baseband/acc200: add LTE processing

Added functions and capability for 4G FEC

Signed-off-by: Nicolas Chautru <nicolas.chautru@intel.com>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
This commit is contained in:
Nicolas Chautru 2022-10-12 10:59:23 -07:00 committed by Akhil Goyal
parent e640f6cdfa
commit bec597b78a

View File

@ -650,6 +650,46 @@ acc200_dev_info_get(struct rte_bbdev *dev,
struct acc_device *d = dev->data->dev_private;
int i;
static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
{
.type = RTE_BBDEV_OP_TURBO_DEC,
.cap.turbo_dec = {
.capability_flags =
RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
RTE_BBDEV_TURBO_CRC_TYPE_24B |
RTE_BBDEV_TURBO_EQUALIZER |
RTE_BBDEV_TURBO_SOFT_OUT_SATURATE |
RTE_BBDEV_TURBO_HALF_ITERATION_EVEN |
RTE_BBDEV_TURBO_CONTINUE_CRC_MATCH |
RTE_BBDEV_TURBO_SOFT_OUTPUT |
RTE_BBDEV_TURBO_EARLY_TERMINATION |
RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
RTE_BBDEV_TURBO_NEG_LLR_1_BIT_SOFT_OUT |
RTE_BBDEV_TURBO_MAP_DEC |
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
RTE_BBDEV_TURBO_DEC_SCATTER_GATHER,
.max_llr_modulus = INT8_MAX,
.num_buffers_src =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
.num_buffers_hard_out =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
.num_buffers_soft_out =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
}
},
{
.type = RTE_BBDEV_OP_TURBO_ENC,
.cap.turbo_enc = {
.capability_flags =
RTE_BBDEV_TURBO_CRC_24B_ATTACH |
RTE_BBDEV_TURBO_RV_INDEX_BYPASS |
RTE_BBDEV_TURBO_RATE_MATCH |
RTE_BBDEV_TURBO_ENC_SCATTER_GATHER,
.num_buffers_src =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
.num_buffers_dst =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
}
},
{
.type = RTE_BBDEV_OP_LDPC_ENC,
.cap.ldpc_enc = {
@ -701,15 +741,17 @@ acc200_dev_info_get(struct rte_bbdev *dev,
/* Exposed number of queues. */
dev_info->num_queues[RTE_BBDEV_OP_NONE] = 0;
dev_info->num_queues[RTE_BBDEV_OP_TURBO_DEC] = 0;
dev_info->num_queues[RTE_BBDEV_OP_TURBO_ENC] = 0;
dev_info->num_queues[RTE_BBDEV_OP_TURBO_DEC] = d->acc_conf.q_ul_4g.num_aqs_per_groups *
d->acc_conf.q_ul_4g.num_qgroups;
dev_info->num_queues[RTE_BBDEV_OP_TURBO_ENC] = d->acc_conf.q_dl_4g.num_aqs_per_groups *
d->acc_conf.q_dl_4g.num_qgroups;
dev_info->num_queues[RTE_BBDEV_OP_LDPC_DEC] = d->acc_conf.q_ul_5g.num_aqs_per_groups *
d->acc_conf.q_ul_5g.num_qgroups;
dev_info->num_queues[RTE_BBDEV_OP_LDPC_ENC] = d->acc_conf.q_dl_5g.num_aqs_per_groups *
d->acc_conf.q_dl_5g.num_qgroups;
dev_info->num_queues[RTE_BBDEV_OP_FFT] = 0;
dev_info->queue_priority[RTE_BBDEV_OP_TURBO_DEC] = 0;
dev_info->queue_priority[RTE_BBDEV_OP_TURBO_ENC] = 0;
dev_info->queue_priority[RTE_BBDEV_OP_TURBO_DEC] = d->acc_conf.q_ul_4g.num_qgroups;
dev_info->queue_priority[RTE_BBDEV_OP_TURBO_ENC] = d->acc_conf.q_dl_4g.num_qgroups;
dev_info->queue_priority[RTE_BBDEV_OP_LDPC_DEC] = d->acc_conf.q_ul_5g.num_qgroups;
dev_info->queue_priority[RTE_BBDEV_OP_LDPC_ENC] = d->acc_conf.q_dl_5g.num_qgroups;
dev_info->queue_priority[RTE_BBDEV_OP_FFT] = 0;
@ -754,6 +796,70 @@ static struct rte_pci_id pci_id_acc200_vf_map[] = {
{.device_id = 0},
};
/* Fill in a frame control word for turbo decoding. */
static inline void
acc200_fcw_td_fill(const struct rte_bbdev_dec_op *op, struct acc_fcw_td *fcw)
{
fcw->fcw_ver = 1;
