPF_H),
|
||||
.src_reg = EBPF_REG_8,
|
||||
},
|
||||
{
|
||||
.code = (BPF_LDX | BPF_MEM | EBPF_DW),
|
||||
.dst_reg = EBPF_REG_1,
|
||||
.src_reg = EBPF_REG_10,
|
||||
.off = (int16_t)(offsetof(struct dummy_offset, u64) -
|
||||
sizeof(struct dummy_offset)),
|
||||
},
|
||||
{
|
||||
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
|
||||
.dst_reg = EBPF_REG_0,
|
||||
.src_reg = EBPF_REG_1,
|
||||
},
|
||||
{
|
||||
.code = (BPF_LDX | BPF_MEM | BPF_W),
|
||||
.dst_reg = EBPF_REG_1,
|
||||
.src_reg = EBPF_REG_10,
|
||||
.off = (int16_t)(offsetof(struct dummy_offset, u32) -
|
||||
sizeof(struct dummy_offset)),
|
||||
},
|
||||
{
|
||||
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
|
||||
.dst_reg = EBPF_REG_0,
|
||||
.src_reg = EBPF_REG_1,
|
||||
},
|
||||
{
|
||||
.code = (BPF_LDX | BPF_MEM | BPF_B),
|
||||
.dst_reg = EBPF_REG_1,
|
||||
.src_reg = EBPF_REG_10,
|
||||
.off = (int16_t)(offsetof(struct dummy_offset, u8) -
|
||||
sizeof(struct dummy_offset)),
|
||||
},
|
||||
{
|
||||
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
|
||||
.dst_reg = EBPF_REG_0,
|
||||
.src_reg = EBPF_REG_1,
|
||||
},
|
||||
{
|
||||
.code = (BPF_JMP | EBPF_EXIT),
|
||||
},
|
||||
};
|
||||
|
||||
/* all bpf test cases */
|
||||
static const struct bpf_test tests[] = {
|
||||
{
|
||||
@ -2704,6 +3119,54 @@ static const struct bpf_test tests[] = {
|
||||
/* for now don't support function calls on 32 bit platform */
|
||||
.allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)),
|
||||
},
|
||||
{
|
||||
.name = "test_ld_mbuf1",
|
||||
.arg_sz = sizeof(struct dummy_mbuf),
|
||||
.prm = {
|
||||
.ins = test_ld_mbuf1_prog,
|
||||
.nb_ins = RTE_DIM(test_ld_mbuf1_prog),
|
||||
.prog_arg = {
|
||||
.type = RTE_BPF_ARG_PTR_MBUF,
|
||||
.buf_size = sizeof(struct dummy_mbuf),
|
||||
},
|
||||
},
|
||||
.prepare = test_ld_mbuf1_prepare,
|
||||
.check_result = test_ld_mbuf1_check,
|
||||
/* mbuf as input argument is not supported on 32 bit platform */
|
||||
.allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)),
|
||||
},
|
||||
{
|
||||
.name = "test_ld_mbuf2",
|
||||
.arg_sz = sizeof(struct dummy_mbuf),
|
||||
.prm = {
|
||||
.ins = test_ld_mbuf1_prog,
|
||||
.nb_ins = RTE_DIM(test_ld_mbuf1_prog),
|
||||
.prog_arg = {
|
||||
.type = RTE_BPF_ARG_PTR_MBUF,
|
||||
.buf_size = sizeof(struct dummy_mbuf),
|
||||
},
|
||||
},
|
||||
.prepare = test_ld_mbuf2_prepare,
|
||||
.check_result = test_ld_mbuf2_check,
|
||||
/* mbuf as input argument is not supported on 32 bit platform */
|
||||
.allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)),
|
||||
},
|
||||
{
|
||||
.name = "test_ld_mbuf3",
|
||||
.arg_sz = sizeof(struct dummy_mbuf),
|
||||
.prm = {
|
||||
.ins = test_ld_mbuf3_prog,
|
||||
.nb_ins = RTE_DIM(test_ld_mbuf3_prog),
|
||||
.prog_arg = {
|
||||
.type = RTE_BPF_ARG_PTR_MBUF,
|
||||
.buf_size = sizeof(struct dummy_mbuf),
|
||||
},
|
||||
},
|
||||
.prepare = test_ld_mbuf1_prepare,
|
||||
.check_result = test_ld_mbuf1_check,
|
||||
/* mbuf as input argument is not supported on 32 bit platform */
|
||||
.allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)),
|
||||
},
|
||||
};
|
||||
|
||||
static int
|
||||
|
@ -27,6 +27,35 @@ The library API provides the following basic operations:
|
||||
|
||||
* Load BPF program from the ELF file and install callback to execute it on given ethdev port/queue.
