net/bnxt: add AVX2 RX/Tx
Implement AVX2 vector PMD. Signed-off-by: Lance Richardson <lance.richardson@broadcom.com> Reviewed-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
This commit is contained in:
parent
008feb839f
commit
c4e4c18963
@ -853,23 +853,36 @@ DPDK implements a light-weight library to allow PMDs to be bonded together and p
|
||||
Vector Processing
|
||||
-----------------
|
||||
|
||||
The BNXT PMD provides vectorized burst transmit/receive function implementations
|
||||
on x86-based platforms using SSE (Streaming SIMD Extensions) and AVX2 (Advanced
|
||||
Vector Extensions 2) instructions, and on Arm-based platforms using Arm Neon
|
||||
Advanced SIMD instructions. Vector processing support is currently implemented
|
||||
only for Intel/AMD and Arm CPU architectures.
|
||||
|
||||
Vector processing provides significantly improved performance over scalar
|
||||
processing (see Vector Processor, here).
|
||||
|
||||
The BNXT PMD supports the vector processing using SSE (Streaming SIMD
|
||||
Extensions) instructions on x86 platforms. It also supports NEON intrinsics for
|
||||
vector processing on ARM CPUs. The BNXT vPMD (vector mode PMD) is available for
|
||||
Intel/AMD and ARM CPU architectures.
|
||||
|
||||
This improved performance comes from several optimizations:
|
||||
processing. This improved performance is derived from a number of optimizations:
|
||||
|
||||
* Using SIMD instructions to operate on multiple packets in parallel.
|
||||
* Using SIMD instructions to do more work per instruction than is possible
|
||||
with scalar instructions, for example by leveraging 128-bit and 256-bi
|
||||
load/store instructions or by using SIMD shuffle and permute operations.
|
||||
* Batching
|
||||
* TX: processing completions in bulk
|
||||
* RX: allocating mbufs in bulk
|
||||
* Chained mbufs are *not* supported, i.e. a packet should fit a single mbuf
|
||||
* Some stateless offloads are *not* supported with vector processing
|
||||
* TX: no offloads will be supported
|
||||
* RX: reduced RX offloads (listed below) will be supported::
|
||||
|
||||
* TX: transmit completions are processed in bulk.
|
||||
* RX: bulk allocation of mbufs is used when allocating rxq buffers.
|
||||
|
||||
* Simplifications enabled by not supporting chained mbufs in vector mode.
|
||||
* Simplifications enabled by not supporting some stateless offloads in vector
|
||||
mode:
|
||||
|
||||
* TX: only the following reduced set of transmit offloads is supported in
|
||||
vector mode::
|
||||
|
||||
DEV_TX_OFFLOAD_MBUF_FAST_FREE
|
||||
|
||||
* RX: only the following reduced set of receive offloads is supported in
|
||||
vector mode (note that jumbo MTU is allowed only when the MTU setting
|
||||
does not require `DEV_RX_OFFLOAD_SCATTER` to be enabled)::
|
||||
|
||||
DEV_RX_OFFLOAD_VLAN_STRIP
|
||||
DEV_RX_OFFLOAD_KEEP_CRC
|
||||
@ -878,23 +891,21 @@ This improved performance comes from several optimizations:
|
||||
DEV_RX_OFFLOAD_UDP_CKSUM
|
||||
DEV_RX_OFFLOAD_TCP_CKSUM
|
||||
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM
|
||||
DEV_RX_OFFLOAD_OUTER_UDP_CKSUM
|
||||
DEV_RX_OFFLOAD_RSS_HASH
|
||||
DEV_RX_OFFLOAD_VLAN_FILTER
|
||||
|
||||
The BNXT Vector PMD is enabled in DPDK builds by default.
|
||||
|
||||
However, a decision to enable vector mode will be made when the port transitions
|
||||
from stopped to started. Any TX offloads or some RX offloads (other than listed
|
||||
above) will disable the vector mode.
|
||||
Offload configuration changes that impact vector mode must be made when the port
|
||||
is stopped.
|
||||
The BNXT Vector PMD is enabled in DPDK builds by default. The decision to enable
|
||||
vector processing is made at run-time when the port is started; if no transmit
|
||||
offloads outside the set supported for vector mode are enabled then vector mode
|
||||
transmit will be enabled, and if no receive offloads outside the set supported
|
||||
for vector mode are enabled then vector mode receive will be enabled. Offload
|
||||
configuration changes that impact the decision to enable vector mode are allowed
|
||||
only when the port is stopped.
|
||||
|
||||
Note that TX (or RX) vector mode can be enabled independently from RX (or TX)
|
||||
vector mode.
|
||||
|
||||
Also vector mode is allowed when jumbo is enabled
|
||||
as long as the MTU setting does not require scattered Rx.
|
||||
|
||||
Appendix
|
||||
--------
|
||||
|
||||
|
@ -1174,32 +1174,57 @@ bnxt_receive_function(struct rte_eth_dev *eth_dev)
|
||||
return bnxt_recv_pkts;
|
||||
}
|
||||
|
||||
#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
|
||||
#ifndef RTE_LIBRTE_IEEE1588
|
||||
#if (defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)) && \
|
||||
!defined(RTE_LIBRTE_IEEE1588)
|
||||
|
||||
/* Vector mode receive cannot be enabled if scattered rx is in use. */
|
||||
if (eth_dev->data->scattered_rx)
|
||||
goto use_scalar_rx;
|
||||
|
||||
/*
|
||||
* Vector mode receive can be enabled only if scatter rx is not
|
||||
* in use and rx offloads are limited to VLAN stripping and
|
||||
* CRC stripping.
|
||||
* Vector mode receive cannot be enabled if Truflow is enabled or if
|
||||
* asynchronous completions and receive completions can be placed in
|
||||
* the same completion ring.
