baseband/acc200: introduce ACC200

Introduced stubs for device driver for the ACC200
integrated VRAN accelerator on SPR-EEC

Signed-off-by: Nicolas Chautru <nicolas.chautru@intel.com>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
This commit is contained in:
Nicolas Chautru 2022-10-12 10:59:18 -07:00 committed by Akhil Goyal
parent dcf43d2412
commit c2d93488c7
9 changed files with 460 additions and 1 deletions

View File

@ -1343,6 +1343,8 @@ F: drivers/baseband/acc/
F: doc/guides/bbdevs/acc100.rst
F: doc/guides/bbdevs/features/acc100.ini
F: doc/guides/bbdevs/features/acc101.ini
F: doc/guides/bbdevs/acc200.rst
F: doc/guides/bbdevs/features/acc200.ini
Null baseband
M: Nicolas Chautru <nicolas.chautru@intel.com>

View File

@ -0,0 +1,260 @@
.. SPDX-License-Identifier: BSD-3-Clause
Copyright(c) 2022 Intel Corporation
.. include:: <isonum.txt>
Intel\ |reg| ACC200 vRAN Dedicated Accelerator Poll Mode Driver
===============================================================
The Intel\ |reg| vRAN Dedicated Accelerator ACC200 peripheral enables
cost-effective 4G and 5G next-generation virtualized Radio Access Network (vRAN)
solutions integrated on Sapphire Rapids Edge Enhanced Processor (SPR-EE)
Intel\ |reg| 7 based Xeon\ |reg| multi-core server processor.
Features
--------
The ACC200 includes a 5G Low Density Parity Check (LDPC) encoder/decoder,
rate match/dematch, Hybrid Automatic Repeat Request (HARQ) with access to DDR
memory for buffer management, a 4G Turbo encoder/decoder,
a Fast Fourier Transform (FFT) block providing DFT/iDFT processing offload
for the 5G Sounding Reference Signal (SRS), a Queue Manager (QMGR),
and a DMA subsystem.
There is no dedicated on-card memory for HARQ,
this is using coherent memory on the CPU side.
These correspond to the following features exposed by the PMD:
- LDPC Encode in the Downlink (5GNR)
- LDPC Decode in the Uplink (5GNR)
- Turbo Encode in the Downlink (4G)
- Turbo Decode in the Uplink (4G)
- FFT processing
- SR-IOV with 16 VFs per PF
- Maximum of 256 queues per VF
- MSI
ACC200 PMD supports the following bbdev capabilities:
* For the LDPC encode operation:
- ``RTE_BBDEV_LDPC_CRC_24B_ATTACH``: set to attach CRC24B to CB(s).
- ``RTE_BBDEV_LDPC_RATE_MATCH``: if set then do not do Rate Match bypass.
- ``RTE_BBDEV_LDPC_INTERLEAVER_BYPASS``: if set then bypass interleaver.
* For the LDPC decode operation:
- ``RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK``: check CRC24B from CB(s).
- ``RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP``: drops CRC24B bits appended while decoding.
- ``RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK``: check CRC24A from CB(s).
- ``RTE_BBDEV_LDPC_CRC_TYPE_16_CHECK``: check CRC16 from CB(s).
- ``RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE``: provides an input for HARQ combining.
- ``RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE``: provides an input for HARQ combining.
- ``RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE``: disable early termination.
- ``RTE_BBDEV_LDPC_DEC_SCATTER_GATHER``: supports scatter-gather for input/output data.
- ``RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION``: supports compression of the HARQ input/output.
- ``RTE_BBDEV_LDPC_LLR_COMPRESSION``: supports LLR input compression.
* For the turbo encode operation:
- ``RTE_BBDEV_TURBO_CRC_24B_ATTACH``: set to attach CRC24B to CB(s).
- ``RTE_BBDEV_TURBO_RATE_MATCH``: if set then do not do Rate Match bypass.
- ``RTE_BBDEV_TURBO_ENC_INTERRUPTS``: set for encoder dequeue interrupts.