fcw->num_maps = ACC_FCW_TD_AUTOMAP;
fcw->bypass_sb_deint = !check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE);
if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
/* FIXME for TB block */
fcw->k_pos = op->turbo_dec.tb_params.k_pos;
fcw->k_neg = op->turbo_dec.tb_params.k_neg;
} else {
fcw->k_pos = op->turbo_dec.cb_params.k;
fcw->k_neg = op->turbo_dec.cb_params.k;
}
fcw->c = 1;
fcw->c_neg = 1;
if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
fcw->soft_output_en = 1;
fcw->sw_soft_out_dis = 0;
fcw->sw_et_cont = check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_CONTINUE_CRC_MATCH);
fcw->sw_soft_out_saturation = check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_SOFT_OUT_SATURATE);
if (check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_EQUALIZER)) {
fcw->bypass_teq = 0;
fcw->ea = op->turbo_dec.cb_params.e;
fcw->eb = op->turbo_dec.cb_params.e;
if (op->turbo_dec.rv_index == 0)
fcw->k0_start_col = ACC_FCW_TD_RVIDX_0;
else if (op->turbo_dec.rv_index == 1)
fcw->k0_start_col = ACC_FCW_TD_RVIDX_1;
else if (op->turbo_dec.rv_index == 2)
fcw->k0_start_col = ACC_FCW_TD_RVIDX_2;
else
fcw->k0_start_col = ACC_FCW_TD_RVIDX_3;
} else {
fcw->bypass_teq = 1;
fcw->eb = 64; /* avoid undefined value */
}
} else {
fcw->soft_output_en = 0;
fcw->sw_soft_out_dis = 1;
fcw->bypass_teq = 0;
}
fcw->code_block_mode = 1; /* FIXME */
fcw->turbo_crc_type = check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_CRC_TYPE_24B);
fcw->ext_td_cold_reg_en = 1;
fcw->raw_decoder_input_on = 0;
fcw->max_iter = RTE_MAX((uint8_t) op->turbo_dec.iter_max, 2);
fcw->min_iter = 2;
fcw->half_iter_on = !check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_HALF_ITERATION_EVEN);
fcw->early_stop_en = check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_EARLY_TERMINATION) & !fcw->soft_output_en;
fcw->ext_scale = 0xF;
}
/* Fill in a frame control word for LDPC decoding. */
static inline void
acc200_fcw_ld_fill(struct rte_bbdev_dec_op *op, struct acc_fcw_ld *fcw,
@ -877,7 +983,124 @@ acc200_fcw_ld_fill(struct rte_bbdev_dec_op *op, struct acc_fcw_ld *fcw,
}
static inline int
acc200_dma_desc_ld_fill(struct rte_bbdev_dec_op *op, struct acc_dma_req_desc *desc,
acc200_dma_desc_td_fill(struct rte_bbdev_dec_op *op,
struct acc_dma_req_desc *desc, struct rte_mbuf **input,
struct rte_mbuf *h_output, struct rte_mbuf *s_output,
uint32_t *in_offset, uint32_t *h_out_offset,
uint32_t *s_out_offset, uint32_t *h_out_length,
uint32_t *s_out_length, uint32_t *mbuf_total_left,
uint32_t *seg_total_left, uint8_t r)
{
int next_triplet = 1; /* FCW already done. */
uint16_t k;
uint16_t crc24_overlap = 0;
uint32_t e, kw;
desc->word0 = ACC_DMA_DESC_TYPE;
desc->word1 = 0; /**< Timestamp could be disabled. */
desc->word2 = 0;
desc->word3 = 0;
desc->numCBs = 1;
if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
k = (r < op->turbo_dec.tb_params.c_neg)
? op->turbo_dec.tb_params.k_neg
: op->turbo_dec.tb_params.k_pos;
e = (r < op->turbo_dec.tb_params.cab)
? op->turbo_dec.tb_params.ea
: op->turbo_dec.tb_params.eb;
} else {
k = op->turbo_dec.cb_params.k;
e = op->turbo_dec.cb_params.e;
}
if ((op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
&& !check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
crc24_overlap = 24;
/* Calculates circular buffer size.
