crypto/ipsec_mb: move kasumi PMD

This patch removes the crypto/kasumi folder and gathers all kasumi PMD
implementation specific details into a single file,
pmd_kasumi.c in the crypto/ipsec_mb folder.

Signed-off-by: Piotr Bronowski <piotrx.bronowski@intel.com>
Signed-off-by: Ciara Power <ciara.power@intel.com>
Acked-by: Ray Kinsella <mdr@ashroe.eu>
Acked-by: Fan Zhang <roy.fan.zhang@intel.com>
Acked-by: Akhil Goyal <gakhil@marvell.com>
This commit is contained in:
Piotr Bronowski 2021-10-15 14:39:52 +00:00 committed by Akhil Goyal
parent 746825e5c0
commit bc9ef81c42
13 changed files with 570 additions and 1074 deletions

View File

@ -1067,13 +1067,9 @@ M: Pablo de Lara <pablo.de.lara.guarch@intel.com>
F: drivers/crypto/ipsec_mb/
F: doc/guides/cryptodevs/aesni_gcm.rst
F: doc/guides/cryptodevs/aesni_mb.rst
F: doc/guides/cryptodevs/kasumi.rst
F: doc/guides/cryptodevs/features/aesni_gcm.ini
F: doc/guides/cryptodevs/features/aesni_mb.ini
KASUMI
M: Pablo de Lara <pablo.de.lara.guarch@intel.com>
F: drivers/crypto/kasumi/
F: doc/guides/cryptodevs/kasumi.rst
F: doc/guides/cryptodevs/features/kasumi.ini
Marvell cnxk crypto

View File

@ -78,7 +78,8 @@ and the external crypto libraries supported by them:
DPDK version Crypto library version
============= ================================
16.11 - 19.11 LibSSO KASUMI
20.02+ Multi-buffer library 0.53 - 1.0*
20.02 - 21.08 Multi-buffer library 0.53 - 1.0*
21.11+ Multi-buffer library 1.0*
============= ================================
\* Multi-buffer library 1.0 or newer only works for Meson but not Make build system.

View File

@ -232,6 +232,7 @@ New Features
however their usage and EAL options remain unchanged.
* AESNI_MB PMD.
* AESNI_GCM PMD.
* KASUMI PMD.
* **Updated the aesni_mb crypto PMD.**

View File

@ -40,6 +40,9 @@ extern RTE_DEFINE_PER_LCORE(IMB_MGR *, mb_mgr);
#define CRYPTODEV_NAME_AESNI_GCM_PMD crypto_aesni_gcm
/**< IPSEC Multi buffer PMD aesni_gcm device name */
#define CRYPTODEV_NAME_KASUMI_PMD crypto_kasumi
/**< IPSEC Multi buffer PMD kasumi device name */
/** PMD LOGTYPE DRIVER, common to all PMDs */
extern int ipsec_mb_logtype_driver;
#define IPSEC_MB_LOG(level, fmt, ...) \
@ -50,6 +53,7 @@ extern int ipsec_mb_logtype_driver;
enum ipsec_mb_pmd_types {
IPSEC_MB_PMD_TYPE_AESNI_MB = 0,
IPSEC_MB_PMD_TYPE_AESNI_GCM,
IPSEC_MB_PMD_TYPE_KASUMI,
IPSEC_MB_N_PMD_TYPES
};
@ -70,6 +74,7 @@ enum ipsec_mb_operation {
extern uint8_t pmd_driver_id_aesni_mb;
extern uint8_t pmd_driver_id_aesni_gcm;
extern uint8_t pmd_driver_id_kasumi;
/** Helper function. Gets driver ID based on PMD type */
static __rte_always_inline uint8_t
@ -80,6 +85,8 @@ ipsec_mb_get_driver_id(enum ipsec_mb_pmd_types pmd_type)
return pmd_driver_id_aesni_mb;
case IPSEC_MB_PMD_TYPE_AESNI_GCM:
return pmd_driver_id_aesni_gcm;
case IPSEC_MB_PMD_TYPE_KASUMI:
return pmd_driver_id_kasumi;
default:
break;
}

View File

@ -24,6 +24,7 @@ endif
sources = files('ipsec_mb_private.c',
'ipsec_mb_ops.c',
'pmd_aesni_mb.c',
'pmd_aesni_gcm.c'
'pmd_aesni_gcm.c',
'pmd_kasumi.c'
)
deps += ['bus_vdev', 'net', 'security']

