net/qede: support scatter gather

Add scatter gather support to enable transmit and receive of larger
packets.

Signed-off-by: Sony Chacko <sony.chacko@qlogic.com>
This commit is contained in:
Sony Chacko 2016-10-18 21:11:37 -07:00 committed by Bruce Richardson
parent 9c5d0a669f
commit bec0228816
6 changed files with 191 additions and 55 deletions

View File

@ -8,6 +8,7 @@ Link status = Y
Link status event = Y
MTU update = Y
Jumbo frame = Y
Scattered Rx = Y
Promiscuous mode = Y
Allmulticast mode = Y
Unicast MAC filter = Y

View File

@ -8,6 +8,7 @@ Link status = Y
Link status event = Y
MTU update = Y
Jumbo frame = Y
Scattered Rx = Y
Promiscuous mode = Y
Allmulticast mode = Y
Unicast MAC filter = Y

View File

@ -47,7 +47,7 @@ Supported Features
- Promiscuous mode
- Allmulti mode
- Port hardware statistics
- Jumbo frames (using single buffer)
- Jumbo frames
- VLAN offload - Filtering and stripping
- Stateless checksum offloads (IPv4/TCP/UDP)
- Multiple Rx/Tx queues
@ -58,11 +58,11 @@ Supported Features
- SR-IOV VF
- MTU change
- Multiprocess aware
- Scatter-Gather
Non-supported Features
----------------------
- Scatter-Gather Rx/Tx frames
- SR-IOV PF
- Tunneling offloads
- Reload of the PMD after a non-graceful termination

View File

@ -434,14 +434,14 @@ static int qede_vlan_filter_set(struct rte_eth_dev *eth_dev,
struct qede_vlan_entry *vlan;
int rc;
if (qdev->configured_vlans == dev_info->num_vlan_filters) {
DP_NOTICE(edev, false, "Reached max VLAN filter limit"
" enabling accept_any_vlan\n");
qede_config_accept_any_vlan(qdev, true);
return 0;
}
if (on) {
if (qdev->configured_vlans == dev_info->num_vlan_filters) {
DP_INFO(edev, "Reached max VLAN filter limit"
" enabling accept_any_vlan\n");
qede_config_accept_any_vlan(qdev, true);
return 0;
}
SLIST_FOREACH(tmp, &qdev->vlan_list_head, list) {
if (tmp->vid == vlan_id) {
DP_ERR(edev, "VLAN %u already configured\n",
@ -559,10 +559,8 @@ static int qede_dev_configure(struct rte_eth_dev *eth_dev)
}
/* Sanity checks and throw warnings */
if (rxmode->enable_scatter == 1) {
DP_ERR(edev, "RX scatter packets is not supported\n");
return -EINVAL;
}
if (rxmode->enable_scatter == 1)
eth_dev->data->scattered_rx = 1;
if (rxmode->enable_lro == 1) {
DP_INFO(edev, "LRO is not supported\n");