|
||||
|
||||
Packet data load instructions
|
||||
-----------------------------
|
||||
|
||||
DPDK supports two non-generic instructions: ``(BPF_ABS | size | BPF_LD)``
|
||||
and ``(BPF_IND | size | BPF_LD)`` which are used to access packet data.
|
||||
These instructions can only be used when execution context is a pointer to
|
||||
``struct rte_mbuf`` and have seven implicit operands.
|
||||
Register ``R6`` is an implicit input that must contain pointer to ``rte_mbuf``.
|
||||
Register ``R0`` is an implicit output which contains the data fetched from the
|
||||
packet. Registers ``R1-R5`` are scratch registers
|
||||
and must not be used to store the data across these instructions.
|
||||
These instructions have implicit program exit condition as well. When
|
||||
eBPF program is trying to access the data beyond the packet boundary,
|
||||
the interpreter will abort the execution of the program. JIT compilers
|
||||
therefore must preserve this property. ``src_reg`` and ``imm32`` fields are
|
||||
explicit inputs to these instructions.
|
||||
For example, ``(BPF_IND | BPF_W | BPF_LD)`` means:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
uint32_t tmp;
|
||||
R0 = rte_pktmbuf_read((const struct rte_mbuf *)R6, src_reg + imm32,
|
||||
sizeof(tmp), &tmp);
|
||||
if (R0 == NULL) return FAILED;
|
||||
R0 = ntohl(*(uint32_t *)R0);
|
||||
|
||||
and ``R1-R5`` were scratched.
|
||||
|
||||
|
||||
Not currently supported eBPF features
|
||||
-------------------------------------
|
||||
|
||||
@ -34,5 +63,4 @@ Not currently supported eBPF features
|
||||
- cBPF
|
||||
- tail-pointer call
|
||||
- eBPF MAP
|
||||
- skb
|
||||
- external function calls for 32-bit platforms
|
||||
|
@ -68,6 +68,13 @@ New Features
|
||||
|
||||
* Added new PMD devarg ``reclaim_mem_mode``.
|
||||
|
||||
* **Added support for BPF_ABS/BPF_IND load instructions.**
|
||||
|
||||
Added support for two BPF non-generic instructions:
|
||||
``(BPF_ABS | <size> | BPF_LD)`` and ``(BPF_IND | <size> | BPF_LD)``
|
||||
which are used to access packet data in a safe manner. Currently JIT support
|
||||
for these instructions is implemented for x86 only.
|
||||
|
||||
|
||||
Removed Items
|
||||
-------------
|
||||
|
@ -74,6 +74,26 @@
|
||||
(uintptr_t)((reg)[(ins)->dst_reg] + (ins)->off), \
|
||||
reg[ins->src_reg]))
|
||||
|
||||
/* BPF_LD | BPF_ABS/BPF_IND */
|
||||
|
||||
#define NOP(x) (x)
|
||||
|
||||
#define BPF_LD_ABS(bpf, reg, ins, type, op) do { \
|
||||
const type *p = bpf_ld_mbuf(bpf, reg, ins, (ins)->imm, sizeof(type)); \
|
||||
if (p == NULL) \
|
||||
return 0; \
|
||||
reg[EBPF_REG_0] = op(p[0]); \
|
||||
} while (0)
|
||||
|
||||