* According to 3gpp 36.212 section 5.1.4.2
* Kw = 3 * Kpi,
* where:
* Kpi = nCol * nRow
* where nCol is 32 and nRow can be calculated from:
* D =< nCol * nRow
* where D is the size of each output from turbo encoder block (k + 4).
*/
kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
if (unlikely((*mbuf_total_left == 0) || (*mbuf_total_left < kw))) {
rte_bbdev_log(ERR,
"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
*mbuf_total_left, kw);
return -1;
}
next_triplet = acc_dma_fill_blk_type_in(desc, input, in_offset, kw,
seg_total_left, next_triplet,
check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_DEC_SCATTER_GATHER));
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
desc->data_ptrs[next_triplet - 1].last = 1;
desc->m2dlen = next_triplet;
*mbuf_total_left -= kw;
*h_out_length = ((k - crc24_overlap) >> 3);
next_triplet = acc_dma_fill_blk_type(
desc, h_output, *h_out_offset,
*h_out_length, next_triplet, ACC_DMA_BLKID_OUT_HARD);
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
op->turbo_dec.hard_output.length += *h_out_length;
*h_out_offset += *h_out_length;
/* Soft output. */
if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
if (op->turbo_dec.soft_output.data == 0) {
rte_bbdev_log(ERR, "Soft output is not defined");
return -1;
}
if (check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_EQUALIZER))
*s_out_length = e;
else
*s_out_length = (k * 3) + 12;
next_triplet = acc_dma_fill_blk_type(desc, s_output,
*s_out_offset, *s_out_length, next_triplet,
ACC_DMA_BLKID_OUT_SOFT);
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
op->turbo_dec.soft_output.length += *s_out_length;
*s_out_offset += *s_out_length;
}
desc->data_ptrs[next_triplet - 1].last = 1;
desc->d2mlen = next_triplet - desc->m2dlen;
desc->op_addr = op;
return 0;
}
static inline int
acc200_dma_desc_ld_fill(struct rte_bbdev_dec_op *op,
struct acc_dma_req_desc *desc,
struct rte_mbuf **input, struct rte_mbuf *h_output,
uint32_t *in_offset, uint32_t *h_out_offset,
uint32_t *h_out_length, uint32_t *mbuf_total_left,
@ -1035,6 +1258,47 @@ acc200_dma_desc_ld_update(struct rte_bbdev_dec_op *op,
desc->op_addr = op;
}
/* Enqueue one encode operations for ACC200 device in CB mode */
static inline int
enqueue_enc_one_op_cb(struct acc_queue *q, struct rte_bbdev_enc_op *op,
uint16_t total_enqueued_cbs)
{
union acc_dma_desc *desc = NULL;
int ret;
uint32_t in_offset, out_offset, out_length, mbuf_total_left, seg_total_left;
struct rte_mbuf *input, *output_head, *output;
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
acc_fcw_te_fill(op, &desc->req.fcw_te);
input = op->turbo_enc.input.data;
output_head = output = op->turbo_enc.output.data;
in_offset = op->turbo_enc.input.offset;
out_offset = op->turbo_enc.output.offset;
out_length = 0;
mbuf_total_left = op->turbo_enc.input.length;
seg_total_left = rte_pktmbuf_data_len(op->turbo_enc.input.data) - in_offset;
ret = acc_dma_desc_te_fill(op, &desc->req, &input, output,
&in_offset, &out_offset, &out_length, &mbuf_total_left,
&seg_total_left, 0);
if (unlikely(ret < 0))
return ret;
mbuf_append(output_head, output, out_length);
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_te,
sizeof(desc->req.fcw_te) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
/* One CB (one op) was successfully prepared to enqueue */
return 1;
}
/* Enqueue one encode operations for ACC200 device in CB mode
* multiplexed on the same descriptor.
