net/enetfec: support queue configuration

This patch adds Rx/Tx queue configuration setup operations.
On packet reception the respective BD Ring status bit is set
which is then used for packet processing.

Signed-off-by: Sachin Saxena <sachin.saxena@nxp.com>
Signed-off-by: Apeksha Gupta <apeksha.gupta@nxp.com>
Acked-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
This commit is contained in:
Apeksha Gupta 2021-11-15 12:49:38 +05:30 committed by Ferruh Yigit
parent b84fdd3963
commit bb5b5bf1e5
2 changed files with 296 additions and 1 deletions

View File

@ -32,6 +32,11 @@
#define NUM_OF_BD_QUEUES 6
/* Supported Rx offloads */
static uint64_t dev_rx_offloads_sup =
RTE_ETH_RX_OFFLOAD_CHECKSUM |
RTE_ETH_RX_OFFLOAD_VLAN;
/*
* This function is called to start or restart the ENETFEC during a link
* change, transmit timeout, or to reconfigure the ENETFEC. The network
@ -177,10 +182,223 @@ enetfec_eth_stop(struct rte_eth_dev *dev)
return 0;
}
static int
enetfec_eth_info(__rte_unused struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info)
{
dev_info->max_rx_pktlen = ENETFEC_MAX_RX_PKT_LEN;
dev_info->max_rx_queues = ENETFEC_MAX_Q;
dev_info->max_tx_queues = ENETFEC_MAX_Q;
dev_info->rx_offload_capa = dev_rx_offloads_sup;
return 0;
}
static const unsigned short offset_des_active_rxq[] = {
ENETFEC_RDAR_0, ENETFEC_RDAR_1, ENETFEC_RDAR_2
};
static const unsigned short offset_des_active_txq[] = {
ENETFEC_TDAR_0, ENETFEC_TDAR_1, ENETFEC_TDAR_2
};
static int
enetfec_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
unsigned int socket_id __rte_unused,
const struct rte_eth_txconf *tx_conf)
{
struct enetfec_private *fep = dev->data->dev_private;
unsigned int i;
struct bufdesc *bdp, *bd_base;
struct enetfec_priv_tx_q *txq;
unsigned int size;
unsigned int dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
sizeof(struct bufdesc);
unsigned int dsize_log2 = fls64(dsize);
/* Tx deferred start is not supported */
if (tx_conf->tx_deferred_start) {
ENETFEC_PMD_ERR("Tx deferred start not supported");
return -EINVAL;
}
/* allocate transmit queue */
txq = rte_zmalloc(NULL, sizeof(*txq), RTE_CACHE_LINE_SIZE);
if (txq == NULL) {
ENETFEC_PMD_ERR("transmit queue allocation failed");
return -ENOMEM;
}
if (nb_desc > MAX_TX_BD_RING_SIZE) {
nb_desc = MAX_TX_BD_RING_SIZE;
ENETFEC_PMD_WARN("modified the nb_desc to MAX_TX_BD_RING_SIZE");
}
txq->bd.ring_size = nb_desc;
fep->total_tx_ring_size += txq->bd.ring_size;
fep->tx_queues[queue_idx] = txq;
rte_write32(rte_cpu_to_le_32(fep->bd_addr_p_t[queue_idx]),
(uint8_t *)fep->hw_baseaddr_v + ENETFEC_TD_START(queue_idx));
/* Set transmit descriptor base. */
txq = fep->tx_queues[queue_idx];
txq->fep = fep;
size = dsize * txq->bd.ring_size;
bd_base = (struct bufdesc *)fep->dma_baseaddr_t[queue_idx];
txq->bd.queue_id = queue_idx;
txq->bd.base = bd_base;
txq->bd.cur = bd_base;
txq->bd.d_size = dsize;
txq->bd.d_size_log2 = dsize_log2;
txq->bd.active_reg_desc = (uint8_t *)fep->hw_baseaddr_v +
offset_des_active_txq[queue_idx];
bd_base = (struct bufdesc *)(((uintptr_t)bd_base) + size);
txq->bd.last = (struct bufdesc *)(((uintptr_t)bd_base) - dsize);
bdp = txq->bd.base;
bdp = txq->bd.cur;
for (i = 0; i < txq->bd.ring_size; i++) {
/* Initialize the BD for every fragment in the page. */
rte_write16(rte_cpu_to_le_16(0), &bdp->bd_sc);
if (txq->tx_mbuf[i] != NULL) {
rte_pktmbuf_free(txq->tx_mbuf[i]);
txq->tx_mbuf[i] = NULL;
}
rte_write32(0, &bdp->bd_bufaddr);
bdp = enet_get_nextdesc(bdp, &txq->bd);
}
/* Set the last buffer to wrap */
bdp = enet_get_prevdesc(bdp, &txq->bd);
rte_write16((rte_cpu_to_le_16(TX_BD_WRAP) |