- ``RTE_BBDEV_TURBO_RV_INDEX_BYPASS``: set to bypass RV index.
- ``RTE_BBDEV_TURBO_ENC_SCATTER_GATHER``: supports scatter-gather for input/output data.
* For the turbo decode operation:
- ``RTE_BBDEV_TURBO_CRC_TYPE_24B``: check CRC24B from CB(s).
- ``RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE``: perform subblock de-interleave.
- ``RTE_BBDEV_TURBO_DEC_INTERRUPTS``: set for decoder dequeue interrupts.
- ``RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN``: set if negative LLR input is supported.
- ``RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP``: keep CRC24B bits appended while decoding.
- ``RTE_BBDEV_TURBO_DEC_CRC_24B_DROP``: option to drop the code block CRC after decoding.
- ``RTE_BBDEV_TURBO_EARLY_TERMINATION``: set early termination feature.
- ``RTE_BBDEV_TURBO_DEC_SCATTER_GATHER``: supports scatter-gather for input/output data.
- ``RTE_BBDEV_TURBO_HALF_ITERATION_EVEN``: set half iteration granularity.
- ``RTE_BBDEV_TURBO_SOFT_OUTPUT``: set the APP LLR soft output.
- ``RTE_BBDEV_TURBO_EQUALIZER``: set the turbo equalizer feature.
- ``RTE_BBDEV_TURBO_SOFT_OUT_SATURATE``: set the soft output saturation.
- ``RTE_BBDEV_TURBO_CONTINUE_CRC_MATCH``: set to run an extra odd iteration after CRC match.
- ``RTE_BBDEV_TURBO_NEG_LLR_1_BIT_SOFT_OUT``: set if negative APP LLR output supported.
- ``RTE_BBDEV_TURBO_MAP_DEC``: supports flexible parallel MAP engine decoding.
* For the FFT operation:
- ``RTE_BBDEV_FFT_WINDOWING``: flexible windowing capability.
- ``RTE_BBDEV_FFT_CS_ADJUSTMENT``: flexible adjustment of Cyclic Shift time offset.
- ``RTE_BBDEV_FFT_DFT_BYPASS``: set for bypass the DFT and get directly into iDFT input.
- ``RTE_BBDEV_FFT_IDFT_BYPASS``: set for bypass the IDFT and get directly the DFT output.
- ``RTE_BBDEV_FFT_WINDOWING_BYPASS``: set for bypass time domain windowing.
Installation
------------
Section 3 of the DPDK manual provides instructions on installing and compiling DPDK.
DPDK requires hugepages to be configured as detailed in section 2 of the DPDK manual.
The bbdev test application has been tested with a configuration 40 x 1GB hugepages.
The hugepage configuration of a server may be examined using:
.. code-block:: console
grep Huge* /proc/meminfo
Initialization
--------------
When the device first powers up, its PCI Physical Functions (PF)
can be listed through these commands for ACC200:
.. code-block:: console
sudo lspci -vd8086:57c0
The physical and virtual functions are compatible with Linux UIO drivers:
``vfio`` and ``igb_uio``.
However, in order to work the 5G/4G FEC device first needs to be bound
to one of these Linux drivers through DPDK.
Bind PF UIO driver(s)
~~~~~~~~~~~~~~~~~~~~~
Install the DPDK igb_uio driver, bind it with the PF PCI device ID and use
``lspci`` to confirm the PF device is under use by ``igb_uio`` DPDK UIO driver.
The igb_uio driver may be bound to the PF PCI device using one of two methods
for ACC200:
#. PCI functions (physical or virtual, depending on the use case) can be bound
to the UIO driver by repeating this command for every function.