|
||||
*/
|
||||
if (!eth_dev->data->scattered_rx &&
|
||||
!(eth_dev->data->dev_conf.rxmode.offloads &
|
||||
~(DEV_RX_OFFLOAD_VLAN_STRIP |
|
||||
DEV_RX_OFFLOAD_KEEP_CRC |
|
||||
DEV_RX_OFFLOAD_JUMBO_FRAME |
|
||||
DEV_RX_OFFLOAD_IPV4_CKSUM |
|
||||
DEV_RX_OFFLOAD_UDP_CKSUM |
|
||||
DEV_RX_OFFLOAD_TCP_CKSUM |
|
||||
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
|
||||
DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
|
||||
DEV_RX_OFFLOAD_RSS_HASH |
|
||||
DEV_RX_OFFLOAD_VLAN_FILTER)) &&
|
||||
!BNXT_TRUFLOW_EN(bp) && BNXT_NUM_ASYNC_CPR(bp) &&
|
||||
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
|
||||
PMD_DRV_LOG(INFO, "Using vector mode receive for port %d\n",
|
||||
if (BNXT_TRUFLOW_EN(bp) || !BNXT_NUM_ASYNC_CPR(bp))
|
||||
goto use_scalar_rx;
|
||||
|
||||
/*
|
||||
* Vector mode receive cannot be enabled if any receive offloads outside
|
||||
* a limited subset have been enabled.
|
||||
*/
|
||||
if (eth_dev->data->dev_conf.rxmode.offloads &
|
||||
~(DEV_RX_OFFLOAD_VLAN_STRIP |
|
||||
DEV_RX_OFFLOAD_KEEP_CRC |
|
||||
DEV_RX_OFFLOAD_JUMBO_FRAME |
|
||||
DEV_RX_OFFLOAD_IPV4_CKSUM |
|
||||
DEV_RX_OFFLOAD_UDP_CKSUM |
|
||||
DEV_RX_OFFLOAD_TCP_CKSUM |
|
||||
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
|
||||
DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
|
||||
DEV_RX_OFFLOAD_RSS_HASH |
|
||||
DEV_RX_OFFLOAD_VLAN_FILTER))
|
||||
goto use_scalar_rx;
|
||||
|
||||
#if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
|
||||
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256 &&
|
||||
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1) {
|
||||
PMD_DRV_LOG(INFO,
|
||||
"Using AVX2 vector mode receive for port %d\n",
|
||||
eth_dev->data->port_id);
|
||||
bp->flags |= BNXT_FLAG_RX_VECTOR_PKT_MODE;
|
||||
return bnxt_recv_pkts_vec_avx2;
|
||||
}
|
||||
#endif
|
||||
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
|
||||
PMD_DRV_LOG(INFO,
|
||||
"Using SSE vector mode receive for port %d\n",
|
||||
eth_dev->data->port_id);
|
||||
bp->flags |= BNXT_FLAG_RX_VECTOR_PKT_MODE;
|
||||
return bnxt_recv_pkts_vec;
|
||||
}
|
||||
|
||||
use_scalar_rx:
|
||||
PMD_DRV_LOG(INFO, "Vector mode receive disabled for port %d\n",
|
||||
eth_dev->data->port_id);
|
||||
PMD_DRV_LOG(INFO,
|
||||
@ -1207,7 +1232,6 @@ bnxt_receive_function(struct rte_eth_dev *eth_dev)
|
||||
eth_dev->data->port_id,
|
||||
eth_dev->data->scattered_rx,
|
||||
eth_dev->data->dev_conf.rxmode.offloads);
|
||||
#endif
|
||||
#endif
|
||||
bp->flags &= ~BNXT_FLAG_RX_VECTOR_PKT_MODE;
|
||||
return bnxt_recv_pkts;
|
||||
@ -1222,22 +1246,36 @@ bnxt_transmit_function(struct rte_eth_dev *eth_dev)
|
||||
if (BNXT_CHIP_SR2(bp))
|
||||
return bnxt_xmit_pkts;
|
||||
|
||||
#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
|
||||
#ifndef RTE_LIBRTE_IEEE1588
|
||||
#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64) && \
|
||||
!defined(RTE_LIBRTE_IEEE1588)
|
||||
uint64_t offloads = eth_dev->data->dev_conf.txmode.offloads;
|
||||
|
||||
/*
|
||||
* Vector mode transmit can be enabled only if not using scatter rx
|
||||
* or tx offloads.