View File

@ -0,0 +1,476 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2021 Intel Corporation
*/
#include <rte_bus_vdev.h>
#include <rte_common.h>
#include <rte_cpuflags.h>
#include <rte_cryptodev.h>
#include <rte_hexdump.h>
#include <rte_malloc.h>
#include "pmd_kasumi_priv.h"
/** Parse crypto xform chain and set private session parameters. */
static int
kasumi_session_configure(IMB_MGR *mgr, void *priv_sess,
const struct rte_crypto_sym_xform *xform)
{
const struct rte_crypto_sym_xform *auth_xform = NULL;
const struct rte_crypto_sym_xform *cipher_xform = NULL;
enum ipsec_mb_operation mode;
struct kasumi_session *sess = (struct kasumi_session *)priv_sess;
/* Select Crypto operation - hash then cipher / cipher then hash */
int ret = ipsec_mb_parse_xform(xform, &mode, &auth_xform,
&cipher_xform, NULL);
if (ret)
return ret;
if (cipher_xform) {
/* Only KASUMI F8 supported */
if (cipher_xform->cipher.algo != RTE_CRYPTO_CIPHER_KASUMI_F8) {
IPSEC_MB_LOG(ERR, "Unsupported cipher algorithm ");
return -ENOTSUP;
}
sess->cipher_iv_offset = cipher_xform->cipher.iv.offset;
if (cipher_xform->cipher.iv.length != KASUMI_IV_LENGTH) {
IPSEC_MB_LOG(ERR, "Wrong IV length");
return -EINVAL;
}
/* Initialize key */
IMB_KASUMI_INIT_F8_KEY_SCHED(mgr,
cipher_xform->cipher.key.data,
&sess->pKeySched_cipher);
}
if (auth_xform) {
/* Only KASUMI F9 supported */
if (auth_xform->auth.algo != RTE_CRYPTO_AUTH_KASUMI_F9) {
IPSEC_MB_LOG(ERR, "Unsupported authentication");
return -ENOTSUP;
}
if (auth_xform->auth.digest_length != KASUMI_DIGEST_LENGTH) {
IPSEC_MB_LOG(ERR, "Wrong digest length");
return -EINVAL;
}
sess->auth_op = auth_xform->auth.op;
/* Initialize key */
IMB_KASUMI_INIT_F9_KEY_SCHED(mgr, auth_xform->auth.key.data,
&sess->pKeySched_hash);
}
sess->op = mode;
return ret;
}
/** Encrypt/decrypt mbufs with same cipher key. */
static uint8_t
process_kasumi_cipher_op(struct ipsec_mb_qp *qp, struct rte_crypto_op **ops,
struct kasumi_session *session, uint8_t num_ops)
{
unsigned int i;
uint8_t processed_ops = 0;
const void *src[num_ops];
void *dst[num_ops];
uint8_t *iv_ptr;
uint64_t iv[num_ops];
uint32_t num_bytes[num_ops];
for (i = 0; i < num_ops; i++) {
src[i] = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *)
+ (ops[i]->sym->cipher.data.offset >> 3);
dst[i] = ops[i]->sym->m_dst
? rte_pktmbuf_mtod(ops[i]->sym->m_dst, uint8_t *)
+ (ops[i]->sym->cipher.data.offset >> 3)
: rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *)
+ (ops[i]->sym->cipher.data.offset >> 3);
iv_ptr = rte_crypto_op_ctod_offset(ops[i], uint8_t *,
session->cipher_iv_offset);
iv[i] = *((uint64_t *)(iv_ptr));
num_bytes[i] = ops[i]->sym->cipher.data.length >> 3;
processed_ops++;
}
if (processed_ops != 0)
IMB_KASUMI_F8_N_BUFFER(qp->mb_mgr, &session->pKeySched_cipher,
iv, src, dst, num_bytes,
processed_ops);
return processed_ops;
}
/** Encrypt/decrypt mbuf (bit level function). */
static uint8_t
process_kasumi_cipher_op_bit(struct ipsec_mb_qp *qp, struct rte_crypto_op *op,
struct kasumi_session *session)
{
uint8_t *src, *dst;
uint8_t *iv_ptr;
uint64_t iv;
uint32_t length_in_bits, offset_in_bits;
offset_in_bits = op->sym->cipher.data.offset;
src = rte_pktmbuf_mtod(op->sym->m_src, uint8_t *);
if (op->sym->m_dst == NULL)
dst = src;
else
dst = rte_pktmbuf_mtod(op->sym->m_dst, uint8_t *);
iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
session->cipher_iv_offset);
iv = *((uint64_t *)(iv_ptr));
length_in_bits = op->sym->cipher.data.length;
IMB_KASUMI_F8_1_BUFFER_BIT(qp->mb_mgr, &session->pKeySched_cipher, iv,
src, dst, length_in_bits, offset_in_bits);
return 1;
}
/** Generate/verify hash from mbufs with same hash key. */
static int
process_kasumi_hash_op(struct ipsec_mb_qp *qp, struct rte_crypto_op **ops,
struct kasumi_session *session, uint8_t num_ops)
{
unsigned int i;
uint8_t processed_ops = 0;
uint8_t *src, *dst;
uint32_t length_in_bits;
uint32_t num_bytes;
struct kasumi_qp_data *qp_data = ipsec_mb_get_qp_private_data(qp);
for (i = 0; i < num_ops; i++) {
/* Data must be byte aligned */
if ((ops[i]->sym->auth.data.offset % BYTE_LEN) != 0) {
ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
IPSEC_MB_LOG(ERR, "Invalid Offset");
break;
}
length_in_bits = ops[i]->sym->auth.data.length;
src = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *)
+ (ops[i]->sym->auth.data.offset >> 3);
/* Direction from next bit after end of message */
num_bytes = length_in_bits >> 3;
if (session->auth_op == RTE_CRYPTO_AUTH_OP_VERIFY) {
dst = qp_data->temp_digest;
IMB_KASUMI_F9_1_BUFFER(qp->mb_mgr,
&session->pKeySched_hash, src,
num_bytes, dst);
/* Verify digest. */
if (memcmp(dst, ops[i]->sym->auth.digest.data,
KASUMI_DIGEST_LENGTH)
!= 0)
ops[i]->status
= RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
} else {
dst = ops[i]->sym->auth.digest.data;
IMB_KASUMI_F9_1_BUFFER(qp->mb_mgr,
&session->pKeySched_hash, src,
num_bytes, dst);
}
processed_ops++;
}
return processed_ops;
}
/** Process a batch of crypto ops which shares the same session. */
static int
process_ops(struct rte_crypto_op **ops, struct kasumi_session *session,
struct ipsec_mb_qp *qp, uint8_t num_ops)
{
unsigned int i;
unsigned int processed_ops;
switch (session->op) {
case IPSEC_MB_OP_ENCRYPT_ONLY:
case IPSEC_MB_OP_DECRYPT_ONLY:
processed_ops
= process_kasumi_cipher_op(qp, ops, session, num_ops);
break;
case IPSEC_MB_OP_HASH_GEN_ONLY:
case IPSEC_MB_OP_HASH_VERIFY_ONLY:
processed_ops
= process_kasumi_hash_op(qp, ops, session, num_ops);
break;
case IPSEC_MB_OP_ENCRYPT_THEN_HASH_GEN:
case IPSEC_MB_OP_DECRYPT_THEN_HASH_VERIFY:
processed_ops
= process_kasumi_cipher_op(qp, ops, session, num_ops);
process_kasumi_hash_op(qp, ops, session, processed_ops);
break;
case IPSEC_MB_OP_HASH_VERIFY_THEN_DECRYPT:
case IPSEC_MB_OP_HASH_GEN_THEN_ENCRYPT:
processed_ops
= process_kasumi_hash_op(qp, ops, session, num_ops);
process_kasumi_cipher_op(qp, ops, session, processed_ops);
break;
default:
/* Operation not supported. */
processed_ops = 0;
}
for (i = 0; i < num_ops; i++) {
/*
* If there was no error/authentication failure,
* change status to successful.
*/
if (ops[i]->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
ops[i]->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
/* Free session if a session-less crypto op. */
if (ops[i]->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
memset(session, 0, sizeof(struct kasumi_session));
memset(
ops[i]->sym->session, 0,
rte_cryptodev_sym_get_existing_header_session_size(