#define BPF_LD_IND(bpf, reg, ins, type, op) do { \
|
||||
uint32_t ofs = reg[ins->src_reg] + (ins)->imm; \
|
||||
const type *p = bpf_ld_mbuf(bpf, reg, ins, ofs, sizeof(type)); \
|
||||
if (p == NULL) \
|
||||
return 0; \
|
||||
reg[EBPF_REG_0] = op(p[0]); \
|
||||
} while (0)
|
||||
|
||||
|
||||
static inline void
|
||||
bpf_alu_be(uint64_t reg[EBPF_REG_NUM], const struct ebpf_insn *ins)
|
||||
{
|
||||
@ -112,6 +132,23 @@ bpf_alu_le(uint64_t reg[EBPF_REG_NUM], const struct ebpf_insn *ins)
|
||||
}
|
||||
}
|
||||
|
||||
static inline const void *
|
||||
bpf_ld_mbuf(const struct rte_bpf *bpf, uint64_t reg[EBPF_REG_NUM],
|
||||
const struct ebpf_insn *ins, uint32_t off, uint32_t len)
|
||||
{
|
||||
const struct rte_mbuf *mb;
|
||||
const void *p;
|
||||
|
||||
mb = (const struct rte_mbuf *)(uintptr_t)reg[EBPF_REG_6];
|
||||
p = rte_pktmbuf_read(mb, off, len, reg + EBPF_REG_0);
|
||||
if (p == NULL)
|
||||
RTE_BPF_LOG(DEBUG, "%s(bpf=%p, mbuf=%p, ofs=%u, len=%u): "
|
||||
"load beyond packet boundary at pc: %#zx;\n",
|
||||
__func__, bpf, mb, off, len,
|
||||
(uintptr_t)(ins) - (uintptr_t)(bpf)->prm.ins);
|
||||
return p;
|
||||
}
|
||||
|
||||
static inline uint64_t
|
||||
bpf_exec(const struct rte_bpf *bpf, uint64_t reg[EBPF_REG_NUM])
|
||||
{
|
||||
@ -296,6 +333,26 @@ bpf_exec(const struct rte_bpf *bpf, uint64_t reg[EBPF_REG_NUM])
|
||||
(uint64_t)(uint32_t)ins[1].imm << 32;
|
||||
ins++;
|
||||
break;
|
||||
/* load absolute instructions */
|
||||
case (BPF_LD | BPF_ABS | BPF_B):
|
||||
BPF_LD_ABS(bpf, reg, ins, uint8_t, NOP);
|
||||
break;
|
||||
case (BPF_LD | BPF_ABS | BPF_H):
|
||||
BPF_LD_ABS(bpf, reg, ins, uint16_t, rte_be_to_cpu_16);
|
||||
break;
|
||||
case (BPF_LD | BPF_ABS | BPF_W):
|
||||
BPF_LD_ABS(bpf, reg, ins, uint32_t, rte_be_to_cpu_32);
|
||||
break;
|
||||
/* load indirect instructions */
|
||||
case (BPF_LD | BPF_IND | BPF_B):
|
||||
BPF_LD_IND(bpf, reg, ins, uint8_t, NOP);
|
||||
break;
|
||||
case (BPF_LD | BPF_IND | BPF_H):
|
||||
BPF_LD_IND(bpf, reg, ins, uint16_t, rte_be_to_cpu_16);
|
||||
break;
|
||||
case (BPF_LD | BPF_IND | BPF_W):
|
||||
BPF_LD_IND(bpf, reg, ins, uint32_t, rte_be_to_cpu_32);
|
||||
break;
|
||||
/* store instructions */
|
||||
case (BPF_STX | BPF_MEM | BPF_B):
|
||||
BPF_ST_REG(reg, ins, uint8_t);
|
||||
|
@ -102,6 +102,9 @@ struct bpf_ins_check {
|
||||
#define WRT_REGS RTE_LEN2MASK(EBPF_REG_10, uint16_t)
|
||||
#define ZERO_REG RTE_LEN2MASK(EBPF_REG_1, uint16_t)
|
||||
|
||||
/* For LD_IND R6 is an implicit CTX register. */
|
||||
#define IND_SRC_REGS (WRT_REGS ^ 1 << EBPF_REG_6)
|
||||
|
||||
/*
|
||||
* check and evaluate functions for particular instruction types.