|
||||
*/
|
||||
if (!eth_dev->data->scattered_rx &&
|
||||
!(offloads & ~DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
|
||||
!BNXT_TRUFLOW_EN(bp) &&
|
||||
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
|
||||
PMD_DRV_LOG(INFO, "Using vector mode transmit for port %d\n",
|
||||
if (eth_dev->data->scattered_rx ||
|
||||
(offloads & ~DEV_TX_OFFLOAD_MBUF_FAST_FREE) ||
|
||||
BNXT_TRUFLOW_EN(bp))
|
||||
goto use_scalar_tx;
|
||||
|
||||
#if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
|
||||
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256 &&
|
||||
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1) {
|
||||
PMD_DRV_LOG(INFO,
|
||||
"Using AVX2 vector mode transmit for port %d\n",
|
||||
eth_dev->data->port_id);
|
||||
return bnxt_xmit_pkts_vec_avx2;
|
||||
}
|
||||
#endif
|
||||
if (rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
|
||||
PMD_DRV_LOG(INFO,
|
||||
"Using SSE vector mode transmit for port %d\n",
|
||||
eth_dev->data->port_id);
|
||||
return bnxt_xmit_pkts_vec;
|
||||
}
|
||||
|
||||
use_scalar_tx:
|
||||
PMD_DRV_LOG(INFO, "Vector mode transmit disabled for port %d\n",
|
||||
eth_dev->data->port_id);
|
||||
PMD_DRV_LOG(INFO,
|
||||
@ -1245,7 +1283,6 @@ bnxt_transmit_function(struct rte_eth_dev *eth_dev)
|
||||
eth_dev->data->port_id,
|
||||
eth_dev->data->scattered_rx,
|
||||
offloads);
|
||||
#endif
|
||||
#endif
|
||||
return bnxt_xmit_pkts;
|
||||
}
|
||||
@ -2855,11 +2892,15 @@ static const struct {
|
||||
eth_rx_burst_t pkt_burst;
|
||||
const char *info;
|
||||
} bnxt_rx_burst_info[] = {
|
||||
{bnxt_recv_pkts, "Scalar"},
|
||||
{bnxt_recv_pkts, "Scalar"},
|
||||
#if defined(RTE_ARCH_X86)
|
||||
{bnxt_recv_pkts_vec, "Vector SSE"},
|
||||
#elif defined(RTE_ARCH_ARM64)
|
||||
{bnxt_recv_pkts_vec, "Vector Neon"},
|
||||
{bnxt_recv_pkts_vec, "Vector SSE"},
|
||||
#endif
|
||||
#if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
|
||||
{bnxt_recv_pkts_vec_avx2, "Vector AVX2"},
|
||||
#endif
|
||||
#if defined(RTE_ARCH_ARM64)
|
||||
{bnxt_recv_pkts_vec, "Vector Neon"},
|
||||
#endif
|
||||
};
|
||||
|
||||
@ -2885,11 +2926,15 @@ static const struct {
|
||||
eth_tx_burst_t pkt_burst;
|
||||
const char *info;
|
||||
} bnxt_tx_burst_info[] = {
|
||||
{bnxt_xmit_pkts, "Scalar"},
|
||||
{bnxt_xmit_pkts, "Scalar"},
|
||||
#if defined(RTE_ARCH_X86)
|
||||
{bnxt_xmit_pkts_vec, "Vector SSE"},
|
||||
#elif defined(RTE_ARCH_ARM64)
|
||||
{bnxt_xmit_pkts_vec, "Vector Neon"},
|
||||
{bnxt_xmit_pkts_vec, "Vector SSE"},
|
||||
#endif
|
||||
#if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
|
||||
{bnxt_xmit_pkts_vec_avx2, "Vector AVX2"},
|
||||
#endif
|
||||
#if defined(RTE_ARCH_ARM64)
|
||||
{bnxt_xmit_pkts_vec, "Vector Neon"},
|
||||
#endif
|
||||
};
|
||||
|
||||
|
@ -1147,7 +1147,7 @@ int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
|
||||
|
||||
/* Allocate extra rx ring entries for vector rx. */
|
||||
ring->vmem_size = sizeof(struct rte_mbuf *) *
|
||||
(ring->ring_size + RTE_BNXT_DESCS_PER_LOOP);
|
||||
(ring->ring_size + BNXT_RX_EXTRA_MBUF_ENTRIES);
|
||||
|
||||
ring->vmem = (void **)&rxr->rx_buf_ring;
|
||||
ring->fw_ring_id = INVALID_HW_RING_ID;
|
||||
@ -1251,7 +1251,7 @@ int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
|
||||
|
||||
/* Initialize dummy mbuf pointers for vector mode rx. */
|
||||
for (i = ring->ring_size;
|
||||
i < ring->ring_size + RTE_BNXT_DESCS_PER_LOOP; i++) {
|
||||
i < ring->ring_size + BNXT_RX_EXTRA_MBUF_ENTRIES; i++) {
|
||||
rxr->rx_buf_ring[i] = &rxq->fake_mbuf;
|
||||
}
|
||||
|
||||
|
@ -42,7 +42,12 @@ static inline uint16_t bnxt_tpa_start_agg_id(struct bnxt *bp,
|
||||
RX_PKT_CMPL_AGG_BUFS_SFT)
|
||||
|
||||
/* Number of descriptors to process per inner loop in vector mode. */
|
||||
#define RTE_BNXT_DESCS_PER_LOOP 4U
|
||||
#define BNXT_RX_DESCS_PER_LOOP_VEC128 4U /* SSE, Neon */
|
||||
#define BNXT_RX_DESCS_PER_LOOP_VEC256 8U /* AVX2 */
|
||||
|
||||
/* Number of extra Rx mbuf ring entries to allocate for vector mode. */
|
||||
#define BNXT_RX_EXTRA_MBUF_ENTRIES \
|
||||
RTE_MAX(BNXT_RX_DESCS_PER_LOOP_VEC128, BNXT_RX_DESCS_PER_LOOP_VEC256)
|
||||
|
||||
#define BNXT_OL_FLAGS_TBL_DIM 64
|
||||
#define BNXT_OL_FLAGS_ERR_TBL_DIM 32
|
||||
@ -106,6 +111,10 @@ uint16_t bnxt_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
|
||||
int bnxt_rxq_vec_setup(struct bnxt_rx_queue *rxq);
|
||||
#endif
|
||||
|
||||
#if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
|
||||