.. code-block:: console
cd <dpdk-top-level-directory>
insmod build/kmod/igb_uio.ko
echo "8086 57c0" > /sys/bus/pci/drivers/igb_uio/new_id
lspci -vd8086:57c0
#. Another way to bind PF with DPDK UIO driver is by using the ``dpdk-devbind.py`` tool
.. code-block:: console
cd <dpdk-top-level-directory>
usertools/dpdk-devbind.py -b igb_uio 0000:f7:00.0
where the PCI device ID (example: 0000:f7:00.0) is obtained using ``lspci -vd8086:57c0``.
In a similar way the PF may be bound with vfio-pci as any PCIe device.
Enable Virtual Functions
~~~~~~~~~~~~~~~~~~~~~~~~
Now, it should be visible in the printouts that PCI PF is under igb_uio control
"``Kernel driver in use: igb_uio``"
To show the number of available VFs on the device, read ``sriov_totalvfs`` file.
.. code-block:: console
cat /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/sriov_totalvfs
where ``0000\:<b>\:<d>.<f>`` is the PCI device ID
To enable VFs via igb_uio, echo the number of virtual functions intended
to enable to ``max_vfs`` file.
.. code-block:: console
echo <num-of-vfs> > /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/max_vfs
Afterwards, all VFs must be bound to appropriate UIO drivers as required,
same way it was done with the physical function previously.
Enabling SR-IOV via VFIO driver is pretty much the same,
except that the file name is different:
.. code-block:: console
echo <num-of-vfs> > /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/sriov_numvfs
Configure the VFs through PF
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The PCI virtual functions must be configured before working or getting assigned
to VMs/Containers.
The configuration involves allocating the number of hardware queues, priorities,
load balance, bandwidth and other settings necessary for the device
to perform FEC functions.
This configuration needs to be executed at least once after reboot or PCI FLR
and can be achieved by using the functions ``rte_acc200_configure()``,
which sets up the parameters defined in the compatible ``acc200_conf`` structure.
Test Application
----------------
The bbdev class is provided with a test application, ``test-bbdev.py``
and range of test data for testing the functionality of the device,
depending on the device's capabilities.
The test application is located under app/test-bbdev folder
and has the following options:
.. code-block:: console
"-p", "--testapp-path": specifies path to the bbdev test app.
"-e", "--eal-params": EAL arguments which are passed to the test app.
"-t", "--timeout": Timeout in seconds (default=300).
"-c", "--test-cases": Defines test cases to run. Run all if not specified.
"-v", "--test-vector": Test vector path.
"-n", "--num-ops": Number of operations to process on device (default=32).
"-b", "--burst-size": Operations enqueue/dequeue burst size (default=32).
"-s", "--snr": SNR in dB used when generating LLRs for bler tests.
"-s", "--iter_max": Number of iterations for LDPC decoder.
"-l", "--num-lcores": Number of lcores to run (default=16).
"-i", "--init-device": Initialise PF device with default values.
To execute the test application tool using simple decode or encode data,
type one of the following:
.. code-block:: console
./test-bbdev.py -c validation -n 64 -b 1 -v ./ldpc_dec_default.data
./test-bbdev.py -c validation -n 64 -b 1 -v ./ldpc_enc_default.data
The test application ``test-bbdev.py``, supports the ability to configure the
PF device with a default set of values, if the "-i" or "- -init-device" option
is included. The default values are defined in test_bbdev_perf.c.
Test Vectors
~~~~~~~~~~~~
In addition to the simple LDPC decoder and LDPC encoder tests,
bbdev also provides a range of additional tests under the test_vectors folder,
which may be useful.
The results of these tests will depend on the device capabilities which may
cause some test cases to be skipped, but no failure should be reported.
Alternate Baseband Device configuration tool
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
On top of the embedded configuration feature supported in test-bbdev using
"- -init-device" option mentioned above, there is also a tool available
to perform that device configuration using a companion application.
The ``pf_bb_config`` application notably enables then to run bbdev-test
from the VF and not only limited to the PF as captured above.