ops[i]->sym->session));
rte_mempool_put(qp->sess_mp_priv, session);
rte_mempool_put(qp->sess_mp, ops[i]->sym->session);
ops[i]->sym->session = NULL;
}
}
return processed_ops;
}
/** Process a crypto op with length/offset in bits. */
static int
process_op_bit(struct rte_crypto_op *op, struct kasumi_session *session,
struct ipsec_mb_qp *qp)
{
unsigned int processed_op;
switch (session->op) {
/* case KASUMI_OP_ONLY_CIPHER: */
case IPSEC_MB_OP_ENCRYPT_ONLY:
case IPSEC_MB_OP_DECRYPT_ONLY:
processed_op = process_kasumi_cipher_op_bit(qp, op, session);
break;
/* case KASUMI_OP_ONLY_AUTH: */
case IPSEC_MB_OP_HASH_GEN_ONLY:
case IPSEC_MB_OP_HASH_VERIFY_ONLY:
processed_op = process_kasumi_hash_op(qp, &op, session, 1);
break;
/* case KASUMI_OP_CIPHER_AUTH: */
case IPSEC_MB_OP_ENCRYPT_THEN_HASH_GEN:
processed_op = process_kasumi_cipher_op_bit(qp, op, session);
if (processed_op == 1)
process_kasumi_hash_op(qp, &op, session, 1);
break;
/* case KASUMI_OP_AUTH_CIPHER: */
case IPSEC_MB_OP_HASH_VERIFY_THEN_DECRYPT:
processed_op = process_kasumi_hash_op(qp, &op, session, 1);
if (processed_op == 1)
process_kasumi_cipher_op_bit(qp, op, session);
break;
default:
/* Operation not supported. */
processed_op = 0;
}
/*
* If there was no error/authentication failure,
* change status to successful.
*/
if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
/* Free session if a session-less crypto op. */
if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
memset(op->sym->session, 0, sizeof(struct kasumi_session));
rte_cryptodev_sym_session_free(op->sym->session);
op->sym->session = NULL;
}
return processed_op;
}
static uint16_t
kasumi_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct rte_crypto_op *c_ops[nb_ops];
struct rte_crypto_op *curr_c_op = NULL;
struct kasumi_session *prev_sess = NULL, *curr_sess = NULL;
struct ipsec_mb_qp *qp = queue_pair;
unsigned int i;
uint8_t burst_size = 0;
uint8_t processed_ops;
unsigned int nb_dequeued;
nb_dequeued = rte_ring_dequeue_burst(qp->ingress_queue,
(void **)ops, nb_ops, NULL);
for (i = 0; i < nb_dequeued; i++) {
curr_c_op = ops[i];
#ifdef RTE_LIBRTE_PMD_KASUMI_DEBUG
if (!rte_pktmbuf_is_contiguous(curr_c_op->sym->m_src)
|| (curr_c_op->sym->m_dst != NULL
&& !rte_pktmbuf_is_contiguous(
curr_c_op->sym->m_dst))) {
IPSEC_MB_LOG(ERR,
"PMD supports only contiguous mbufs, op (%p) provides noncontiguous mbuf as source/destination buffer.",
curr_c_op);
curr_c_op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
break;
}
#endif
/* Set status as enqueued (not processed yet) by default. */
curr_c_op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
curr_sess = (struct kasumi_session *)
ipsec_mb_get_session_private(qp, curr_c_op);
if (unlikely(curr_sess == NULL
|| curr_sess->op == IPSEC_MB_OP_NOT_SUPPORTED)) {
curr_c_op->status
= RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
break;
}
/* If length/offset is at bit-level, process this buffer alone.
*/
if (((curr_c_op->sym->cipher.data.length % BYTE_LEN) != 0)
|| ((ops[i]->sym->cipher.data.offset % BYTE_LEN) != 0)) {
/* Process the ops of the previous session. */
if (prev_sess != NULL) {
processed_ops = process_ops(c_ops, prev_sess,
qp, burst_size);
if (processed_ops < burst_size) {
burst_size = 0;
break;
}
burst_size = 0;
prev_sess = NULL;
}
processed_ops = process_op_bit(curr_c_op,
curr_sess, qp);
if (processed_ops != 1)
break;
continue;
}
/* Batch ops that share the same session. */
if (prev_sess == NULL) {
prev_sess = curr_sess;
c_ops[burst_size++] = curr_c_op;
} else if (curr_sess == prev_sess) {
c_ops[burst_size++] = curr_c_op;
/*
* When there are enough ops to process in a batch,
* process them, and start a new batch.
*/
if (burst_size == KASUMI_MAX_BURST) {
processed_ops = process_ops(c_ops, prev_sess,
qp, burst_size);
if (processed_ops < burst_size) {
burst_size = 0;
break;
}
burst_size = 0;
prev_sess = NULL;
}
} else {
/*
* Different session, process the ops
* of the previous session.
*/
processed_ops = process_ops(c_ops, prev_sess, qp,
burst_size);
if (processed_ops < burst_size) {
burst_size = 0;
break;
}
burst_size = 0;
prev_sess = curr_sess;
c_ops[burst_size++] = curr_c_op;
}
}
if (burst_size != 0) {
/* Process the crypto ops of the last session. */
processed_ops = process_ops(c_ops, prev_sess, qp, burst_size);
}
qp->stats.dequeued_count += i;
return i;
}
struct rte_cryptodev_ops kasumi_pmd_ops = {
.dev_configure = ipsec_mb_config,
.dev_start = ipsec_mb_start,
.dev_stop = ipsec_mb_stop,
.dev_close = ipsec_mb_close,
.stats_get = ipsec_mb_stats_get,
.stats_reset = ipsec_mb_stats_reset,
.dev_infos_get = ipsec_mb_info_get,
.queue_pair_setup = ipsec_mb_qp_setup,
.queue_pair_release = ipsec_mb_qp_release,
.sym_session_get_size = ipsec_mb_sym_session_get_size,
.sym_session_configure = ipsec_mb_sym_session_configure,
.sym_session_clear = ipsec_mb_sym_session_clear
};
struct rte_cryptodev_ops *rte_kasumi_pmd_ops = &kasumi_pmd_ops;
static int
kasumi_probe(struct rte_vdev_device *vdev)
{
return ipsec_mb_create(vdev, IPSEC_MB_PMD_TYPE_KASUMI);
}
static struct rte_vdev_driver cryptodev_kasumi_pmd_drv = {
.probe = kasumi_probe,
.remove = ipsec_mb_remove
};
static struct cryptodev_driver kasumi_crypto_drv;
RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_KASUMI_PMD, cryptodev_kasumi_pmd_drv);
RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_KASUMI_PMD, cryptodev_kasumi_pmd);
RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_KASUMI_PMD,
"max_nb_queue_pairs=<int> socket_id=<int>");
RTE_PMD_REGISTER_CRYPTO_DRIVER(kasumi_crypto_drv,
cryptodev_kasumi_pmd_drv.driver,
pmd_driver_id_kasumi);
/* Constructor function to register kasumi PMD */
RTE_INIT(ipsec_mb_register_kasumi)
{
struct ipsec_mb_internals *kasumi_data
= &ipsec_mb_pmds[IPSEC_MB_PMD_TYPE_KASUMI];
kasumi_data->caps = kasumi_capabilities;
kasumi_data->dequeue_burst = kasumi_pmd_dequeue_burst;
kasumi_data->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO
| RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING
| RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA
| RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT
| RTE_CRYPTODEV_FF_SYM_SESSIONLESS
| RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT;
kasumi_data->internals_priv_size = 0;
kasumi_data->ops = &kasumi_pmd_ops;
kasumi_data->qp_priv_size = sizeof(struct kasumi_qp_data);
kasumi_data->session_configure = kasumi_session_configure;
kasumi_data->session_priv_size = sizeof(struct kasumi_session);
}