*/
@ -1147,6 +1411,78 @@ enqueue_ldpc_enc_part_tb(struct acc_queue *q, struct rte_bbdev_enc_op *op,
}
/* Enqueue one encode operations for ACC200 device in TB mode. */
static inline int
enqueue_enc_one_op_tb(struct acc_queue *q, struct rte_bbdev_enc_op *op,
uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
{
union acc_dma_desc *desc = NULL;
int ret;
uint8_t r, c;
uint32_t in_offset, out_offset, out_length, mbuf_total_left,
seg_total_left;
struct rte_mbuf *input, *output_head, *output;
uint16_t current_enqueued_cbs = 0;
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
uint64_t fcw_offset = (desc_idx << 8) + ACC_DESC_FCW_OFFSET;
acc_fcw_te_fill(op, &desc->req.fcw_te);
input = op->turbo_enc.input.data;
output_head = output = op->turbo_enc.output.data;
in_offset = op->turbo_enc.input.offset;
out_offset = op->turbo_enc.output.offset;
out_length = 0;
mbuf_total_left = op->turbo_enc.input.length;
c = op->turbo_enc.tb_params.c;
r = op->turbo_enc.tb_params.r;
while (mbuf_total_left > 0 && r < c) {
seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
/* Set up DMA descriptor */
desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
desc->req.data_ptrs[0].blen = ACC_FCW_TE_BLEN;
ret = acc_dma_desc_te_fill(op, &desc->req, &input, output,
&in_offset, &out_offset, &out_length,
&mbuf_total_left, &seg_total_left, r);
if (unlikely(ret < 0))
return ret;
mbuf_append(output_head, output, out_length);
/* Set total number of CBs in TB */
desc->req.cbs_in_tb = cbs_in_tb;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_te,
sizeof(desc->req.fcw_te) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
if (seg_total_left == 0) {
/* Go to the next mbuf */
input = input->next;
in_offset = 0;
output = output->next;
out_offset = 0;
}
total_enqueued_cbs++;
current_enqueued_cbs++;
r++;
}
/* Set SDone on last CB descriptor for TB mode. */
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
return current_enqueued_cbs;
}
/* Enqueue one encode operations for ACC200 device in TB mode.
* returns the number of descs used.