|
||||
*/
|
||||
@ -580,6 +583,42 @@ eval_neg(struct bpf_reg_val *rd, size_t opsz, uint64_t msk)
|
||||
rd->s.min = RTE_MIN(sx, sy);
|
||||
}
|
||||
|
||||
static const char *
|
||||
eval_ld_mbuf(struct bpf_verifier *bvf, const struct ebpf_insn *ins)
|
||||
{
|
||||
uint32_t i, mode;
|
||||
struct bpf_reg_val *rv, ri, rs;
|
||||
|
||||
mode = BPF_MODE(ins->code);
|
||||
|
||||
/* R6 is an implicit input that must contain pointer to mbuf */
|
||||
if (bvf->evst->rv[EBPF_REG_6].v.type != RTE_BPF_ARG_PTR_MBUF)
|
||||
return "invalid type for implicit ctx register";
|
||||
|
||||
if (mode == BPF_IND) {
|
||||
rs = bvf->evst->rv[ins->src_reg];
|
||||
if (rs.v.type != RTE_BPF_ARG_RAW)
|
||||
return "unexpected type for src register";
|
||||
|
||||
eval_fill_imm(&ri, UINT64_MAX, ins->imm);
|
||||
eval_add(&rs, &ri, UINT64_MAX);
|
||||
|
||||
if (rs.s.max < 0 || rs.u.min > UINT32_MAX)
|
||||
return "mbuf boundary violation";
|
||||
}
|
||||
|
||||
/* R1-R5 scratch registers */
|
||||
for (i = EBPF_REG_1; i != EBPF_REG_6; i++)
|
||||
bvf->evst->rv[i].v.type = RTE_BPF_ARG_UNDEF;
|
||||
|
||||
/* R0 is an implicit output, contains data fetched from the packet */
|
||||
rv = bvf->evst->rv + EBPF_REG_0;
|
||||
rv->v.size = bpf_size(BPF_SIZE(ins->code));
|
||||
eval_fill_max_bound(rv, RTE_LEN2MASK(rv->v.size * CHAR_BIT, uint64_t));
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* check that destination and source operand are in defined state.
|
||||
*/
|
||||
@ -1425,6 +1464,44 @@ static const struct bpf_ins_check ins_chk[UINT8_MAX + 1] = {
|
||||
.imm = { .min = 0, .max = UINT32_MAX},
|
||||
.eval = eval_ld_imm64,
|
||||
},
|
||||
/* load absolute instructions */
|
||||
[(BPF_LD | BPF_ABS | BPF_B)] = {
|
||||
.mask = {. dreg = ZERO_REG, .sreg = ZERO_REG},
|
||||
.off = { .min = 0, .max = 0},
|
||||
.imm = { .min = 0, .max = INT32_MAX},
|
||||
.eval = eval_ld_mbuf,
|
||||
},
|
||||
[(BPF_LD | BPF_ABS | BPF_H)] = {
|
||||
.mask = {. dreg = ZERO_REG, .sreg = ZERO_REG},
|
||||
.off = { .min = 0, .max = 0},
|
||||
.imm = { .min = 0, .max = INT32_MAX},
|
||||
.eval = eval_ld_mbuf,
|
||||
},
|
||||
[(BPF_LD | BPF_ABS | BPF_W)] = {
|
||||
.mask = {. dreg = ZERO_REG, .sreg = ZERO_REG},
|
||||
.off = { .min = 0, .max = 0},
|
||||
.imm = { .min = 0, .max = INT32_MAX},
|
||||
.eval = eval_ld_mbuf,
|
||||
},
|
||||
/* load indirect instructions */
|
||||
[(BPF_LD | BPF_IND | BPF_B)] = {
|
||||
.mask = {. dreg = ZERO_REG, .sreg = IND_SRC_REGS},
|
||||
.off = { .min = 0, .max = 0},
|
||||
.imm = { .min = 0, .max = UINT32_MAX},
|
||||
.eval = eval_ld_mbuf,
|
||||
},
|
||||
[(BPF_LD | BPF_IND | BPF_H)] = {
|
||||
.mask = {. dreg = ZERO_REG, .sreg = IND_SRC_REGS},
|
||||
.off = { .min = 0, .max = 0},
|
||||
.imm = { .min = 0, .max = UINT32_MAX},
|
||||
.eval = eval_ld_mbuf,
|
||||
},
|
||||
[(BPF_LD | BPF_IND | BPF_W)] = {
|
||||
.mask = {. dreg = ZERO_REG, .sreg = IND_SRC_REGS},
|
||||
.off = { .min = 0, .max = 0},
|
||||
.imm = { .min = 0, .max = UINT32_MAX},
|
||||
.eval = eval_ld_mbuf,
|
||||
},
|
||||
/* store REG instructions */
|
||||
[(BPF_STX | BPF_MEM | BPF_B)] = {
|
||||
.mask = { .dreg = ALL_REGS, .sreg = ALL_REGS},
|
||||
|
Loading…
x
Reference in New Issue
Block a user