rte_read16(&bdp->bd_sc)), &bdp->bd_sc);
txq->dirty_tx = bdp;
dev->data->tx_queues[queue_idx] = fep->tx_queues[queue_idx];
return 0;
}
static int
enetfec_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_rx_desc,
unsigned int socket_id __rte_unused,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mb_pool)
{
struct enetfec_private *fep = dev->data->dev_private;
unsigned int i;
struct bufdesc *bd_base;
struct bufdesc *bdp;
struct enetfec_priv_rx_q *rxq;
unsigned int size;
unsigned int dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
sizeof(struct bufdesc);
unsigned int dsize_log2 = fls64(dsize);
/* Rx deferred start is not supported */
if (rx_conf->rx_deferred_start) {
ENETFEC_PMD_ERR("Rx deferred start not supported");
return -EINVAL;
}
/* allocate receive queue */
rxq = rte_zmalloc(NULL, sizeof(*rxq), RTE_CACHE_LINE_SIZE);
if (rxq == NULL) {
ENETFEC_PMD_ERR("receive queue allocation failed");
return -ENOMEM;
}
if (nb_rx_desc > MAX_RX_BD_RING_SIZE) {
nb_rx_desc = MAX_RX_BD_RING_SIZE;
ENETFEC_PMD_WARN("modified the nb_desc to MAX_RX_BD_RING_SIZE");
}
rxq->bd.ring_size = nb_rx_desc;
fep->total_rx_ring_size += rxq->bd.ring_size;
fep->rx_queues[queue_idx] = rxq;
rte_write32(rte_cpu_to_le_32(fep->bd_addr_p_r[queue_idx]),
(uint8_t *)fep->hw_baseaddr_v + ENETFEC_RD_START(queue_idx));
rte_write32(rte_cpu_to_le_32(PKT_MAX_BUF_SIZE),
(uint8_t *)fep->hw_baseaddr_v + ENETFEC_MRB_SIZE(queue_idx));
/* Set receive descriptor base. */
rxq = fep->rx_queues[queue_idx];
rxq->pool = mb_pool;
size = dsize * rxq->bd.ring_size;
bd_base = (struct bufdesc *)fep->dma_baseaddr_r[queue_idx];
rxq->bd.queue_id = queue_idx;
rxq->bd.base = bd_base;
rxq->bd.cur = bd_base;
rxq->bd.d_size = dsize;
rxq->bd.d_size_log2 = dsize_log2;
rxq->bd.active_reg_desc = (uint8_t *)fep->hw_baseaddr_v +
offset_des_active_rxq[queue_idx];
bd_base = (struct bufdesc *)(((uintptr_t)bd_base) + size);
rxq->bd.last = (struct bufdesc *)(((uintptr_t)bd_base) - dsize);
rxq->fep = fep;
bdp = rxq->bd.base;
rxq->bd.cur = bdp;
for (i = 0; i < nb_rx_desc; i++) {
/* Initialize Rx buffers from pktmbuf pool */
struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mb_pool);
if (mbuf == NULL) {
ENETFEC_PMD_ERR("mbuf failed");
goto err_alloc;
}
/* Get the virtual address & physical address */
rte_write32(rte_cpu_to_le_32(rte_pktmbuf_iova(mbuf)),
&bdp->bd_bufaddr);
rxq->rx_mbuf[i] = mbuf;
rte_write16(rte_cpu_to_le_16(RX_BD_EMPTY), &bdp->bd_sc);
bdp = enet_get_nextdesc(bdp, &rxq->bd);
}
/* Initialize the receive buffer descriptors. */
bdp = rxq->bd.cur;
for (i = 0; i < rxq->bd.ring_size; i++) {
/* Initialize the BD for every fragment in the page. */
if (rte_read32(&bdp->bd_bufaddr) > 0)
rte_write16(rte_cpu_to_le_16(RX_BD_EMPTY),
&bdp->bd_sc);
else
rte_write16(rte_cpu_to_le_16(0), &bdp->bd_sc);
bdp = enet_get_nextdesc(bdp, &rxq->bd);
}
/* Set the last buffer to wrap */
bdp = enet_get_prevdesc(bdp, &rxq->bd);
rte_write16((rte_cpu_to_le_16(RX_BD_WRAP) |
rte_read16(&bdp->bd_sc)), &bdp->bd_sc);
dev->data->rx_queues[queue_idx] = fep->rx_queues[queue_idx];
rte_write32(0, fep->rx_queues[queue_idx]->bd.active_reg_desc);
return 0;
err_alloc:
for (i = 0; i < nb_rx_desc; i++) {
if (rxq->rx_mbuf[i] != NULL) {
rte_pktmbuf_free(rxq->rx_mbuf[i]);
rxq->rx_mbuf[i] = NULL;
}
}
rte_free(rxq);
return errno;
}
static const struct eth_dev_ops enetfec_ops = {
.dev_configure = enetfec_eth_configure,
.dev_start = enetfec_eth_start,
.dev_stop = enetfec_eth_stop
.dev_stop = enetfec_eth_stop,
.dev_infos_get = enetfec_eth_info,
.rx_queue_setup = enetfec_rx_queue_setup,
.tx_queue_setup = enetfec_tx_queue_setup
};
static int