*/
@ -1214,6 +1550,62 @@ enqueue_ldpc_enc_one_op_tb(struct acc_queue *q, struct rte_bbdev_enc_op *op,
/** Enqueue one decode operations for ACC200 device in CB mode. */
static inline int
enqueue_dec_one_op_cb(struct acc_queue *q, struct rte_bbdev_dec_op *op,
uint16_t total_enqueued_cbs)
{
union acc_dma_desc *desc = NULL;
int ret;
uint32_t in_offset, h_out_offset, s_out_offset, s_out_length,
h_out_length, mbuf_total_left, seg_total_left;
struct rte_mbuf *input, *h_output_head, *h_output,
*s_output_head, *s_output;
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
acc200_fcw_td_fill(op, &desc->req.fcw_td);
input = op->turbo_dec.input.data;
h_output_head = h_output = op->turbo_dec.hard_output.data;
s_output_head = s_output = op->turbo_dec.soft_output.data;
in_offset = op->turbo_dec.input.offset;
h_out_offset = op->turbo_dec.hard_output.offset;
s_out_offset = op->turbo_dec.soft_output.offset;
h_out_length = s_out_length = 0;
mbuf_total_left = op->turbo_dec.input.length;
seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
/* Set up DMA descriptor */
desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
ret = acc200_dma_desc_td_fill(op, &desc->req, &input, h_output,
s_output, &in_offset, &h_out_offset, &s_out_offset,
&h_out_length, &s_out_length, &mbuf_total_left,
&seg_total_left, 0);
if (unlikely(ret < 0))
return ret;
/* Hard output */
mbuf_append(h_output_head, h_output, h_out_length);
/* Soft output */
if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT))
mbuf_append(s_output_head, s_output, s_out_length);
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_td,
sizeof(desc->req.fcw_td));
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
/* One CB (one op) was successfully prepared to enqueue */
return 1;
}
/** Enqueue one decode operations for ACC200 device in CB mode */
static inline int
enqueue_ldpc_dec_one_op_cb(struct acc_queue *q, struct rte_bbdev_dec_op *op,
uint16_t total_enqueued_cbs, bool same_op)
{
@ -1396,6 +1788,139 @@ enqueue_ldpc_dec_one_op_tb(struct acc_queue *q, struct rte_bbdev_dec_op *op,
return current_enqueued_cbs;
}
/* Enqueue one decode operations for ACC200 device in TB mode */
static inline int
enqueue_dec_one_op_tb(struct acc_queue *q, struct rte_bbdev_dec_op *op,
uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
{
union acc_dma_desc *desc = NULL;
int ret;
uint8_t r, c;
uint32_t in_offset, h_out_offset, s_out_offset, s_out_length,
h_out_length, mbuf_total_left, seg_total_left;
struct rte_mbuf *input, *h_output_head, *h_output,
*s_output_head, *s_output;
uint16_t current_enqueued_cbs = 0;
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
uint64_t fcw_offset = (desc_idx << 8) + ACC_DESC_FCW_OFFSET;
acc200_fcw_td_fill(op, &desc->req.fcw_td);
input = op->turbo_dec.input.data;
h_output_head = h_output = op->turbo_dec.hard_output.data;
s_output_head = s_output = op->turbo_dec.soft_output.data;
in_offset = op->turbo_dec.input.offset;
h_out_offset = op->turbo_dec.hard_output.offset;
s_out_offset = op->turbo_dec.soft_output.offset;
h_out_length = s_out_length = 0;
mbuf_total_left = op->turbo_dec.input.length;
c = op->turbo_dec.tb_params.c;
r = op->turbo_dec.tb_params.r;
while (mbuf_total_left > 0 && r < c) {
seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
/* Set up DMA descriptor */
desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
desc->req.data_ptrs[0].blen = ACC_FCW_TD_BLEN;
ret = acc200_dma_desc_td_fill(op, &desc->req, &input,
h_output, s_output, &in_offset, &h_out_offset,
&s_out_offset, &h_out_length, &s_out_length,