uint16_t bnxt_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts);
|
||||
#endif
|
||||
void bnxt_set_mark_in_mbuf(struct bnxt *bp,
|
||||
struct rx_pkt_cmpl_hi *rxcmp1,
|
||||
struct rte_mbuf *mbuf);
|
||||
|
597
drivers/net/bnxt/bnxt_rxtx_vec_avx2.c
Normal file
597
drivers/net/bnxt/bnxt_rxtx_vec_avx2.c
Normal file
@ -0,0 +1,597 @@
|
||||
/* SPDX-License-Identifier: BSD-3-Clause */
|
||||
/* Copyright(c) 2019-2021 Broadcom All rights reserved. */
|
||||
|
||||
#include <inttypes.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#include <rte_bitmap.h>
|
||||
#include <rte_byteorder.h>
|
||||
#include <rte_malloc.h>
|
||||
#include <rte_memory.h>
|
||||
#include <rte_vect.h>
|
||||
|
||||
#include "bnxt.h"
|
||||
#include "bnxt_cpr.h"
|
||||
#include "bnxt_ring.h"
|
||||
|
||||
#include "bnxt_txq.h"
|
||||
#include "bnxt_txr.h"
|
||||
#include "bnxt_rxtx_vec_common.h"
|
||||
#include <unistd.h>
|
||||
|
||||
static uint16_t
|
||||
recv_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
||||
{
|
||||
struct bnxt_rx_queue *rxq = rx_queue;
|
||||
const __m256i mbuf_init =
|
||||
_mm256_set_epi64x(0, 0, 0, rxq->mbuf_initializer);
|
||||
struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
|
||||
struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
|
||||
uint16_t cp_ring_size = cpr->cp_ring_struct->ring_size;
|
||||
uint16_t rx_ring_size = rxr->rx_ring_struct->ring_size;
|
||||
struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
|
||||
uint64_t valid, desc_valid_mask = ~0ULL;
|
||||
const __m256i info3_v_mask = _mm256_set1_epi32(CMPL_BASE_V);
|
||||
uint32_t raw_cons = cpr->cp_raw_cons;
|
||||
uint32_t cons, mbcons;
|
||||
int nb_rx_pkts = 0;
|
||||
int i;
|
||||
const __m256i valid_target =
|
||||
_mm256_set1_epi32(!!(raw_cons & cp_ring_size));
|
||||
const __m256i dsc_shuf_msk =
|
||||
_mm256_set_epi8(0xff, 0xff, 0xff, 0xff, /* Zeroes. */
|
||||
7, 6, /* metadata type */
|
||||
9, 8, /* flags2 low 16 */
|
||||
5, 4, /* vlan_tci */
|
||||
1, 0, /* errors_v2 */
|
||||
0xff, 0xff, 0xff, 0xff, /* Zeroes. */
|
||||
0xff, 0xff, 0xff, 0xff, /* Zeroes. */
|
||||
7, 6, /* metadata type */
|
||||
9, 8, /* flags2 low 16 */
|
||||
5, 4, /* vlan_tci */
|
||||
1, 0, /* errors_v2 */
|
||||
0xff, 0xff, 0xff, 0xff); /* Zeroes. */
|
||||
const __m256i shuf_msk =
|
||||
_mm256_set_epi8(15, 14, 13, 12, /* rss */
|
||||
7, 6, /* vlan_tci */
|
||||
3, 2, /* data_len */
|
||||
0xFF, 0xFF, 3, 2, /* pkt_len */
|
||||
0xFF, 0xFF, 0xFF, 0xFF, /* pkt_type (zeroes) */
|
||||
15, 14, 13, 12, /* rss */
|
||||
7, 6, /* vlan_tci */
|
||||
3, 2, /* data_len */
|
||||
0xFF, 0xFF, 3, 2, /* pkt_len */
|
||||
0xFF, 0xFF, 0xFF, 0xFF); /* pkt_type (zeroes) */
|
||||
const __m256i flags_type_mask =
|
||||
_mm256_set1_epi32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
|
||||
const __m256i flags2_mask1 =
|
||||
_mm256_set1_epi32(CMPL_FLAGS2_VLAN_TUN_MSK);
|
||||
const __m256i flags2_mask2 =
|
||||
_mm256_set1_epi32(RX_PKT_CMPL_FLAGS2_IP_TYPE);
|
||||
const __m256i rss_mask =
|
||||
_mm256_set1_epi32(RX_PKT_CMPL_FLAGS_RSS_VALID);
|
||||
__m256i t0, t1, flags_type, flags2, index, errors;
|
||||
__m256i ptype_idx, ptypes, is_tunnel;
|
||||
__m256i mbuf01, mbuf23, mbuf45, mbuf67;
|
||||
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, rearm6, rearm7;
|
||||
__m256i ol_flags, ol_flags_hi;
|
||||
__m256i rss_flags;
|
||||
|
||||
/* Validate ptype table indexing at build time. */
|
||||
bnxt_check_ptype_constants();
|
||||
|
||||
/* If Rx Q was stopped return */
|
||||
if (unlikely(!rxq->rx_started))
|
||||
return 0;
|
||||
|
||||
if (rxq->rxrearm_nb >= rxq->rx_free_thresh)
|
||||
bnxt_rxq_rearm(rxq, rxr);
|
||||
|
||||
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC256);
|
||||
|
||||
cons = raw_cons & (cp_ring_size - 1);
|
||||
mbcons = (raw_cons / 2) & (rx_ring_size - 1);
|
||||
|
||||
/* Prefetch first four descriptor pairs. */
|
||||
rte_prefetch0(&cp_desc_ring[cons + 0]);
|
||||
rte_prefetch0(&cp_desc_ring[cons + 4]);
|
||||
rte_prefetch0(&cp_desc_ring[cons + 8]);
|
||||
rte_prefetch0(&cp_desc_ring[cons + 12]);
|
||||
|
||||
/* Ensure that we do not go past the ends of the rings. */
|
||||
nb_pkts = RTE_MIN(nb_pkts, RTE_MIN(rx_ring_size - mbcons,
|
||||
(cp_ring_size - cons) / 2));
|
||||
/*
|
||||
* If we are at the end of the ring, ensure that descriptors after the
|
||||
* last valid entry are not treated as valid. Otherwise, force the
|
||||
* maximum number of packets to receive to be a multiple of the per-
|
||||
* loop count.