View File

@ -0,0 +1,81 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2021 Intel Corporation
*/
#ifndef _PMD_KASUMI_PRIV_H_
#define _PMD_KASUMI_PRIV_H_
#include "ipsec_mb_private.h"
#define KASUMI_KEY_LENGTH 16
#define KASUMI_IV_LENGTH 8
#define KASUMI_MAX_BURST 4
#define BYTE_LEN 8
#define KASUMI_DIGEST_LENGTH 4
uint8_t pmd_driver_id_kasumi;
static const struct rte_cryptodev_capabilities kasumi_capabilities[] = {
{ /* KASUMI (F9) */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_KASUMI_F9,
.block_size = 8,
.key_size = {
.min = KASUMI_KEY_LENGTH,
.max = KASUMI_KEY_LENGTH,
.increment = 0
},
.digest_size = {
.min = KASUMI_DIGEST_LENGTH,
.max = KASUMI_DIGEST_LENGTH,
.increment = 0
},
.iv_size = { 0 }
}, }
}, }
},
{ /* KASUMI (F8) */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = {
.algo = RTE_CRYPTO_CIPHER_KASUMI_F8,
.block_size = 8,
.key_size = {
.min = KASUMI_KEY_LENGTH,
.max = KASUMI_KEY_LENGTH,
.increment = 0
},
.iv_size = {
.min = KASUMI_IV_LENGTH,
.max = KASUMI_IV_LENGTH,
.increment = 0
}
}, }
}, }
},
RTE_CRYPTODEV_END_OF_CAPABILITIES_LIST()
};
/** KASUMI private session structure */
struct kasumi_session {
/* Keys have to be 16-byte aligned */
kasumi_key_sched_t pKeySched_cipher;
kasumi_key_sched_t pKeySched_hash;
enum ipsec_mb_operation op;
enum rte_crypto_auth_operation auth_op;
uint16_t cipher_iv_offset;
} __rte_cache_aligned;
struct kasumi_qp_data {
uint8_t temp_digest[KASUMI_DIGEST_LENGTH];
/* *< Buffers used to store the digest generated
* by the driver when verifying a digest provided
* by the user (using authentication verify operation)
*/
};
#endif /* _PMD_KASUMI_PRIV_H_ */

View File

@ -1,81 +0,0 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2018 Intel Corporation
*/
#ifndef _KASUMI_PMD_PRIVATE_H_
#define _KASUMI_PMD_PRIVATE_H_
#include <intel-ipsec-mb.h>
#define CRYPTODEV_NAME_KASUMI_PMD crypto_kasumi
/**< KASUMI PMD device name */
/** KASUMI PMD LOGTYPE DRIVER */
extern int kasumi_logtype_driver;
#define KASUMI_LOG(level, fmt, ...) \
rte_log(RTE_LOG_ ## level, kasumi_logtype_driver, \
"%s() line %u: " fmt "\n", __func__, __LINE__, \
## __VA_ARGS__)
#define KASUMI_DIGEST_LENGTH 4
/** private data structure for each virtual KASUMI device */
struct kasumi_private {
unsigned max_nb_queue_pairs;
/**< Max number of queue pairs supported by device */
MB_MGR *mgr;
/**< Multi-buffer instance */
};
/** KASUMI buffer queue pair */
struct kasumi_qp {
uint16_t id;
/**< Queue Pair Identifier */
char name[RTE_CRYPTODEV_NAME_MAX_LEN];
/**< Unique Queue Pair Name */
struct rte_ring *processed_ops;
/**< Ring for placing processed ops */
struct rte_mempool *sess_mp;
/**< Session Mempool */
struct rte_mempool *sess_mp_priv;
/**< Session Private Data Mempool */
struct rte_cryptodev_stats qp_stats;
/**< Queue pair statistics */
uint8_t temp_digest[KASUMI_DIGEST_LENGTH];
/**< Buffer used to store the digest generated
* by the driver when verifying a digest provided
* by the user (using authentication verify operation)
*/
MB_MGR *mgr;
/**< Multi-buffer instance */
} __rte_cache_aligned;
enum kasumi_operation {
KASUMI_OP_ONLY_CIPHER,
KASUMI_OP_ONLY_AUTH,
KASUMI_OP_CIPHER_AUTH,
KASUMI_OP_AUTH_CIPHER,
KASUMI_OP_NOT_SUPPORTED
};
/** KASUMI private session structure */
struct kasumi_session {
/* Keys have to be 16-byte aligned */
kasumi_key_sched_t pKeySched_cipher;
kasumi_key_sched_t pKeySched_hash;
enum kasumi_operation op;
enum rte_crypto_auth_operation auth_op;
uint16_t cipher_iv_offset;
} __rte_cache_aligned;
int
kasumi_set_session_parameters(MB_MGR *mgr, struct kasumi_session *sess,
const struct rte_crypto_sym_xform *xform);
/** device specific operations function pointer structure */
extern struct rte_cryptodev_ops *rte_kasumi_pmd_ops;
#endif /* _KASUMI_PMD_PRIVATE_H_ */

View File

@ -1,24 +0,0 @@
# SPDX-License-Identifier: BSD-3-Clause
# Copyright(c) 2018-2020 Intel Corporation
IMB_required_ver = '0.53.0'
lib = cc.find_library('IPSec_MB', required: false)
if not lib.found()
build = false
reason = 'missing dependency, "libIPSec_MB"'
else
# version comes with quotes, so we split based on " and take the middle
imb_ver = cc.get_define('IMB_VERSION_STR',
prefix : '#include<intel-ipsec-mb.h>').split('"')[1]
if (imb_ver == '') or (imb_ver.version_compare('<' + IMB_required_ver))
reason = 'IPSec_MB version >= @0@ is required, found version @1@'.format(
IMB_required_ver, imb_ver)
build = false
endif
endif
ext_deps += lib
sources = files('rte_kasumi_pmd.c', 'rte_kasumi_pmd_ops.c')
deps += ['bus_vdev']