&mbuf_total_left, &seg_total_left, r);
if (unlikely(ret < 0))
return ret;
/* Hard output */
mbuf_append(h_output_head, h_output, h_out_length);
/* Soft output */
if (check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_SOFT_OUTPUT))
mbuf_append(s_output_head, s_output, s_out_length);
/* Set total number of CBs in TB */
desc->req.cbs_in_tb = cbs_in_tb;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_td,
sizeof(desc->req.fcw_td) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
if (seg_total_left == 0) {
/* Go to the next mbuf */
input = input->next;
in_offset = 0;
h_output = h_output->next;
h_out_offset = 0;
if (check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
s_output = s_output->next;
s_out_offset = 0;
}
}
total_enqueued_cbs++;
current_enqueued_cbs++;
r++;
}
/* Set SDone on last CB descriptor for TB mode */
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
return current_enqueued_cbs;
}
/* Enqueue encode operations for ACC200 device in CB mode. */
static uint16_t
acc200_enqueue_enc_cb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
int32_t avail = acc_ring_avail_enq(q);
uint16_t i;
union acc_dma_desc *desc;
int ret;
for (i = 0; i < num; ++i) {
/* Check if there are available space for further processing */
if (unlikely(avail - 1 < 0)) {
acc_enqueue_ring_full(q_data);
break;
}
avail -= 1;
ret = enqueue_enc_one_op_cb(q, ops[i], i);
if (ret < 0) {
acc_enqueue_invalid(q_data);
break;
}
}
if (unlikely(i == 0))
return 0; /* Nothing to enqueue */
/* Set SDone in last CB in enqueued ops for CB mode*/
desc = q->ring_addr + ((q->sw_ring_head + i - 1)
& q->sw_ring_wrap_mask);
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
acc_dma_enqueue(q, i, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/** Enqueue encode operations for ACC200 device in CB mode. */
static inline uint16_t
acc200_enqueue_ldpc_enc_cb(struct rte_bbdev_queue_data *q_data,
@ -1443,6 +1968,45 @@ acc200_enqueue_ldpc_enc_cb(struct rte_bbdev_queue_data *q_data,
return i;
}
/* Enqueue encode operations for ACC200 device in TB mode. */
static uint16_t
acc200_enqueue_enc_tb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
int32_t avail = acc_ring_avail_enq(q);
uint16_t i, enqueued_cbs = 0;
uint8_t cbs_in_tb;
int ret;
for (i = 0; i < num; ++i) {
cbs_in_tb = get_num_cbs_in_tb_enc(&ops[i]->turbo_enc);
/* Check if there are available space for further processing */
if (unlikely((avail - cbs_in_tb < 0) || (cbs_in_tb == 0))) {
acc_enqueue_ring_full(q_data);
break;
}
avail -= cbs_in_tb;
ret = enqueue_enc_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb);
if (ret <= 0) {
acc_enqueue_invalid(q_data);
break;
}
enqueued_cbs += ret;
}
if (unlikely(enqueued_cbs == 0))
return 0; /* Nothing to enqueue */
acc_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Enqueue LDPC encode operations for ACC200 device in TB mode. */
static uint16_t
acc200_enqueue_ldpc_enc_tb(struct rte_bbdev_queue_data *q_data,
@ -1482,6 +2046,20 @@ acc200_enqueue_ldpc_enc_tb(struct rte_bbdev_queue_data *q_data,
return i;
}
/* Enqueue encode operations for ACC200 device. */
static uint16_t
acc200_enqueue_enc(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
int32_t aq_avail = acc_aq_avail(q_data, num);
if (unlikely((aq_avail <= 0) || (num == 0)))
return 0;
if (ops[0]->turbo_enc.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
return acc200_enqueue_enc_tb(q_data, ops, num);
else
return acc200_enqueue_enc_cb(q_data, ops, num);
}
/* Enqueue encode operations for ACC200 device. */