See for more details: https://github.com/intel/pf-bb-config
Specifically for the bbdev ACC200 PMD, the command below can be used:
.. code-block:: console
pf_bb_config ACC200 -c ./acc200/acc200_config_vf_5g.cfg
test-bbdev.py -e="-c 0xff0 -a${VF_PCI_ADDR}" -c validation -n 64 -b 64 -l 1 -v ./ldpc_dec_default.data

View File

@ -0,0 +1,14 @@
;
; Supported features of the 'acc200' bbdev driver.
;
; Refer to default.ini for the full list of available PMD features.
;
[Features]
Turbo Decoder (4G) = Y
Turbo Encoder (4G) = Y
LDPC Decoder (5G) = Y
LDPC Encoder (5G) = Y
LLR/HARQ Compression = Y
FFT/SRS = Y
External DDR Access = N
HW Accelerated = Y

View File

@ -11,5 +11,6 @@ Turbo Encoder (4G) =
LDPC Decoder (5G) =
LDPC Encoder (5G) =
LLR/HARQ Compression =
FFT/SRS =
External DDR Access =
HW Accelerated =

View File

@ -14,4 +14,5 @@ Baseband Device Drivers
fpga_lte_fec
fpga_5gnr_fec
acc100
acc200
la12xx

View File

@ -237,6 +237,12 @@ New Features
``rte_bbdev_enqueue_fft_ops``, ``rte_bbdev_dequeue_fft_ops``,
and related structures.
* **Added Intel ACC200 bbdev driver.**
Added a new ``acc200`` bbdev driver for the Intel\ |reg| ACC200 accelerator
integrated on SPR-EE. See the
:doc:`../bbdevs/acc200` guide for more details on this new driver.
* **Added eventdev adapter instance get API.**
* Added ``rte_event_eth_rx_adapter_instance_get`` to get Rx adapter

View File

@ -0,0 +1,32 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2022 Intel Corporation
*/
#ifndef _RTE_ACC200_PMD_H_
#define _RTE_ACC200_PMD_H_
#include "acc_common.h"
/* Helper macro for logging */
#define rte_bbdev_log(level, fmt, ...) \
rte_log(RTE_LOG_ ## level, acc200_logtype, fmt "\n", \
##__VA_ARGS__)
#ifdef RTE_LIBRTE_BBDEV_DEBUG
#define rte_bbdev_log_debug(fmt, ...) \
rte_bbdev_log(DEBUG, "acc200_pmd: " fmt, \
##__VA_ARGS__)
#else
#define rte_bbdev_log_debug(fmt, ...)
#endif
/* ACC200 PF and VF driver names */
#define ACC200PF_DRIVER_NAME intel_acc200_pf
#define ACC200VF_DRIVER_NAME intel_acc200_vf
/* ACC200 PCI vendor & device IDs */
#define RTE_ACC200_VENDOR_ID (0x8086)
#define RTE_ACC200_PF_DEVICE_ID (0x57C0)
#define RTE_ACC200_VF_DEVICE_ID (0x57C1)
#endif /* _RTE_ACC200_PMD_H_ */

View File

@ -3,6 +3,6 @@
deps += ['bbdev', 'bus_vdev', 'ring', 'pci', 'bus_pci']
sources = files('rte_acc100_pmd.c')
sources = files('rte_acc100_pmd.c', 'rte_acc200_pmd.c')
headers = files('rte_acc100_cfg.h')

View File

@ -0,0 +1,143 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2022 Intel Corporation
*/
#include <unistd.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_dev.h>
#include <rte_malloc.h>
#include <rte_mempool.h>
#include <rte_byteorder.h>
#include <rte_errno.h>
#include <rte_branch_prediction.h>
#include <rte_hexdump.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#ifdef RTE_BBDEV_OFFLOAD_COST
#include <rte_cycles.h>
#endif
#include <rte_bbdev.h>
#include <rte_bbdev_pmd.h>
#include "acc200_pmd.h"
#ifdef RTE_LIBRTE_BBDEV_DEBUG
RTE_LOG_REGISTER_DEFAULT(acc200_logtype, DEBUG);
#else
RTE_LOG_REGISTER_DEFAULT(acc200_logtype, NOTICE);