View File

@ -1,642 +0,0 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2018 Intel Corporation
*/
#include <rte_common.h>
#include <rte_hexdump.h>
#include <rte_cryptodev.h>
#include <cryptodev_pmd.h>
#include <rte_bus_vdev.h>
#include <rte_malloc.h>
#include <rte_cpuflags.h>
#include "kasumi_pmd_private.h"
#define KASUMI_KEY_LENGTH 16
#define KASUMI_IV_LENGTH 8
#define KASUMI_MAX_BURST 4
#define BYTE_LEN 8
static uint8_t cryptodev_driver_id;
/** Get xform chain order. */
static enum kasumi_operation
kasumi_get_mode(const struct rte_crypto_sym_xform *xform)
{
if (xform == NULL)
return KASUMI_OP_NOT_SUPPORTED;
if (xform->next)
if (xform->next->next != NULL)
return KASUMI_OP_NOT_SUPPORTED;
if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
if (xform->next == NULL)
return KASUMI_OP_ONLY_AUTH;
else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)
return KASUMI_OP_AUTH_CIPHER;
else
return KASUMI_OP_NOT_SUPPORTED;
}
if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
if (xform->next == NULL)
return KASUMI_OP_ONLY_CIPHER;
else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
return KASUMI_OP_CIPHER_AUTH;
else
return KASUMI_OP_NOT_SUPPORTED;
}
return KASUMI_OP_NOT_SUPPORTED;
}
/** Parse crypto xform chain and set private session parameters. */
int
kasumi_set_session_parameters(MB_MGR *mgr, struct kasumi_session *sess,
const struct rte_crypto_sym_xform *xform)
{
const struct rte_crypto_sym_xform *auth_xform = NULL;
const struct rte_crypto_sym_xform *cipher_xform = NULL;
enum kasumi_operation mode;
/* Select Crypto operation - hash then cipher / cipher then hash */
mode = kasumi_get_mode(xform);
switch (mode) {
case KASUMI_OP_CIPHER_AUTH:
auth_xform = xform->next;
/* Fall-through */
case KASUMI_OP_ONLY_CIPHER:
cipher_xform = xform;
break;
case KASUMI_OP_AUTH_CIPHER:
cipher_xform = xform->next;
/* Fall-through */
case KASUMI_OP_ONLY_AUTH:
auth_xform = xform;
break;
case KASUMI_OP_NOT_SUPPORTED:
default:
KASUMI_LOG(ERR, "Unsupported operation chain order parameter");
return -ENOTSUP;
}
if (cipher_xform) {
/* Only KASUMI F8 supported */
if (cipher_xform->cipher.algo != RTE_CRYPTO_CIPHER_KASUMI_F8) {
KASUMI_LOG(ERR, "Unsupported cipher algorithm ");
return -ENOTSUP;
}
sess->cipher_iv_offset = cipher_xform->cipher.iv.offset;
if (cipher_xform->cipher.iv.length != KASUMI_IV_LENGTH) {
KASUMI_LOG(ERR, "Wrong IV length");
return -EINVAL;
}
/* Initialize key */
IMB_KASUMI_INIT_F8_KEY_SCHED(mgr, cipher_xform->cipher.key.data,
&sess->pKeySched_cipher);
}
if (auth_xform) {
/* Only KASUMI F9 supported */
if (auth_xform->auth.algo != RTE_CRYPTO_AUTH_KASUMI_F9) {
KASUMI_LOG(ERR, "Unsupported authentication");
return -ENOTSUP;
}
if (auth_xform->auth.digest_length != KASUMI_DIGEST_LENGTH) {
KASUMI_LOG(ERR, "Wrong digest length");
return -EINVAL;
}
sess->auth_op = auth_xform->auth.op;
/* Initialize key */
IMB_KASUMI_INIT_F9_KEY_SCHED(mgr, auth_xform->auth.key.data,
&sess->pKeySched_hash);
}
sess->op = mode;
return 0;
}
/** Get KASUMI session. */
static struct kasumi_session *
kasumi_get_session(struct kasumi_qp *qp, struct rte_crypto_op *op)
{
struct kasumi_session *sess = NULL;
if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
if (likely(op->sym->session != NULL))
sess = (struct kasumi_session *)
get_sym_session_private_data(
op->sym->session,
cryptodev_driver_id);
} else {
void *_sess = NULL;
void *_sess_private_data = NULL;
if (rte_mempool_get(qp->sess_mp, (void **)&_sess))
return NULL;
if (rte_mempool_get(qp->sess_mp_priv,
(void **)&_sess_private_data))
return NULL;
sess = (struct kasumi_session *)_sess_private_data;
if (unlikely(kasumi_set_session_parameters(qp->mgr, sess,
op->sym->xform) != 0)) {
rte_mempool_put(qp->sess_mp, _sess);
rte_mempool_put(qp->sess_mp_priv, _sess_private_data);
sess = NULL;
}
op->sym->session = (struct rte_cryptodev_sym_session *)_sess;
set_sym_session_private_data(op->sym->session,
cryptodev_driver_id, _sess_private_data);
}
if (unlikely(sess == NULL))
op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
return sess;
}
/** Encrypt/decrypt mbufs with same cipher key. */
static uint8_t
process_kasumi_cipher_op(struct kasumi_qp *qp, struct rte_crypto_op **ops,
struct kasumi_session *session, uint8_t num_ops)
{
unsigned i;
uint8_t processed_ops = 0;
const void *src[num_ops];
void *dst[num_ops];
uint8_t *iv_ptr;
uint64_t iv[num_ops];
uint32_t num_bytes[num_ops];
for (i = 0; i < num_ops; i++) {
src[i] = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) +
(ops[i]->sym->cipher.data.offset >> 3);
dst[i] = ops[i]->sym->m_dst ?
rte_pktmbuf_mtod(ops[i]->sym->m_dst, uint8_t *) +
(ops[i]->sym->cipher.data.offset >> 3) :
rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) +
(ops[i]->sym->cipher.data.offset >> 3);
iv_ptr = rte_crypto_op_ctod_offset(ops[i], uint8_t *,
session->cipher_iv_offset);
iv[i] = *((uint64_t *)(iv_ptr));
num_bytes[i] = ops[i]->sym->cipher.data.length >> 3;
processed_ops++;
}
if (processed_ops != 0)
IMB_KASUMI_F8_N_BUFFER(qp->mgr, &session->pKeySched_cipher, iv,
src, dst, num_bytes, processed_ops);
return processed_ops;
}
/** Encrypt/decrypt mbuf (bit level function). */
static uint8_t
process_kasumi_cipher_op_bit(struct kasumi_qp *qp, struct rte_crypto_op *op,
struct kasumi_session *session)
{
uint8_t *src, *dst;
uint8_t *iv_ptr;
uint64_t iv;
uint32_t length_in_bits, offset_in_bits;
offset_in_bits = op->sym->cipher.data.offset;
