igb: enable Rx queue interrupts for PF

The patch does below for igb PF:
- Setup NIC to generate MSI-X interrupts
- Set the IVAR register to map interrupt causes to vectors
- Implement interrupt enable/disable functions

Signed-off-by: Danny Zhou <danny.zhou@intel.com>
Signed-off-by: Cunming Liang <cunming.liang@intel.com>
This commit is contained in:
Cunming Liang 2015-07-20 11:02:28 +08:00 committed by Thomas Monjalon
parent 0eb609239e
commit c3cd3de0ab

View File

@ -105,6 +105,9 @@ static int eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
static int eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
struct rte_eth_fc_conf *fc_conf);
static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev);
#ifdef RTE_NEXT_ABI
static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
#endif
static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
static int eth_igb_interrupt_action(struct rte_eth_dev *dev);
static void eth_igb_interrupt_handler(struct rte_intr_handle *handle,
@ -218,7 +221,6 @@ static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *eeprom);
static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
struct rte_dev_eeprom_info *eeprom);
static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
struct ether_addr *mc_addr_set,
uint32_t nb_mc_addr);
@ -229,6 +231,17 @@ static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
uint32_t flags);
static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
struct timespec *timestamp);
#ifdef RTE_NEXT_ABI
static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
uint16_t queue_id);
static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
uint16_t queue_id);
static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
uint8_t queue, uint8_t msix_vector);
static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
uint8_t index, uint8_t offset);
#endif
static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
/*
* Define VF Stats MACRO for Non "cleared on read" register
@ -289,6 +302,10 @@ static const struct eth_dev_ops eth_igb_ops = {
.vlan_tpid_set = eth_igb_vlan_tpid_set,
.vlan_offload_set = eth_igb_vlan_offload_set,
.rx_queue_setup = eth_igb_rx_queue_setup,
#ifdef RTE_NEXT_ABI
.rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
.rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
#endif
.rx_queue_release = eth_igb_rx_queue_release,
.rx_queue_count = eth_igb_rx_queue_count,
.rx_descriptor_done = eth_igb_rx_descriptor_done,
@ -639,12 +656,6 @@ eth_igb_dev_init(struct rte_eth_dev *eth_dev)
eth_dev->data->port_id, pci_dev->id.vendor_id,
pci_dev->id.device_id);
rte_intr_callback_register(&(pci_dev->intr_handle),
eth_igb_interrupt_handler, (void *)eth_dev);
/* enable uio intr after callback register */
rte_intr_enable(&(pci_dev->intr_handle));
/* enable support intr */
igb_intr_enable(eth_dev);
@ -879,7 +890,11 @@ eth_igb_start(struct rte_eth_dev *dev)
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(dev->data->dev_private);
int ret, i, mask;
struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
int ret, mask;
#ifdef RTE_NEXT_ABI
uint32_t intr_vector = 0;
#endif
uint32_t ctrl_ext;
PMD_INIT_FUNC_TRACE();
@ -920,6 +935,29 @@ eth_igb_start(struct rte_eth_dev *dev)
/* configure PF module if SRIOV enabled */
igb_pf_host_configure(dev);
#ifdef RTE_NEXT_ABI
/* check and configure queue intr-vector mapping */
if (dev->data->dev_conf.intr_conf.rxq != 0)
intr_vector = dev->data->nb_rx_queues;
if (rte_intr_efd_enable(intr_handle, intr_vector))
return -1;
if (rte_intr_dp_is_en(intr_handle)) {
intr_handle->intr_vec =
rte_zmalloc("intr_vec",
dev->data->nb_rx_queues * sizeof(int), 0);
if (intr_handle->intr_vec == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
" intr_vec\n", dev->data->nb_rx_queues);
return -ENOMEM;
}
}
#endif
/* confiugre msix for rx interrupt */
eth_igb_configure_msix_intr(dev);
/* Configure for OS presence */
igb_init_manageability(hw);
@ -947,33 +985,9 @@ eth_igb_start(struct rte_eth_dev *dev)
igb_vmdq_vlan_hw_filter_enable(dev);
}
/*
* Configure the Interrupt Moderation register (EITR) with the maximum
* possible value (0xFFFF) to minimize "System Partial Write" issued by
* spurious [DMA] memory updates of RX and TX ring descriptors.
*
* With a EITR granularity of 2 microseconds in the 82576, only 7/8
* spurious memory updates per second should be expected.