View File

@ -135,8 +135,19 @@ qede_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
data_size = (uint16_t)rte_pktmbuf_data_room_size(mp) -
RTE_PKTMBUF_HEADROOM;
if (pkt_len > data_size && !dev->data->scattered_rx) {
DP_ERR(edev, "MTU %u should not exceed dataroom %u\n",
pkt_len, data_size);
rte_free(rxq);
return -EINVAL;
}
if (dev->data->scattered_rx)
rxq->rx_buf_size = data_size;
else
rxq->rx_buf_size = pkt_len + QEDE_ETH_OVERHEAD;
qdev->mtu = pkt_len;
rxq->rx_buf_size = data_size;
DP_INFO(edev, "MTU = %u ; RX buffer = %u\n",
qdev->mtu, rxq->rx_buf_size);
@ -804,6 +815,58 @@ static inline uint32_t qede_rx_cqe_to_pkt_type(uint16_t flags)
return RTE_PTYPE_L2_ETHER | p_type;
}
int qede_process_sg_pkts(void *p_rxq, struct rte_mbuf *rx_mb,
int num_frags, uint16_t pkt_len)
{
struct qede_rx_queue *rxq = p_rxq;
struct qede_dev *qdev = rxq->qdev;
struct ecore_dev *edev = &qdev->edev;
uint16_t sw_rx_index, cur_size;
register struct rte_mbuf *seg1 = NULL;
register struct rte_mbuf *seg2 = NULL;
seg1 = rx_mb;
while (num_frags) {
cur_size = pkt_len > rxq->rx_buf_size ?
rxq->rx_buf_size : pkt_len;
if (!cur_size) {
PMD_RX_LOG(DEBUG, rxq,
"SG packet, len and num BD mismatch\n");
qede_recycle_rx_bd_ring(rxq, qdev, num_frags);
return -EINVAL;
}
if (qede_alloc_rx_buffer(rxq)) {
uint8_t index;
PMD_RX_LOG(DEBUG, rxq, "Buffer allocation failed\n");
index = rxq->port_id;
rte_eth_devices[index].data->rx_mbuf_alloc_failed++;
rxq->rx_alloc_errors++;
return -ENOMEM;
}
sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
seg2 = rxq->sw_rx_ring[sw_rx_index].mbuf;
qede_rx_bd_ring_consume(rxq);
pkt_len -= cur_size;
seg2->data_len = cur_size;
seg1->next = seg2;
seg1 = seg1->next;
num_frags--;
continue;
}
seg1 = NULL;
if (pkt_len)
PMD_RX_LOG(DEBUG, rxq,
"Mapped all BDs of jumbo, but still have %d bytes\n",
pkt_len);
return ECORE_SUCCESS;
}
uint16_t
qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
@ -816,12 +879,12 @@ qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
union eth_rx_cqe *cqe;
struct eth_fast_path_rx_reg_cqe *fp_cqe;
register struct rte_mbuf *rx_mb = NULL;
register struct rte_mbuf *seg1 = NULL;
enum eth_rx_cqe_type cqe_type;
uint16_t len, pad;
uint16_t preload_idx;
uint8_t csum_flag;
uint16_t parse_flag;
uint16_t len, pad, preload_idx, pkt_len, parse_flag;
uint8_t csum_flag, num_frags;
enum rss_hash_type htype;
int ret;
hw_comp_cons = rte_le_to_cpu_16(*rxq->hw_cons_ptr);
sw_comp_cons = ecore_chain_get_cons_idx(&rxq->rx_comp_ring);
@ -891,20 +954,31 @@ qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
qede_rx_bd_ring_consume(rxq);
if (fp_cqe->bd_num > 1) {
pkt_len = rte_le_to_cpu_16(fp_cqe->pkt_len);
num_frags = fp_cqe->bd_num - 1;
pkt_len -= len;
seg1 = rx_mb;
ret = qede_process_sg_pkts(p_rxq, seg1, num_frags,
pkt_len);
if (ret != ECORE_SUCCESS) {
qede_recycle_rx_bd_ring(rxq, qdev,
fp_cqe->bd_num);
goto next_cqe;
}
}
/* Prefetch next mbuf while processing current one. */
preload_idx = rxq->sw_rx_cons & NUM_RX_BDS(rxq);
rte_prefetch0(rxq->sw_rx_ring[preload_idx].mbuf);
if (fp_cqe->bd_num != 1)
PMD_RX_LOG(DEBUG, rxq,
"Jumbo-over-BD packet not supported\n");
/* Update MBUF fields */
rx_mb->ol_flags = 0;
rx_mb->data_off = pad + RTE_PKTMBUF_HEADROOM;
rx_mb->nb_segs = 1;
rx_mb->nb_segs = fp_cqe->bd_num;
rx_mb->data_len = len;
rx_mb->pkt_len = len;