#endif
static int
acc200_dev_close(struct rte_bbdev *dev)
{
RTE_SET_USED(dev);
/* Ensure all in flight HW transactions are completed. */
usleep(ACC_LONG_WAIT);
return 0;
}
static const struct rte_bbdev_ops acc200_bbdev_ops = {
.close = acc200_dev_close,
};
/* ACC200 PCI PF address map. */
static struct rte_pci_id pci_id_acc200_pf_map[] = {
{
RTE_PCI_DEVICE(RTE_ACC200_VENDOR_ID, RTE_ACC200_PF_DEVICE_ID)
},
{.device_id = 0},
};
/* ACC200 PCI VF address map. */
static struct rte_pci_id pci_id_acc200_vf_map[] = {
{
RTE_PCI_DEVICE(RTE_ACC200_VENDOR_ID, RTE_ACC200_VF_DEVICE_ID)
},
{.device_id = 0},
};
/* Initialization Function. */
static void
acc200_bbdev_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
{
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
dev->dev_ops = &acc200_bbdev_ops;
((struct acc_device *) dev->data->dev_private)->pf_device =
!strcmp(drv->driver.name,
RTE_STR(ACC200PF_DRIVER_NAME));
((struct acc_device *) dev->data->dev_private)->mmio_base =
pci_dev->mem_resource[0].addr;
rte_bbdev_log_debug("Init device %s [%s] @ vaddr %p paddr %#"PRIx64"",
drv->driver.name, dev->data->name,
(void *)pci_dev->mem_resource[0].addr,
pci_dev->mem_resource[0].phys_addr);
}
static int acc200_pci_probe(struct rte_pci_driver *pci_drv,
struct rte_pci_device *pci_dev)
{
struct rte_bbdev *bbdev = NULL;
char dev_name[RTE_BBDEV_NAME_MAX_LEN];
if (pci_dev == NULL) {
rte_bbdev_log(ERR, "NULL PCI device");
return -EINVAL;
}
rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
/* Allocate memory to be used privately by drivers. */
bbdev = rte_bbdev_allocate(pci_dev->device.name);
if (bbdev == NULL)
return -ENODEV;
/* allocate device private memory. */
bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
sizeof(struct acc_device), RTE_CACHE_LINE_SIZE,
pci_dev->device.numa_node);
if (bbdev->data->dev_private == NULL) {
rte_bbdev_log(CRIT,
"Allocate of %zu bytes for device \"%s\" failed",
sizeof(struct acc_device), dev_name);
rte_bbdev_release(bbdev);
return -ENOMEM;
}
/* Fill HW specific part of device structure. */
bbdev->device = &pci_dev->device;
bbdev->intr_handle = pci_dev->intr_handle;
bbdev->data->socket_id = pci_dev->device.numa_node;
/* Invoke ACC200 device initialization function. */
acc200_bbdev_init(bbdev, pci_drv);
rte_bbdev_log_debug("Initialised bbdev %s (id = %u)",
dev_name, bbdev->data->dev_id);
return 0;
}
static struct rte_pci_driver acc200_pci_pf_driver = {
.probe = acc200_pci_probe,
.remove = acc_pci_remove,
.id_table = pci_id_acc200_pf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING
};
static struct rte_pci_driver acc200_pci_vf_driver = {
.probe = acc200_pci_probe,
.remove = acc_pci_remove,
.id_table = pci_id_acc200_vf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING
};
RTE_PMD_REGISTER_PCI(ACC200PF_DRIVER_NAME, acc200_pci_pf_driver);
RTE_PMD_REGISTER_PCI_TABLE(ACC200PF_DRIVER_NAME, pci_id_acc200_pf_map);
RTE_PMD_REGISTER_PCI(ACC200VF_DRIVER_NAME, acc200_pci_vf_driver);
RTE_PMD_REGISTER_PCI_TABLE(ACC200VF_DRIVER_NAME, pci_id_acc200_vf_map);