* ((65535 * 2) / 1000.1000 ~= 0.131 second).
*
* Because interrupts are not used at all, the MSI-X is not activated
* and interrupt moderation is controlled by EITR[0].
*
* Note that having [almost] disabled memory updates of RX and TX ring
* descriptors through the Interrupt Moderation mechanism, memory
* updates of ring descriptors are now moderated by the configurable
* value of Write-Back Threshold registers.
*/
if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
(hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
(hw->mac.type == e1000_i211)) {
uint32_t ivar;
/* Enable all RX & TX queues in the IVAR registers */
ivar = (uint32_t) ((E1000_IVAR_VALID << 16) | E1000_IVAR_VALID);
for (i = 0; i < 8; i++)
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, ivar);
/* Configure EITR with the maximum possible value (0xFFFF) */
E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
}
@ -1024,8 +1038,25 @@ eth_igb_start(struct rte_eth_dev *dev)
e1000_setup_link(hw);
/* check if lsc interrupt feature is enabled */
if (dev->data->dev_conf.intr_conf.lsc != 0)
ret = eth_igb_lsc_interrupt_setup(dev);
if (dev->data->dev_conf.intr_conf.lsc != 0) {
if (rte_intr_allow_others(intr_handle)) {
rte_intr_callback_register(intr_handle,
eth_igb_interrupt_handler,
(void *)dev);
eth_igb_lsc_interrupt_setup(dev);
} else
PMD_INIT_LOG(INFO, "lsc won't enable because of"
" no intr multiplex\n");
}
#ifdef RTE_NEXT_ABI
/* check if rxq interrupt is enabled */
if (dev->data->dev_conf.intr_conf.rxq != 0)
eth_igb_rxq_interrupt_setup(dev);
#endif
/* enable uio/vfio intr/eventfd mapping */
rte_intr_enable(intr_handle);
/* resume enabled intr since hw reset */
igb_intr_enable(dev);
@ -1058,8 +1089,13 @@ eth_igb_stop(struct rte_eth_dev *dev)
struct e1000_flex_filter *p_flex;
struct e1000_5tuple_filter *p_5tuple, *p_5tuple_next;
struct e1000_2tuple_filter *p_2tuple, *p_2tuple_next;
struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
igb_intr_disable(hw);
/* disable intr eventfd mapping */
rte_intr_disable(intr_handle);
igb_pf_reset_hw(hw);
E1000_WRITE_REG(hw, E1000_WUC, 0);
@ -1108,6 +1144,15 @@ eth_igb_stop(struct rte_eth_dev *dev)
rte_free(p_2tuple);
}
filter_info->twotuple_mask = 0;
#ifdef RTE_NEXT_ABI
/* Clean datapath event and queue/vec mapping */
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec != NULL) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
#endif
}
static void
@ -1117,6 +1162,9 @@ eth_igb_close(struct rte_eth_dev *dev)
struct e1000_adapter *adapter =
E1000_DEV_PRIVATE(dev->data->dev_private);
struct rte_eth_link link;
#ifdef RTE_NEXT_ABI
struct rte_pci_device *pci_dev;
#endif
eth_igb_stop(dev);
adapter->stopped = 1;
@ -1136,6 +1184,14 @@ eth_igb_close(struct rte_eth_dev *dev)
igb_dev_free_queues(dev);
#ifdef RTE_NEXT_ABI
pci_dev = dev->pci_dev;
if (pci_dev->intr_handle.intr_vec) {
rte_free(pci_dev->intr_handle.intr_vec);
pci_dev->intr_handle.intr_vec = NULL;
}
#endif
memset(&link, 0, sizeof(link));
rte_igb_dev_atomic_write_link_status(dev, &link);
}
@ -1960,6 +2016,35 @@ eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev)
return 0;
}
#ifdef RTE_NEXT_ABI
/* It clears the interrupt causes and enables the interrupt.
* It will be called once only during nic initialized.
*
* @param dev
* Pointer to struct rte_eth_dev.
*
* @return
* - On success, zero.
* - On failure, a negative value.
*/
static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
{
uint32_t mask, regval;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_dev_info dev_info;
memset(&dev_info, 0, sizeof(dev_info));
eth_igb_infos_get(dev, &dev_info);
mask = 0xFFFFFFFF >> (32 - dev_info.max_rx_queues);
regval = E1000_READ_REG(hw, E1000_EIMS);
E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
return 0;
}
#endif
/*
* It reads ICR and gets interrupt causes, check it and set a bit flag
* to update link status.