src = rte_pktmbuf_mtod(op->sym->m_src, uint8_t *);
if (op->sym->m_dst == NULL)
dst = src;
else
dst = rte_pktmbuf_mtod(op->sym->m_dst, uint8_t *);
iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
session->cipher_iv_offset);
iv = *((uint64_t *)(iv_ptr));
length_in_bits = op->sym->cipher.data.length;
IMB_KASUMI_F8_1_BUFFER_BIT(qp->mgr, &session->pKeySched_cipher, iv,
src, dst, length_in_bits, offset_in_bits);
return 1;
}
/** Generate/verify hash from mbufs with same hash key. */
static int
process_kasumi_hash_op(struct kasumi_qp *qp, struct rte_crypto_op **ops,
struct kasumi_session *session,
uint8_t num_ops)
{
unsigned i;
uint8_t processed_ops = 0;
uint8_t *src, *dst;
uint32_t length_in_bits;
uint32_t num_bytes;
for (i = 0; i < num_ops; i++) {
/* Data must be byte aligned */
if ((ops[i]->sym->auth.data.offset % BYTE_LEN) != 0) {
ops[i]->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
KASUMI_LOG(ERR, "Invalid Offset");
break;
}
length_in_bits = ops[i]->sym->auth.data.length;
src = rte_pktmbuf_mtod(ops[i]->sym->m_src, uint8_t *) +
(ops[i]->sym->auth.data.offset >> 3);
/* Direction from next bit after end of message */
num_bytes = length_in_bits >> 3;
if (session->auth_op == RTE_CRYPTO_AUTH_OP_VERIFY) {
dst = qp->temp_digest;
IMB_KASUMI_F9_1_BUFFER(qp->mgr,
&session->pKeySched_hash, src,
num_bytes, dst);
/* Verify digest. */
if (memcmp(dst, ops[i]->sym->auth.digest.data,
KASUMI_DIGEST_LENGTH) != 0)
ops[i]->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
} else {
dst = ops[i]->sym->auth.digest.data;
IMB_KASUMI_F9_1_BUFFER(qp->mgr,
&session->pKeySched_hash, src,
num_bytes, dst);
}
processed_ops++;
}
return processed_ops;
}
/** Process a batch of crypto ops which shares the same session. */
static int
process_ops(struct rte_crypto_op **ops, struct kasumi_session *session,
struct kasumi_qp *qp, uint8_t num_ops,
uint16_t *accumulated_enqueued_ops)
{
unsigned i;
unsigned enqueued_ops, processed_ops;
switch (session->op) {
case KASUMI_OP_ONLY_CIPHER:
processed_ops = process_kasumi_cipher_op(qp, ops,
session, num_ops);
break;
case KASUMI_OP_ONLY_AUTH:
processed_ops = process_kasumi_hash_op(qp, ops, session,
num_ops);
break;
case KASUMI_OP_CIPHER_AUTH:
processed_ops = process_kasumi_cipher_op(qp, ops, session,
num_ops);
process_kasumi_hash_op(qp, ops, session, processed_ops);
break;
case KASUMI_OP_AUTH_CIPHER:
processed_ops = process_kasumi_hash_op(qp, ops, session,
num_ops);
process_kasumi_cipher_op(qp, ops, session, processed_ops);
break;
default:
/* Operation not supported. */
processed_ops = 0;
}
for (i = 0; i < num_ops; i++) {
/*
* If there was no error/authentication failure,
* change status to successful.
*/
if (ops[i]->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
ops[i]->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
/* Free session if a session-less crypto op. */
if (ops[i]->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
memset(session, 0, sizeof(struct kasumi_session));
memset(ops[i]->sym->session, 0,
rte_cryptodev_sym_get_existing_header_session_size(
ops[i]->sym->session));
rte_mempool_put(qp->sess_mp_priv, session);
rte_mempool_put(qp->sess_mp, ops[i]->sym->session);
ops[i]->sym->session = NULL;
}
}
enqueued_ops = rte_ring_enqueue_burst(qp->processed_ops,
(void **)ops, processed_ops, NULL);
qp->qp_stats.enqueued_count += enqueued_ops;
*accumulated_enqueued_ops += enqueued_ops;
return enqueued_ops;
}
/** Process a crypto op with length/offset in bits. */
static int
process_op_bit(struct rte_crypto_op *op, struct kasumi_session *session,
struct kasumi_qp *qp, uint16_t *accumulated_enqueued_ops)
{
unsigned enqueued_op, processed_op;
switch (session->op) {
case KASUMI_OP_ONLY_CIPHER:
processed_op = process_kasumi_cipher_op_bit(qp, op,
session);
break;
case KASUMI_OP_ONLY_AUTH:
processed_op = process_kasumi_hash_op(qp, &op, session, 1);
break;
case KASUMI_OP_CIPHER_AUTH:
processed_op = process_kasumi_cipher_op_bit(qp, op, session);
if (processed_op == 1)
process_kasumi_hash_op(qp, &op, session, 1);
break;
case KASUMI_OP_AUTH_CIPHER:
processed_op = process_kasumi_hash_op(qp, &op, session, 1);
if (processed_op == 1)
process_kasumi_cipher_op_bit(qp, op, session);
break;
default:
/* Operation not supported. */
processed_op = 0;
}
/*
* If there was no error/authentication failure,
* change status to successful.
*/
if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
/* Free session if a session-less crypto op. */
if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
memset(op->sym->session, 0, sizeof(struct kasumi_session));
rte_cryptodev_sym_session_free(op->sym->session);
op->sym->session = NULL;
}
enqueued_op = rte_ring_enqueue_burst(qp->processed_ops, (void **)&op,
processed_op, NULL);
qp->qp_stats.enqueued_count += enqueued_op;
*accumulated_enqueued_ops += enqueued_op;
return enqueued_op;
}
static uint16_t
kasumi_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
uint16_t nb_ops)
{
struct rte_crypto_op *c_ops[nb_ops];
struct rte_crypto_op *curr_c_op;
struct kasumi_session *prev_sess = NULL, *curr_sess = NULL;
struct kasumi_qp *qp = queue_pair;
unsigned i;
uint8_t burst_size = 0;
uint16_t enqueued_ops = 0;
uint8_t processed_ops;
for (i = 0; i < nb_ops; i++) {
curr_c_op = ops[i];
#ifdef RTE_LIBRTE_PMD_KASUMI_DEBUG
if (!rte_pktmbuf_is_contiguous(curr_c_op->sym->m_src) ||
(curr_c_op->sym->m_dst != NULL &&