rx_mb->pkt_len = fp_cqe->pkt_len;
rx_mb->port = rxq->port_id;
rx_mb->packet_type = qede_rx_cqe_to_pkt_type(parse_flag);
@ -957,24 +1031,28 @@ qede_recv_pkts(void *p_rxq, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
static inline int
qede_free_tx_pkt(struct ecore_dev *edev, struct qede_tx_queue *txq)
{
uint16_t idx = TX_CONS(txq);
uint16_t nb_segs, idx = TX_CONS(txq);
struct eth_tx_bd *tx_data_bd;
struct rte_mbuf *mbuf = txq->sw_tx_ring[idx].mbuf;
if (unlikely(!mbuf)) {
PMD_TX_LOG(ERR, txq, "null mbuf\n");
PMD_TX_LOG(ERR, txq,
"null mbuf nb_tx_desc %u nb_tx_avail %u "
"sw_tx_cons %u sw_tx_prod %u\n",
"tx_desc %u tx_avail %u tx_cons %u tx_prod %u\n",
txq->nb_tx_desc, txq->nb_tx_avail, idx,
TX_PROD(txq));
return -1;
}
/* Free now */
rte_pktmbuf_free_seg(mbuf);
nb_segs = mbuf->nb_segs;
while (nb_segs) {
/* It's like consuming rxbuf in recv() */
ecore_chain_consume(&txq->tx_pbl);
txq->nb_tx_avail++;
nb_segs--;
}
rte_pktmbuf_free(mbuf);
txq->sw_tx_ring[idx].mbuf = NULL;
ecore_chain_consume(&txq->tx_pbl);
txq->nb_tx_avail++;
return 0;
}
@ -984,18 +1062,16 @@ qede_process_tx_compl(struct ecore_dev *edev, struct qede_tx_queue *txq)
{
uint16_t tx_compl = 0;
uint16_t hw_bd_cons;
int rc;
hw_bd_cons = rte_le_to_cpu_16(*txq->hw_cons_ptr);
rte_compiler_barrier();
while (hw_bd_cons != ecore_chain_get_cons_idx(&txq->tx_pbl)) {
rc = qede_free_tx_pkt(edev, txq);
if (rc) {
DP_NOTICE(edev, false,
"hw_bd_cons = %d, chain_cons=%d\n",
hw_bd_cons,
ecore_chain_get_cons_idx(&txq->tx_pbl));
if (qede_free_tx_pkt(edev, txq)) {
PMD_TX_LOG(ERR, txq,
"hw_bd_cons = %u, chain_cons = %u\n",
hw_bd_cons,
ecore_chain_get_cons_idx(&txq->tx_pbl));
break;
}
txq->sw_tx_cons++; /* Making TXD available */
@ -1007,6 +1083,55 @@ qede_process_tx_compl(struct ecore_dev *edev, struct qede_tx_queue *txq)
return tx_compl;
}
/* Populate scatter gather buffer descriptor fields */
static inline uint16_t qede_encode_sg_bd(struct qede_tx_queue *p_txq,
struct rte_mbuf *m_seg,
uint16_t count,
struct eth_tx_1st_bd *bd1)
{
struct qede_tx_queue *txq = p_txq;
struct eth_tx_2nd_bd *bd2 = NULL;
struct eth_tx_3rd_bd *bd3 = NULL;
struct eth_tx_bd *tx_bd = NULL;
uint16_t nb_segs = count;
dma_addr_t mapping;
/* Check for scattered buffers */
while (m_seg) {
if (nb_segs == 1) {
bd2 = (struct eth_tx_2nd_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(bd2, 0, sizeof(*bd2));
mapping = rte_mbuf_data_dma_addr(m_seg);
bd2->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
bd2->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
bd2->nbytes = rte_cpu_to_le_16(m_seg->data_len);
} else if (nb_segs == 2) {
bd3 = (struct eth_tx_3rd_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(bd3, 0, sizeof(*bd3));
mapping = rte_mbuf_data_dma_addr(m_seg);
bd3->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
bd3->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
bd3->nbytes = rte_cpu_to_le_16(m_seg->data_len);
} else {
tx_bd = (struct eth_tx_bd *)
ecore_chain_produce(&txq->tx_pbl);
memset(tx_bd, 0, sizeof(*tx_bd));
mapping = rte_mbuf_data_dma_addr(m_seg);
tx_bd->addr.hi = rte_cpu_to_le_32(U64_HI(mapping));
tx_bd->addr.lo = rte_cpu_to_le_32(U64_LO(mapping));
tx_bd->nbytes = rte_cpu_to_le_16(m_seg->data_len);
}
nb_segs++;
bd1->data.nbds = nb_segs;
m_seg = m_seg->next;
}
/* Return total scattered buffers */