|
||||
*/
|
||||
if (nb_pkts < BNXT_RX_DESCS_PER_LOOP_VEC256) {
|
||||
desc_valid_mask >>=
|
||||
CHAR_BIT * (BNXT_RX_DESCS_PER_LOOP_VEC256 - nb_pkts);
|
||||
} else {
|
||||
nb_pkts =
|
||||
RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC256);
|
||||
}
|
||||
|
||||
/* Handle RX burst request */
|
||||
for (i = 0; i < nb_pkts; i += BNXT_RX_DESCS_PER_LOOP_VEC256,
|
||||
cons += BNXT_RX_DESCS_PER_LOOP_VEC256 * 2,
|
||||
mbcons += BNXT_RX_DESCS_PER_LOOP_VEC256) {
|
||||
__m256i desc0, desc1, desc2, desc3, desc4, desc5, desc6, desc7;
|
||||
__m256i rxcmp0_1, rxcmp2_3, rxcmp4_5, rxcmp6_7, info3_v;
|
||||
__m256i errors_v2;
|
||||
uint32_t num_valid;
|
||||
|
||||
/* Copy eight mbuf pointers to output array. */
|
||||
t0 = _mm256_loadu_si256((void *)&rxr->rx_buf_ring[mbcons]);
|
||||
_mm256_storeu_si256((void *)&rx_pkts[i], t0);
|
||||
#ifdef RTE_ARCH_X86_64
|
||||
t0 = _mm256_loadu_si256((void *)&rxr->rx_buf_ring[mbcons + 4]);
|
||||
_mm256_storeu_si256((void *)&rx_pkts[i + 4], t0);
|
||||
#endif
|
||||
|
||||
/* Prefetch eight descriptor pairs for next iteration. */
|
||||
if (i + BNXT_RX_DESCS_PER_LOOP_VEC256 < nb_pkts) {
|
||||
rte_prefetch0(&cp_desc_ring[cons + 16]);
|
||||
rte_prefetch0(&cp_desc_ring[cons + 20]);
|
||||
rte_prefetch0(&cp_desc_ring[cons + 24]);
|
||||
rte_prefetch0(&cp_desc_ring[cons + 28]);
|
||||
}
|
||||
|
||||
/*
|
||||
* Load eight receive completion descriptors into 256-bit
|
||||
* registers. Loads are issued in reverse order in order to
|
||||
* ensure consistent state.
|
||||
*/
|
||||
desc7 = _mm256_load_si256((void *)&cp_desc_ring[cons + 14]);
|
||||
rte_compiler_barrier();
|
||||
desc6 = _mm256_load_si256((void *)&cp_desc_ring[cons + 12]);
|
||||
rte_compiler_barrier();
|
||||
desc5 = _mm256_load_si256((void *)&cp_desc_ring[cons + 10]);
|
||||
rte_compiler_barrier();
|
||||
desc4 = _mm256_load_si256((void *)&cp_desc_ring[cons + 8]);
|
||||
rte_compiler_barrier();
|
||||
desc3 = _mm256_load_si256((void *)&cp_desc_ring[cons + 6]);
|
||||
rte_compiler_barrier();
|
||||
desc2 = _mm256_load_si256((void *)&cp_desc_ring[cons + 4]);
|
||||
rte_compiler_barrier();
|
||||
desc1 = _mm256_load_si256((void *)&cp_desc_ring[cons + 2]);
|
||||
rte_compiler_barrier();
|
||||
desc0 = _mm256_load_si256((void *)&cp_desc_ring[cons + 0]);
|
||||
|
||||
/*
|
||||
* Pack needed fields from each descriptor into a compressed
|
||||
* 128-bit layout and pair two compressed descriptors into
|
||||
* 256-bit registers. The 128-bit compressed layout is as
|
||||
* follows:
|
||||
* Bits 0-15: flags_type field from low completion record.
|
||||
* Bits 16-31: len field from low completion record.
|
||||
* Bits 32-47: flags2 (low 16 bits) from high completion.
|
||||
* Bits 48-79: metadata from high completion record.
|
||||
* Bits 80-95: errors_v2 from high completion record.
|
||||
* Bits 96-127: rss hash from low completion record.
|
||||
*/
|
||||
t0 = _mm256_permute2f128_si256(desc6, desc7, 0x20);
|
||||
t1 = _mm256_permute2f128_si256(desc6, desc7, 0x31);
|
||||
t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
|
||||
rxcmp6_7 = _mm256_blend_epi32(t0, t1, 0x66);
|
||||
|
||||
t0 = _mm256_permute2f128_si256(desc4, desc5, 0x20);
|
||||
t1 = _mm256_permute2f128_si256(desc4, desc5, 0x31);
|
||||
t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
|
||||
rxcmp4_5 = _mm256_blend_epi32(t0, t1, 0x66);
|
||||
|
||||
t0 = _mm256_permute2f128_si256(desc2, desc3, 0x20);
|
||||
t1 = _mm256_permute2f128_si256(desc2, desc3, 0x31);
|
||||
t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
|
||||
rxcmp2_3 = _mm256_blend_epi32(t0, t1, 0x66);
|
||||
|
||||
t0 = _mm256_permute2f128_si256(desc0, desc1, 0x20);
|
||||
t1 = _mm256_permute2f128_si256(desc0, desc1, 0x31);
|
||||
t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
|
||||
rxcmp0_1 = _mm256_blend_epi32(t0, t1, 0x66);
|
||||
|
||||
/* Compute packet type table indices for eight packets. */
|
||||
t0 = _mm256_unpacklo_epi32(rxcmp0_1, rxcmp2_3);
|
||||
t1 = _mm256_unpacklo_epi32(rxcmp4_5, rxcmp6_7);
|
||||
flags_type = _mm256_unpacklo_epi64(t0, t1);
|
||||
ptype_idx = _mm256_and_si256(flags_type, flags_type_mask);
|
||||
ptype_idx = _mm256_srli_epi32(ptype_idx,
|
||||
RX_PKT_CMPL_FLAGS_ITYPE_SFT -
|
||||
BNXT_PTYPE_TBL_TYPE_SFT);
|
||||
|
||||
t0 = _mm256_unpacklo_epi32(rxcmp0_1, rxcmp2_3);
|
||||
t1 = _mm256_unpacklo_epi32(rxcmp4_5, rxcmp6_7);
|
||||
flags2 = _mm256_unpackhi_epi64(t0, t1);
|
||||
|
||||
t0 = _mm256_srli_epi32(_mm256_and_si256(flags2, flags2_mask1),
|
||||
RX_PKT_CMPL_FLAGS2_META_FORMAT_SFT -
|
||||
BNXT_PTYPE_TBL_VLAN_SFT);
|
||||
ptype_idx = _mm256_or_si256(ptype_idx, t0);
|
||||
|
||||
t0 = _mm256_srli_epi32(_mm256_and_si256(flags2, flags2_mask2),
|
||||
RX_PKT_CMPL_FLAGS2_IP_TYPE_SFT -
|
||||
BNXT_PTYPE_TBL_IP_VER_SFT);
|
||||
ptype_idx = _mm256_or_si256(ptype_idx, t0);
|
||||
|
||||
/*
|
||||
* Load ptypes for eight packets using gather. Gather operations
|
||||
* have extremely high latency (~19 cycles), execution and use
|
||||
* of result should be separated as much as possible.