!rte_pktmbuf_is_contiguous(
curr_c_op->sym->m_dst))) {
KASUMI_LOG(ERR, "PMD supports only contiguous mbufs, "
"op (%p) provides noncontiguous mbuf as "
"source/destination buffer.", curr_c_op);
curr_c_op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
break;
}
#endif
/* Set status as enqueued (not processed yet) by default. */
curr_c_op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
curr_sess = kasumi_get_session(qp, curr_c_op);
if (unlikely(curr_sess == NULL ||
curr_sess->op == KASUMI_OP_NOT_SUPPORTED)) {
curr_c_op->status =
RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
break;
}
/* If length/offset is at bit-level, process this buffer alone. */
if (((curr_c_op->sym->cipher.data.length % BYTE_LEN) != 0)
|| ((ops[i]->sym->cipher.data.offset
% BYTE_LEN) != 0)) {
/* Process the ops of the previous session. */
if (prev_sess != NULL) {
processed_ops = process_ops(c_ops, prev_sess,
qp, burst_size, &enqueued_ops);
if (processed_ops < burst_size) {
burst_size = 0;
break;
}
burst_size = 0;
prev_sess = NULL;
}
processed_ops = process_op_bit(curr_c_op, curr_sess,
qp, &enqueued_ops);
if (processed_ops != 1)
break;
continue;
}
/* Batch ops that share the same session. */
if (prev_sess == NULL) {
prev_sess = curr_sess;
c_ops[burst_size++] = curr_c_op;
} else if (curr_sess == prev_sess) {
c_ops[burst_size++] = curr_c_op;
/*
* When there are enough ops to process in a batch,
* process them, and start a new batch.
*/
if (burst_size == KASUMI_MAX_BURST) {
processed_ops = process_ops(c_ops, prev_sess,
qp, burst_size, &enqueued_ops);
if (processed_ops < burst_size) {
burst_size = 0;
break;
}
burst_size = 0;
prev_sess = NULL;
}
} else {
/*
* Different session, process the ops
* of the previous session.
*/
processed_ops = process_ops(c_ops, prev_sess,
qp, burst_size, &enqueued_ops);
if (processed_ops < burst_size) {
burst_size = 0;
break;
}
burst_size = 0;
prev_sess = curr_sess;
c_ops[burst_size++] = curr_c_op;
}
}
if (burst_size != 0) {
/* Process the crypto ops of the last session. */
processed_ops = process_ops(c_ops, prev_sess,
qp, burst_size, &enqueued_ops);
}
qp->qp_stats.enqueue_err_count += nb_ops - enqueued_ops;
return enqueued_ops;
}
static uint16_t
kasumi_pmd_dequeue_burst(void *queue_pair,
struct rte_crypto_op **c_ops, uint16_t nb_ops)
{
struct kasumi_qp *qp = queue_pair;
unsigned nb_dequeued;
nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
(void **)c_ops, nb_ops, NULL);
qp->qp_stats.dequeued_count += nb_dequeued;
return nb_dequeued;
}
static int cryptodev_kasumi_remove(struct rte_vdev_device *vdev);
static int
cryptodev_kasumi_create(const char *name,
struct rte_vdev_device *vdev,
struct rte_cryptodev_pmd_init_params *init_params)
{
struct rte_cryptodev *dev;
struct kasumi_private *internals;
MB_MGR *mgr;
dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
if (dev == NULL) {
KASUMI_LOG(ERR, "failed to create cryptodev vdev");
goto init_error;
}
dev->driver_id = cryptodev_driver_id;
dev->dev_ops = rte_kasumi_pmd_ops;
/* Register RX/TX burst functions for data path. */
dev->dequeue_burst = kasumi_pmd_dequeue_burst;
dev->enqueue_burst = kasumi_pmd_enqueue_burst;
dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA |
RTE_CRYPTODEV_FF_SYM_SESSIONLESS |
RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT;
mgr = alloc_mb_mgr(0);
if (mgr == NULL)
return -ENOMEM;
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX)) {
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX;
init_mb_mgr_avx(mgr);
} else {
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_SSE;
init_mb_mgr_sse(mgr);
}
internals = dev->data->dev_private;
internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs;
internals->mgr = mgr;
return 0;
init_error:
KASUMI_LOG(ERR, "driver %s: failed",
init_params->name);
cryptodev_kasumi_remove(vdev);
return -EFAULT;
}
static int
cryptodev_kasumi_probe(struct rte_vdev_device *vdev)
{
struct rte_cryptodev_pmd_init_params init_params = {
"",
sizeof(struct kasumi_private),
rte_socket_id(),
RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS
};
const char *name;
const char *input_args;
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
input_args = rte_vdev_device_args(vdev);
rte_cryptodev_pmd_parse_input_args(&init_params, input_args);
return cryptodev_kasumi_create(name, vdev, &init_params);
}
static int
cryptodev_kasumi_remove(struct rte_vdev_device *vdev)
{
struct rte_cryptodev *cryptodev;
const char *name;
struct kasumi_private *internals;
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
cryptodev = rte_cryptodev_pmd_get_named_dev(name);
if (cryptodev == NULL)
return -ENODEV;
internals = cryptodev->data->dev_private;
free_mb_mgr(internals->mgr);
return rte_cryptodev_pmd_destroy(cryptodev);
}
static struct rte_vdev_driver cryptodev_kasumi_pmd_drv = {
.probe = cryptodev_kasumi_probe,
.remove = cryptodev_kasumi_remove
};
static struct cryptodev_driver kasumi_crypto_drv;
RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_KASUMI_PMD, cryptodev_kasumi_pmd_drv);
RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_KASUMI_PMD, cryptodev_kasumi_pmd);
RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_KASUMI_PMD,
"max_nb_queue_pairs=<int> "
"socket_id=<int>");
RTE_PMD_REGISTER_CRYPTO_DRIVER(kasumi_crypto_drv,
cryptodev_kasumi_pmd_drv.driver, cryptodev_driver_id);
RTE_LOG_REGISTER_DEFAULT(kasumi_logtype_driver, NOTICE);