View File

@ -10,9 +10,13 @@
/* full duplex */
#define FULL_DUPLEX 0x00
#define MAX_TX_BD_RING_SIZE 512 /* It should be power of 2 */
#define MAX_RX_BD_RING_SIZE 512
#define PKT_MAX_BUF_SIZE 1984
#define OPT_FRAME_SIZE (PKT_MAX_BUF_SIZE << 16)
#define ENETFEC_MAX_RX_PKT_LEN 3000
#define __iomem
/*
* ENETFEC can support 1 rx and tx queue..
*/
@ -22,6 +26,49 @@
#define writel(v, p) ({*(volatile unsigned int *)(p) = (v); })
#define readl(p) rte_read32(p)
struct bufdesc {
uint16_t bd_datlen; /* buffer data length */
uint16_t bd_sc; /* buffer control & status */
uint32_t bd_bufaddr; /* buffer address */
};
struct bufdesc_ex {
struct bufdesc desc;
uint32_t bd_esc;
uint32_t bd_prot;
uint32_t bd_bdu;
uint32_t ts;
uint16_t res0[4];
};
struct bufdesc_prop {
int queue_id;
/* Addresses of Tx and Rx buffers */
struct bufdesc *base;
struct bufdesc *last;
struct bufdesc *cur;
void __iomem *active_reg_desc;
uint64_t descr_baseaddr_p;
unsigned short ring_size;
unsigned char d_size;
unsigned char d_size_log2;
};
struct enetfec_priv_tx_q {
struct bufdesc_prop bd;
struct rte_mbuf *tx_mbuf[MAX_TX_BD_RING_SIZE];
struct bufdesc *dirty_tx;
struct rte_mempool *pool;
struct enetfec_private *fep;
};
struct enetfec_priv_rx_q {
struct bufdesc_prop bd;
struct rte_mbuf *rx_mbuf[MAX_RX_BD_RING_SIZE];
struct rte_mempool *pool;
struct enetfec_private *fep;
};
struct enetfec_private {
struct rte_eth_dev *dev;
int full_duplex;
@ -31,6 +78,8 @@ struct enetfec_private {
uint32_t enetfec_e_cntl;
uint16_t max_rx_queues;
uint16_t max_tx_queues;
unsigned int total_tx_ring_size;
unsigned int total_rx_ring_size;
unsigned int reg_size;
unsigned int bd_size;
bool bufdesc_ex;
@ -44,6 +93,34 @@ struct enetfec_private {
uint32_t bd_addr_p_t[ENETFEC_MAX_Q];
void *dma_baseaddr_r[ENETFEC_MAX_Q];
void *dma_baseaddr_t[ENETFEC_MAX_Q];
struct enetfec_priv_rx_q *rx_queues[ENETFEC_MAX_Q];
struct enetfec_priv_tx_q *tx_queues[ENETFEC_MAX_Q];
};
static inline struct
bufdesc *enet_get_nextdesc(struct bufdesc *bdp, struct bufdesc_prop *bd)
{
return (bdp >= bd->last) ? bd->base
: (struct bufdesc *)(((uintptr_t)bdp) + bd->d_size);
}
static inline int
fls64(unsigned long word)
{
return (64 - __builtin_clzl(word)) - 1;
}
static inline struct
bufdesc *enet_get_prevdesc(struct bufdesc *bdp, struct bufdesc_prop *bd)
{
return (bdp <= bd->base) ? bd->last
: (struct bufdesc *)(((uintptr_t)bdp) - bd->d_size);
}
static inline int
enet_get_bd_index(struct bufdesc *bdp, struct bufdesc_prop *bd)
{
return ((const char *)bdp - (const char *)bd->base) >> bd->d_size_log2;
}
#endif /*__ENETFEC_ETHDEV_H__*/