|
||||
*/
|
||||
ptypes = _mm256_i32gather_epi32((int *)bnxt_ptype_table,
|
||||
ptype_idx, sizeof(uint32_t));
|
||||
/*
|
||||
* Compute ol_flags and checksum error table indices for eight
|
||||
* packets.
|
||||
*/
|
||||
is_tunnel = _mm256_and_si256(flags2, _mm256_set1_epi32(4));
|
||||
is_tunnel = _mm256_slli_epi32(is_tunnel, 3);
|
||||
flags2 = _mm256_and_si256(flags2, _mm256_set1_epi32(0x1F));
|
||||
|
||||
/* Extract errors_v2 fields for eight packets. */
|
||||
t0 = _mm256_unpackhi_epi32(rxcmp0_1, rxcmp2_3);
|
||||
t1 = _mm256_unpackhi_epi32(rxcmp4_5, rxcmp6_7);
|
||||
errors_v2 = _mm256_unpacklo_epi64(t0, t1);
|
||||
|
||||
errors = _mm256_srli_epi32(errors_v2, 4);
|
||||
errors = _mm256_and_si256(errors, _mm256_set1_epi32(0xF));
|
||||
errors = _mm256_and_si256(errors, flags2);
|
||||
|
||||
index = _mm256_andnot_si256(errors, flags2);
|
||||
errors = _mm256_or_si256(errors,
|
||||
_mm256_srli_epi32(is_tunnel, 1));
|
||||
index = _mm256_or_si256(index, is_tunnel);
|
||||
|
||||
/*
|
||||
* Load ol_flags for eight packets using gather. Gather
|
||||
* operations have extremely high latency (~19 cycles),
|
||||
* execution and use of result should be separated as much
|
||||
* as possible.
|
||||
*/
|
||||
ol_flags = _mm256_i32gather_epi32((int *)rxr->ol_flags_table,
|
||||
index, sizeof(uint32_t));
|
||||
errors = _mm256_i32gather_epi32((int *)rxr->ol_flags_err_table,
|
||||
errors, sizeof(uint32_t));
|
||||
|
||||
/*
|
||||
* Pack the 128-bit array of valid descriptor flags into 64
|
||||
* bits and count the number of set bits in order to determine
|
||||
* the number of valid descriptors.
|
||||
*/
|
||||
const __m256i perm_msk =
|
||||
_mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
|
||||
info3_v = _mm256_permutevar8x32_epi32(errors_v2, perm_msk);
|
||||
info3_v = _mm256_and_si256(errors_v2, info3_v_mask);
|
||||
info3_v = _mm256_xor_si256(info3_v, valid_target);
|
||||
|
||||
info3_v = _mm256_packs_epi32(info3_v, _mm256_setzero_si256());
|
||||
valid = _mm_cvtsi128_si64(_mm256_extracti128_si256(info3_v, 1));
|
||||
valid = (valid << CHAR_BIT) |
|
||||
_mm_cvtsi128_si64(_mm256_castsi256_si128(info3_v));
|
||||
num_valid = __builtin_popcountll(valid & desc_valid_mask);
|
||||
|
||||
if (num_valid == 0)
|
||||
break;
|
||||
|
||||
/* Update mbuf rearm_data for eight packets. */
|
||||
mbuf01 = _mm256_shuffle_epi8(rxcmp0_1, shuf_msk);
|
||||
mbuf23 = _mm256_shuffle_epi8(rxcmp2_3, shuf_msk);
|
||||
mbuf45 = _mm256_shuffle_epi8(rxcmp4_5, shuf_msk);
|
||||
mbuf67 = _mm256_shuffle_epi8(rxcmp6_7, shuf_msk);
|
||||
|
||||
/* Blend in ptype field for two mbufs at a time. */
|
||||
mbuf01 = _mm256_blend_epi32(mbuf01, ptypes, 0x11);
|
||||
mbuf23 = _mm256_blend_epi32(mbuf23,
|
||||
_mm256_srli_si256(ptypes, 4), 0x11);
|
||||
mbuf45 = _mm256_blend_epi32(mbuf45,
|
||||
_mm256_srli_si256(ptypes, 8), 0x11);
|
||||
mbuf67 = _mm256_blend_epi32(mbuf67,
|
||||
_mm256_srli_si256(ptypes, 12), 0x11);
|
||||
|
||||
/* Unpack rearm data, set fixed fields for first four mbufs. */
|
||||
rearm0 = _mm256_permute2f128_si256(mbuf_init, mbuf01, 0x20);
|
||||
rearm1 = _mm256_blend_epi32(mbuf_init, mbuf01, 0xF0);
|
||||
rearm2 = _mm256_permute2f128_si256(mbuf_init, mbuf23, 0x20);
|
||||
rearm3 = _mm256_blend_epi32(mbuf_init, mbuf23, 0xF0);
|
||||
|
||||
/* Compute final ol_flags values for eight packets. */
|
||||
rss_flags = _mm256_and_si256(flags_type, rss_mask);
|
||||
rss_flags = _mm256_srli_epi32(rss_flags, 9);
|
||||
ol_flags = _mm256_or_si256(ol_flags, errors);
|
||||
ol_flags = _mm256_or_si256(ol_flags, rss_flags);
|
||||
ol_flags_hi = _mm256_permute2f128_si256(ol_flags,
|
||||
ol_flags, 0x11);
|
||||
|
||||
/* Set ol_flags fields for first four packets. */