@ -4051,5 +4136,163 @@ static struct rte_driver pmd_igbvf_drv = {
.init = rte_igbvf_pmd_init,
};
#ifdef RTE_NEXT_ABI
static int
eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t mask = 1 << queue_id;
E1000_WRITE_REG(hw, E1000_EIMC, mask);
E1000_WRITE_FLUSH(hw);
return 0;
}
static int
eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t mask = 1 << queue_id;
uint32_t regval;
regval = E1000_READ_REG(hw, E1000_EIMS);
E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
E1000_WRITE_FLUSH(hw);
rte_intr_enable(&dev->pci_dev->intr_handle);
return 0;
}
static void
eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
uint8_t index, uint8_t offset)
{
uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
/* clear bits */
val &= ~((uint32_t)0xFF << offset);
/* write vector and valid bit */
val |= (msix_vector | E1000_IVAR_VALID) << offset;
E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
}
static void
eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
uint8_t queue, uint8_t msix_vector)
{
uint32_t tmp = 0;
if (hw->mac.type == e1000_82575) {
if (direction == 0)
tmp = E1000_EICR_RX_QUEUE0 << queue;
else if (direction == 1)
tmp = E1000_EICR_TX_QUEUE0 << queue;
E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
} else if (hw->mac.type == e1000_82576) {
if ((direction == 0) || (direction == 1))
eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
((queue & 0x8) << 1) +
8 * direction);
} else if ((hw->mac.type == e1000_82580) ||
(hw->mac.type == e1000_i350) ||
(hw->mac.type == e1000_i354) ||
(hw->mac.type == e1000_i210) ||
(hw->mac.type == e1000_i211)) {
if ((direction == 0) || (direction == 1))
eth_igb_write_ivar(hw, msix_vector,
queue >> 1,
((queue & 0x1) << 4) +
8 * direction);
}
}
#endif
/* Sets up the hardware to generate MSI-X interrupts properly
* @hw
* board private structure
*/
static void
eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
{
#ifdef RTE_NEXT_ABI
int queue_id;
uint32_t tmpval, regval, intr_mask;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t vec = 0;
#endif
struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
/* won't configure msix register if no mapping is done
* between intr vector and event fd
*/
if (!rte_intr_dp_is_en(intr_handle))
return;
#ifdef RTE_NEXT_ABI
/* set interrupt vector for other causes */
if (hw->mac.type == e1000_82575) {
tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
/* enable MSI-X PBA support */
tmpval |= E1000_CTRL_EXT_PBA_CLR;
/* Auto-Mask interrupts upon ICR read */
tmpval |= E1000_CTRL_EXT_EIAME;
tmpval |= E1000_CTRL_EXT_IRCA;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
/* enable msix_other interrupt */
E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
regval = E1000_READ_REG(hw, E1000_EIAC);
E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
regval = E1000_READ_REG(hw, E1000_EIAM);
E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
} else if ((hw->mac.type == e1000_82576) ||
(hw->mac.type == e1000_82580) ||
(hw->mac.type == e1000_i350) ||
(hw->mac.type == e1000_i354) ||
(hw->mac.type == e1000_i210) ||
(hw->mac.type == e1000_i211)) {
/* turn on MSI-X capability first */
E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
E1000_GPIE_PBA | E1000_GPIE_EIAME |
E1000_GPIE_NSICR);
intr_mask = (1 << intr_handle->max_intr) - 1;
regval = E1000_READ_REG(hw, E1000_EIAC);
E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
/* enable msix_other interrupt */
regval = E1000_READ_REG(hw, E1000_EIMS);
E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
tmpval = (dev->data->nb_rx_queues | E1000_IVAR_VALID) << 8;
E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
}
/* use EIAM to auto-mask when MSI-X interrupt
* is asserted, this saves a register write for every interrupt
*/
intr_mask = (1 << intr_handle->nb_efd) - 1;
regval = E1000_READ_REG(hw, E1000_EIAM);
E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
intr_handle->intr_vec[queue_id] = vec;
if (vec < intr_handle->nb_efd - 1)
vec++;
}
E1000_WRITE_FLUSH(hw);
#endif
}
PMD_REGISTER_DRIVER(pmd_igb_drv);
PMD_REGISTER_DRIVER(pmd_igbvf_drv);