View File

@ -1,316 +0,0 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2018 Intel Corporation
*/
#include <string.h>
#include <rte_common.h>
#include <rte_malloc.h>
#include <cryptodev_pmd.h>
#include "kasumi_pmd_private.h"
static const struct rte_cryptodev_capabilities kasumi_pmd_capabilities[] = {
{ /* KASUMI (F9) */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
{.auth = {
.algo = RTE_CRYPTO_AUTH_KASUMI_F9,
.block_size = 8,
.key_size = {
.min = 16,
.max = 16,
.increment = 0
},
.digest_size = {
.min = 4,
.max = 4,
.increment = 0
},
.iv_size = { 0 }
}, }
}, }
},
{ /* KASUMI (F8) */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
{.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
{.cipher = {
.algo = RTE_CRYPTO_CIPHER_KASUMI_F8,
.block_size = 8,
.key_size = {
.min = 16,
.max = 16,
.increment = 0
},
.iv_size = {
.min = 8,
.max = 8,
.increment = 0
}
}, }
}, }
},
RTE_CRYPTODEV_END_OF_CAPABILITIES_LIST()
};
/** Configure device */
static int
kasumi_pmd_config(__rte_unused struct rte_cryptodev *dev,
__rte_unused struct rte_cryptodev_config *config)
{
return 0;
}
/** Start device */
static int
kasumi_pmd_start(__rte_unused struct rte_cryptodev *dev)
{
return 0;
}
/** Stop device */
static void
kasumi_pmd_stop(__rte_unused struct rte_cryptodev *dev)
{
}
/** Close device */
static int
kasumi_pmd_close(__rte_unused struct rte_cryptodev *dev)
{
return 0;
}
/** Get device statistics */
static void
kasumi_pmd_stats_get(struct rte_cryptodev *dev,
struct rte_cryptodev_stats *stats)
{
int qp_id;
for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) {
struct kasumi_qp *qp = dev->data->queue_pairs[qp_id];
stats->enqueued_count += qp->qp_stats.enqueued_count;
stats->dequeued_count += qp->qp_stats.dequeued_count;
stats->enqueue_err_count += qp->qp_stats.enqueue_err_count;
stats->dequeue_err_count += qp->qp_stats.dequeue_err_count;
}
}
/** Reset device statistics */
static void
kasumi_pmd_stats_reset(struct rte_cryptodev *dev)
{
int qp_id;
for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) {
struct kasumi_qp *qp = dev->data->queue_pairs[qp_id];
memset(&qp->qp_stats, 0, sizeof(qp->qp_stats));
}
}
/** Get device info */
static void
kasumi_pmd_info_get(struct rte_cryptodev *dev,
struct rte_cryptodev_info *dev_info)
{
struct kasumi_private *internals = dev->data->dev_private;
if (dev_info != NULL) {
dev_info->driver_id = dev->driver_id;
dev_info->max_nb_queue_pairs = internals->max_nb_queue_pairs;
/* No limit of number of sessions */
dev_info->sym.max_nb_sessions = 0;
dev_info->feature_flags = dev->feature_flags;
dev_info->capabilities = kasumi_pmd_capabilities;
}
}
/** Release queue pair */
static int
kasumi_pmd_qp_release(struct rte_cryptodev *dev, uint16_t qp_id)
{
struct kasumi_qp *qp = dev->data->queue_pairs[qp_id];
if (qp != NULL) {
rte_ring_free(qp->processed_ops);
rte_free(qp);
dev->data->queue_pairs[qp_id] = NULL;
}
return 0;
}
/** set a unique name for the queue pair based on its name, dev_id and qp_id */
static int
kasumi_pmd_qp_set_unique_name(struct rte_cryptodev *dev,
struct kasumi_qp *qp)
{
unsigned n = snprintf(qp->name, sizeof(qp->name),
"kasumi_pmd_%u_qp_%u",
dev->data->dev_id, qp->id);
if (n >= sizeof(qp->name))
return -1;
return 0;
}
/** Create a ring to place processed ops on */
static struct rte_ring *
kasumi_pmd_qp_create_processed_ops_ring(struct kasumi_qp *qp,
unsigned ring_size, int socket_id)
{
struct rte_ring *r;
r = rte_ring_lookup(qp->name);
if (r) {
if (rte_ring_get_size(r) == ring_size) {
KASUMI_LOG(INFO, "Reusing existing ring %s"
" for processed packets",
qp->name);
return r;
}
KASUMI_LOG(ERR, "Unable to reuse existing ring %s"
" for processed packets",
qp->name);
return NULL;
}
return rte_ring_create(qp->name, ring_size, socket_id,
RING_F_SP_ENQ | RING_F_SC_DEQ);
}
/** Setup a queue pair */
static int
kasumi_pmd_qp_setup(struct rte_cryptodev *dev, uint16_t qp_id,
const struct rte_cryptodev_qp_conf *qp_conf,
int socket_id)
{
struct kasumi_qp *qp = NULL;
struct kasumi_private *internals = dev->data->dev_private;
/* Free memory prior to re-allocation if needed. */
if (dev->data->queue_pairs[qp_id] != NULL)
kasumi_pmd_qp_release(dev, qp_id);
/* Allocate the queue pair data structure. */
qp = rte_zmalloc_socket("KASUMI PMD Queue Pair", sizeof(*qp),
RTE_CACHE_LINE_SIZE, socket_id);
if (qp == NULL)
return (-ENOMEM);
qp->id = qp_id;
dev->data->queue_pairs[qp_id] = qp;
if (kasumi_pmd_qp_set_unique_name(dev, qp))
goto qp_setup_cleanup;
qp->processed_ops = kasumi_pmd_qp_create_processed_ops_ring(qp,
qp_conf->nb_descriptors, socket_id);
if (qp->processed_ops == NULL)
goto qp_setup_cleanup;
qp->mgr = internals->mgr;
qp->sess_mp = qp_conf->mp_session;
qp->sess_mp_priv = qp_conf->mp_session_private;
memset(&qp->qp_stats, 0, sizeof(qp->qp_stats));
return 0;
qp_setup_cleanup:
rte_free(qp);
return -1;
}
/** Returns the size of the KASUMI session structure */
static unsigned
kasumi_pmd_sym_session_get_size(struct rte_cryptodev *dev __rte_unused)
{
return sizeof(struct kasumi_session);
}
/** Configure a KASUMI session from a crypto xform chain */
static int
kasumi_pmd_sym_session_configure(struct rte_cryptodev *dev,
struct rte_crypto_sym_xform *xform,
struct rte_cryptodev_sym_session *sess,
struct rte_mempool *mempool)
{
void *sess_private_data;
int ret;
struct kasumi_private *internals = dev->data->dev_private;
if (unlikely(sess == NULL)) {
KASUMI_LOG(ERR, "invalid session struct");
return -EINVAL;
}
if (rte_mempool_get(mempool, &sess_private_data)) {
KASUMI_LOG(ERR,
"Couldn't get object from session mempool");
return -ENOMEM;
}
ret = kasumi_set_session_parameters(internals->mgr,
sess_private_data, xform);
if (ret != 0) {
KASUMI_LOG(ERR, "failed configure session parameters");
/* Return session to mempool */
rte_mempool_put(mempool, sess_private_data);
return ret;
}
set_sym_session_private_data(sess, dev->driver_id,
sess_private_data);
return 0;
}
/** Clear the memory of session so it doesn't leave key material behind */
static void
kasumi_pmd_sym_session_clear(struct rte_cryptodev *dev,
struct rte_cryptodev_sym_session *sess)
{
uint8_t index = dev->driver_id;
void *sess_priv = get_sym_session_private_data(sess, index);
/* Zero out the whole structure */
if (sess_priv) {
memset(sess_priv, 0, sizeof(struct kasumi_session));
struct rte_mempool *sess_mp = rte_mempool_from_obj(sess_priv);
set_sym_session_private_data(sess, index, NULL);
rte_mempool_put(sess_mp, sess_priv);
}
}
struct rte_cryptodev_ops kasumi_pmd_ops = {
.dev_configure = kasumi_pmd_config,
.dev_start = kasumi_pmd_start,
.dev_stop = kasumi_pmd_stop,
.dev_close = kasumi_pmd_close,
.stats_get = kasumi_pmd_stats_get,
.stats_reset = kasumi_pmd_stats_reset,
.dev_infos_get = kasumi_pmd_info_get,
.queue_pair_setup = kasumi_pmd_qp_setup,
.queue_pair_release = kasumi_pmd_qp_release,
.sym_session_get_size = kasumi_pmd_sym_session_get_size,
.sym_session_configure = kasumi_pmd_sym_session_configure,
.sym_session_clear = kasumi_pmd_sym_session_clear
};
struct rte_cryptodev_ops *rte_kasumi_pmd_ops = &kasumi_pmd_ops;

View File

@ -1,3 +0,0 @@
DPDK_22 {
local: *;
};

View File

@ -14,7 +14,6 @@ drivers = [
'dpaa_sec',
'dpaa2_sec',
'ipsec_mb',
'kasumi',
'mlx5',
'mvsam',
'nitrox',