|
||||
rearm0 = _mm256_blend_epi32(rearm0,
|
||||
_mm256_slli_si256(ol_flags, 8),
|
||||
0x04);
|
||||
rearm1 = _mm256_blend_epi32(rearm1,
|
||||
_mm256_slli_si256(ol_flags_hi, 8),
|
||||
0x04);
|
||||
rearm2 = _mm256_blend_epi32(rearm2,
|
||||
_mm256_slli_si256(ol_flags, 4),
|
||||
0x04);
|
||||
rearm3 = _mm256_blend_epi32(rearm3,
|
||||
_mm256_slli_si256(ol_flags_hi, 4),
|
||||
0x04);
|
||||
|
||||
/* Store all mbuf fields for first four packets. */
|
||||
_mm256_storeu_si256((void *)&rx_pkts[i + 0]->rearm_data,
|
||||
rearm0);
|
||||
_mm256_storeu_si256((void *)&rx_pkts[i + 1]->rearm_data,
|
||||
rearm1);
|
||||
_mm256_storeu_si256((void *)&rx_pkts[i + 2]->rearm_data,
|
||||
rearm2);
|
||||
_mm256_storeu_si256((void *)&rx_pkts[i + 3]->rearm_data,
|
||||
rearm3);
|
||||
|
||||
/* Unpack rearm data, set fixed fields for final four mbufs. */
|
||||
rearm4 = _mm256_permute2f128_si256(mbuf_init, mbuf45, 0x20);
|
||||
rearm5 = _mm256_blend_epi32(mbuf_init, mbuf45, 0xF0);
|
||||
rearm6 = _mm256_permute2f128_si256(mbuf_init, mbuf67, 0x20);
|
||||
rearm7 = _mm256_blend_epi32(mbuf_init, mbuf67, 0xF0);
|
||||
|
||||
/* Set ol_flags fields for final four packets. */
|
||||
rearm4 = _mm256_blend_epi32(rearm4, ol_flags, 0x04);
|
||||
rearm5 = _mm256_blend_epi32(rearm5, ol_flags_hi, 0x04);
|
||||
rearm6 = _mm256_blend_epi32(rearm6,
|
||||
_mm256_srli_si256(ol_flags, 4),
|
||||
0x04);
|
||||
rearm7 = _mm256_blend_epi32(rearm7,
|
||||
_mm256_srli_si256(ol_flags_hi, 4),
|
||||
0x04);
|
||||
|
||||
/* Store all mbuf fields for final four packets. */
|
||||
_mm256_storeu_si256((void *)&rx_pkts[i + 4]->rearm_data,
|
||||
rearm4);
|
||||
_mm256_storeu_si256((void *)&rx_pkts[i + 5]->rearm_data,
|
||||
rearm5);
|
||||
_mm256_storeu_si256((void *)&rx_pkts[i + 6]->rearm_data,
|
||||
rearm6);
|
||||
_mm256_storeu_si256((void *)&rx_pkts[i + 7]->rearm_data,
|
||||
rearm7);
|
||||
|
||||
nb_rx_pkts += num_valid;
|
||||
if (num_valid < BNXT_RX_DESCS_PER_LOOP_VEC256)
|
||||
break;
|
||||
}
|
||||
|
||||
if (nb_rx_pkts) {
|
||||
rxr->rx_raw_prod = RING_ADV(rxr->rx_raw_prod, nb_rx_pkts);
|
||||
|
||||
rxq->rxrearm_nb += nb_rx_pkts;
|
||||
cpr->cp_raw_cons += 2 * nb_rx_pkts;
|
||||
bnxt_db_cq(cpr);
|
||||
}
|
||||
|
||||
return nb_rx_pkts;
|
||||
}
|
||||
|
||||
uint16_t
|
||||
bnxt_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
|
||||
uint16_t nb_pkts)
|
||||
{
|
||||
uint16_t cnt = 0;
|
||||
|
||||
while (nb_pkts > RTE_BNXT_MAX_RX_BURST) {
|
||||
uint16_t burst;
|
||||
|
||||
burst = recv_burst_vec_avx2(rx_queue, rx_pkts + cnt,
|
||||
RTE_BNXT_MAX_RX_BURST);
|
||||
|
||||
cnt += burst;
|
||||
nb_pkts -= burst;
|
||||
|
||||
if (burst < RTE_BNXT_MAX_RX_BURST)
|
||||
return cnt;
|
||||
}
|
||||
return cnt + recv_burst_vec_avx2(rx_queue, rx_pkts + cnt, nb_pkts);
|
||||
}
|
||||
|
||||
static void
|
||||
bnxt_handle_tx_cp_vec(struct bnxt_tx_queue *txq)
|
||||
{
|
||||
struct bnxt_cp_ring_info *cpr = txq->cp_ring;
|
||||
uint32_t raw_cons = cpr->cp_raw_cons;
|
||||
uint32_t cons;
|
||||
uint32_t nb_tx_pkts = 0;
|
||||
struct tx_cmpl *txcmp;
|
||||
struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
|
||||
struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
|
||||
uint32_t ring_mask = cp_ring_struct->ring_mask;
|
||||
|
||||
do {
|
||||
cons = RING_CMPL(ring_mask, raw_cons);
|
||||
txcmp = (struct tx_cmpl *)&cp_desc_ring[cons];
|
||||
|
||||
if (!CMP_VALID(txcmp, raw_cons, cp_ring_struct))
|
||||
break;
|
||||
|
||||
nb_tx_pkts += txcmp->opaque;
|
||||
raw_cons = NEXT_RAW_CMP(raw_cons);
|
||||
} while (nb_tx_pkts < ring_mask);
|
||||
|
||||
if (nb_tx_pkts) {
|
||||
if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
|
||||
bnxt_tx_cmp_vec_fast(txq, nb_tx_pkts);