static uint16_t
acc200_enqueue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
@ -1496,6 +2074,47 @@ acc200_enqueue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
return acc200_enqueue_ldpc_enc_cb(q_data, ops, num);
}
/* Enqueue decode operations for ACC200 device in CB mode. */
static uint16_t
acc200_enqueue_dec_cb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
int32_t avail = acc_ring_avail_enq(q);
uint16_t i;
union acc_dma_desc *desc;
int ret;
for (i = 0; i < num; ++i) {
/* Check if there are available space for further processing. */
if (unlikely(avail - 1 < 0))
break;
avail -= 1;
ret = enqueue_dec_one_op_cb(q, ops[i], i);
if (ret < 0)
break;
}
if (unlikely(i == 0))
return 0; /* Nothing to enqueue. */
/* Set SDone in last CB in enqueued ops for CB mode. */
desc = q->ring_addr + ((q->sw_ring_head + i - 1)
& q->sw_ring_wrap_mask);
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
acc_dma_enqueue(q, i, &q_data->queue_stats);
/* Update stats. */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Enqueue decode operations for ACC200 device in TB mode. */
static uint16_t
acc200_enqueue_ldpc_dec_tb(struct rte_bbdev_queue_data *q_data,
@ -1580,6 +2199,58 @@ acc200_enqueue_ldpc_dec_cb(struct rte_bbdev_queue_data *q_data,
return i;
}
/* Enqueue decode operations for ACC200 device in TB mode */
static uint16_t
acc200_enqueue_dec_tb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
int32_t avail = acc_ring_avail_enq(q);
uint16_t i, enqueued_cbs = 0;
uint8_t cbs_in_tb;
int ret;
for (i = 0; i < num; ++i) {
cbs_in_tb = get_num_cbs_in_tb_dec(&ops[i]->turbo_dec);
/* Check if there are available space for further processing */
if (unlikely((avail - cbs_in_tb < 0) || (cbs_in_tb == 0))) {
acc_enqueue_ring_full(q_data);
break;
}
avail -= cbs_in_tb;
ret = enqueue_dec_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb);
if (ret <= 0) {
acc_enqueue_invalid(q_data);
break;
}
enqueued_cbs += ret;
}
acc_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Enqueue decode operations for ACC200 device. */
static uint16_t
acc200_enqueue_dec(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
int32_t aq_avail = acc_aq_avail(q_data, num);
if (unlikely((aq_avail <= 0) || (num == 0)))
return 0;
if (ops[0]->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
return acc200_enqueue_dec_tb(q_data, ops, num);
else
return acc200_enqueue_dec_cb(q_data, ops, num);
}
/* Enqueue decode operations for ACC200 device. */
static uint16_t
acc200_enqueue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
@ -1712,6 +2383,57 @@ dequeue_enc_one_op_tb(struct acc_queue *q, struct rte_bbdev_enc_op **ref_op,
return current_dequeued_descs;
}
/* Dequeue one decode operation from ACC200 device in CB mode. */
static inline int
dequeue_dec_one_op_cb(struct rte_bbdev_queue_data *q_data,
struct acc_queue *q, struct rte_bbdev_dec_op **ref_op,
uint16_t dequeued_cbs, uint32_t *aq_dequeued)
{
union acc_dma_desc *desc, atom_desc;
union acc_dma_rsp_desc rsp;
struct rte_bbdev_dec_op *op;
desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs) & q->sw_ring_wrap_mask);
atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc, __ATOMIC_RELAXED);
/* Check fdone bit. */
if (!(atom_desc.rsp.val & ACC_FDONE))
return -1;
rsp.val = atom_desc.rsp.val;
rte_bbdev_log_debug("Resp. desc %p: %x\n", desc, rsp.val);
/* Dequeue. */
op = desc->req.op_addr;
/* Clearing status, it will be set based on response. */
op->status = 0;
op->status |= ((rsp.input_err) ? (1 << RTE_BBDEV_DATA_ERROR) : 0);