return nb_segs;
}
uint16_t
qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
@ -1014,12 +1139,14 @@ qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
struct qede_dev *qdev = txq->qdev;
struct ecore_dev *edev = &qdev->edev;
struct qede_fastpath *fp;
struct eth_tx_1st_bd *first_bd;
struct eth_tx_1st_bd *bd1;
struct rte_mbuf *m_seg = NULL;
uint16_t nb_tx_pkts;
uint16_t nb_pkt_sent = 0;
uint16_t bd_prod;
uint16_t idx;
uint16_t tx_count;
uint16_t nb_segs = 0;
fp = &qdev->fp_array[QEDE_RSS_COUNT(qdev) + txq->queue_id];
@ -1029,7 +1156,8 @@ qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
(void)qede_process_tx_compl(edev, txq);
}
nb_tx_pkts = RTE_MIN(nb_pkts, (txq->nb_tx_avail / MAX_NUM_TX_BDS));
nb_tx_pkts = RTE_MIN(nb_pkts, (txq->nb_tx_avail /
ETH_TX_MAX_BDS_PER_NON_LSO_PACKET));
if (unlikely(nb_tx_pkts == 0)) {
PMD_TX_LOG(DEBUG, txq, "Out of BDs nb_pkts=%u avail=%u\n",
nb_pkts, txq->nb_tx_avail);
@ -1041,38 +1169,49 @@ qede_xmit_pkts(void *p_txq, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
/* Fill the entry in the SW ring and the BDs in the FW ring */
idx = TX_PROD(txq);
struct rte_mbuf *mbuf = *tx_pkts++;
txq->sw_tx_ring[idx].mbuf = mbuf;
first_bd = (struct eth_tx_1st_bd *)
ecore_chain_produce(&txq->tx_pbl);
first_bd->data.bd_flags.bitfields =
1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
bd1 = (struct eth_tx_1st_bd *)ecore_chain_produce(&txq->tx_pbl);
/* Zero init struct fields */
bd1->data.bd_flags.bitfields = 0;
bd1->data.bitfields = 0;
bd1->data.bd_flags.bitfields =
1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
/* Map MBUF linear data for DMA and set in the first BD */
QEDE_BD_SET_ADDR_LEN(first_bd, rte_mbuf_data_dma_addr(mbuf),
mbuf->data_len);
QEDE_BD_SET_ADDR_LEN(bd1, rte_mbuf_data_dma_addr(mbuf),
mbuf->pkt_len);
/* Descriptor based VLAN insertion */
if (mbuf->ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
first_bd->data.vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
first_bd->data.bd_flags.bitfields |=
bd1->data.vlan = rte_cpu_to_le_16(mbuf->vlan_tci);
bd1->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
}
/* Offload the IP checksum in the hardware */
if (mbuf->ol_flags & PKT_TX_IP_CKSUM) {
first_bd->data.bd_flags.bitfields |=
bd1->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
}
/* L4 checksum offload (tcp or udp) */
if (mbuf->ol_flags & (PKT_TX_TCP_CKSUM | PKT_TX_UDP_CKSUM)) {
first_bd->data.bd_flags.bitfields |=
bd1->data.bd_flags.bitfields |=
1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
/* IPv6 + extn. -> later */
}
first_bd->data.nbds = MAX_NUM_TX_BDS;
/* Handle fragmented MBUF */
m_seg = mbuf->next;
nb_segs++;
bd1->data.nbds = nb_segs;
/* Encode scatter gather buffer descriptors if required */
nb_segs = qede_encode_sg_bd(txq, m_seg, nb_segs, bd1);
txq->nb_tx_avail = txq->nb_tx_avail - nb_segs;
nb_segs = 0;
txq->sw_tx_prod++;
rte_prefetch0(txq->sw_tx_ring[TX_PROD(txq)].mbuf);
txq->nb_tx_avail--;
bd_prod =
rte_cpu_to_le_16(ecore_chain_get_prod_idx(&txq->tx_pbl));
nb_pkt_sent++;

View File

@ -30,9 +30,6 @@
#define TX_CONS(txq) (txq->sw_tx_cons & NUM_TX_BDS(txq))
#define TX_PROD(txq) (txq->sw_tx_prod & NUM_TX_BDS(txq))
/* Number of TX BDs per packet used currently */
#define MAX_NUM_TX_BDS 1
#define QEDE_DEFAULT_TX_FREE_THRESH 32
#define QEDE_CSUM_ERROR (1 << 0)