op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0);
if (op->status != 0) {
/* These errors are not expected. */
q_data->queue_stats.dequeue_err_count++;
}
/* CRC invalid if error exists. */
if (!op->status)
op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR;
op->turbo_dec.iter_count = (uint8_t) rsp.iter_cnt;
/* Check if this is the last desc in batch (Atomic Queue). */
if (desc->req.last_desc_in_batch) {
(*aq_dequeued)++;
desc->req.last_desc_in_batch = 0;
}
desc->rsp.val = ACC_DMA_DESC_TYPE;
desc->rsp.add_info_0 = 0;
desc->rsp.add_info_1 = 0;
*ref_op = op;
/* One CB (op) was successfully dequeued. */
return 1;
}
/* Dequeue one decode operations from ACC200 device in CB mode. */
static inline int
dequeue_ldpc_dec_one_op_cb(struct rte_bbdev_queue_data *q_data,
@ -1853,6 +2575,48 @@ dequeue_dec_one_op_tb(struct acc_queue *q, struct rte_bbdev_dec_op **ref_op,
return cb_idx;
}
/* Dequeue encode operations from ACC200 device. */
static uint16_t
acc200_dequeue_enc(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
uint32_t avail = acc_ring_avail_deq(q);
uint32_t aq_dequeued = 0;
uint16_t i, dequeued_ops = 0, dequeued_descs = 0;
int ret, cbm;
struct rte_bbdev_enc_op *op;
if (avail == 0)
return 0;
op = (q->ring_addr + (q->sw_ring_tail &
q->sw_ring_wrap_mask))->req.op_addr;
cbm = op->turbo_enc.code_block_mode;
for (i = 0; i < num; i++) {
if (cbm == RTE_BBDEV_TRANSPORT_BLOCK)
ret = dequeue_enc_one_op_tb(q, &ops[dequeued_ops],
&dequeued_ops, &aq_dequeued,
&dequeued_descs);
else
ret = dequeue_enc_one_op_cb(q, &ops[dequeued_ops],
&dequeued_ops, &aq_dequeued,
&dequeued_descs);
if (ret < 0)
break;
if (dequeued_ops >= num)
break;
}
q->aq_dequeued += aq_dequeued;
q->sw_ring_tail += dequeued_descs;
/* Update enqueue stats */
q_data->queue_stats.dequeued_count += dequeued_ops;
return dequeued_ops;
}
/* Dequeue LDPC encode operations from ACC200 device. */
static uint16_t
acc200_dequeue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
@ -1893,6 +2657,46 @@ acc200_dequeue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
return dequeued_ops;
}
/* Dequeue decode operations from ACC200 device. */
static uint16_t
acc200_dequeue_dec(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc_queue *q = q_data->queue_private;
uint16_t dequeue_num;
uint32_t avail = acc_ring_avail_deq(q);
uint32_t aq_dequeued = 0;
uint16_t i;
uint16_t dequeued_cbs = 0;
struct rte_bbdev_dec_op *op;
int ret;
dequeue_num = (avail < num) ? avail : num;
for (i = 0; i < dequeue_num; ++i) {
op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
& q->sw_ring_wrap_mask))->req.op_addr;
if (op->turbo_dec.code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs,
&aq_dequeued);
else
ret = dequeue_dec_one_op_cb(q_data, q, &ops[i],
dequeued_cbs, &aq_dequeued);
if (ret <= 0)
break;
dequeued_cbs += ret;
}
q->aq_dequeued += aq_dequeued;
q->sw_ring_tail += dequeued_cbs;
/* Update enqueue stats */
q_data->queue_stats.dequeued_count += i;
return i;
}
/* Dequeue decode operations from ACC200 device. */
static uint16_t
acc200_dequeue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
@ -1941,6 +2745,10 @@ acc200_bbdev_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
dev->dev_ops = &acc200_bbdev_ops;
dev->enqueue_enc_ops = acc200_enqueue_enc;
dev->enqueue_dec_ops = acc200_enqueue_dec;
dev->dequeue_enc_ops = acc200_dequeue_enc;
dev->dequeue_dec_ops = acc200_dequeue_dec;
dev->enqueue_ldpc_enc_ops = acc200_enqueue_ldpc_enc;
dev->enqueue_ldpc_dec_ops = acc200_enqueue_ldpc_dec;
dev->dequeue_ldpc_enc_ops = acc200_dequeue_ldpc_enc;