|
||||
else
|
||||
bnxt_tx_cmp_vec(txq, nb_tx_pkts);
|
||||
cpr->cp_raw_cons = raw_cons;
|
||||
bnxt_db_cq(cpr);
|
||||
}
|
||||
}
|
||||
|
||||
static inline void
|
||||
bnxt_xmit_one(struct rte_mbuf *mbuf, struct tx_bd_long *txbd,
|
||||
struct rte_mbuf **tx_buf)
|
||||
{
|
||||
uint64_t dsc_hi, dsc_lo;
|
||||
__m128i desc;
|
||||
|
||||
*tx_buf = mbuf;
|
||||
|
||||
dsc_hi = mbuf->buf_iova + mbuf->data_off;
|
||||
dsc_lo = (mbuf->data_len << 16) |
|
||||
bnxt_xmit_flags_len(mbuf->data_len, TX_BD_FLAGS_NOCMPL);
|
||||
|
||||
desc = _mm_set_epi64x(dsc_hi, dsc_lo);
|
||||
_mm_store_si128((void *)txbd, desc);
|
||||
}
|
||||
|
||||
static uint16_t
|
||||
bnxt_xmit_fixed_burst_vec(struct bnxt_tx_queue *txq, struct rte_mbuf **pkts,
|
||||
uint16_t nb_pkts)
|
||||
{
|
||||
struct bnxt_tx_ring_info *txr = txq->tx_ring;
|
||||
uint16_t tx_prod, tx_raw_prod = txr->tx_raw_prod;
|
||||
struct tx_bd_long *txbd;
|
||||
struct rte_mbuf **tx_buf;
|
||||
uint16_t to_send;
|
||||
|
||||
tx_prod = RING_IDX(txr->tx_ring_struct, tx_raw_prod);
|
||||
txbd = &txr->tx_desc_ring[tx_prod];
|
||||
tx_buf = &txr->tx_buf_ring[tx_prod];
|
||||
|
||||
/* Prefetch next transmit buffer descriptors. */
|
||||
rte_prefetch0(txbd);
|
||||
rte_prefetch0(txbd + 3);
|
||||
|
||||
nb_pkts = RTE_MIN(nb_pkts, bnxt_tx_avail(txq));
|
||||
|
||||
if (unlikely(nb_pkts == 0))
|
||||
return 0;
|
||||
|
||||
/* Handle TX burst request */
|
||||
to_send = nb_pkts;
|
||||
|
||||
/*
|
||||
* If current descriptor is not on a 32-byte boundary, send one packet
|
||||
* to align for 32-byte stores.
|
||||
*/
|
||||
if (tx_prod & 1) {
|
||||
bnxt_xmit_one(pkts[0], txbd++, tx_buf++);
|
||||
to_send--;
|
||||
pkts++;
|
||||
}
|
||||
|
||||
/*
|
||||
* Send four packets per loop, with a single store for each pair
|
||||
* of descriptors.
|
||||
*/
|
||||
while (to_send >= BNXT_TX_DESCS_PER_LOOP) {
|
||||
uint64_t dsc0_hi, dsc0_lo, dsc1_hi, dsc1_lo;
|
||||
uint64_t dsc2_hi, dsc2_lo, dsc3_hi, dsc3_lo;
|
||||
__m256i dsc01, dsc23;
|
||||
|
||||
/* Prefetch next transmit buffer descriptors. */
|
||||
rte_prefetch0(txbd + 4);
|
||||
rte_prefetch0(txbd + 7);
|
||||
|
||||
/* Copy four mbuf pointers to tx buf ring. */
|
||||
#ifdef RTE_ARCH_X86_64
|
||||
__m256i tmp = _mm256_loadu_si256((void *)pkts);
|
||||
_mm256_storeu_si256((void *)tx_buf, tmp);
|
||||
#else
|
||||
__m128i tmp = _mm_loadu_si128((void *)pkts);
|
||||
_mm_storeu_si128((void *)tx_buf, tmp);
|
||||
#endif
|
||||
|
||||
dsc0_hi = tx_buf[0]->buf_iova + tx_buf[0]->data_off;
|
||||
dsc0_lo = (tx_buf[0]->data_len << 16) |
|
||||
bnxt_xmit_flags_len(tx_buf[0]->data_len,
|
||||
TX_BD_FLAGS_NOCMPL);
|
||||
|
||||
dsc1_hi = tx_buf[1]->buf_iova + tx_buf[1]->data_off;
|
||||
dsc1_lo = (tx_buf[1]->data_len << 16) |
|
||||
bnxt_xmit_flags_len(tx_buf[1]->data_len,
|
||||
TX_BD_FLAGS_NOCMPL);
|
||||
|
||||
dsc01 = _mm256_set_epi64x(dsc1_hi, dsc1_lo, dsc0_hi, dsc0_lo);
|
||||
|
||||
dsc2_hi = tx_buf[2]->buf_iova + tx_buf[2]->data_off;
|
||||
dsc2_lo = (tx_buf[2]->data_len << 16) |
|
||||
bnxt_xmit_flags_len(tx_buf[2]->data_len,
|
||||
TX_BD_FLAGS_NOCMPL);
|
||||
|
||||
dsc3_hi = tx_buf[3]->buf_iova + tx_buf[3]->data_off;
|
||||
dsc3_lo = (tx_buf[3]->data_len << 16) |
|
||||
bnxt_xmit_flags_len(tx_buf[3]->data_len,
|
||||
TX_BD_FLAGS_NOCMPL);
|
||||
|
||||
dsc23 = _mm256_set_epi64x(dsc3_hi, dsc3_lo, dsc2_hi, dsc2_lo);
|
||||
|
||||
_mm256_store_si256((void *)txbd, dsc01);
|
||||
_mm256_store_si256((void *)(txbd + 2), dsc23);
|
||||
|
||||
to_send -= BNXT_TX_DESCS_PER_LOOP;
|
||||
pkts += BNXT_TX_DESCS_PER_LOOP;
|
||||
txbd += BNXT_TX_DESCS_PER_LOOP;
|
||||
tx_buf += BNXT_TX_DESCS_PER_LOOP;
|
||||
}
|
||||
|
||||
/* Send any remaining packets, writing each descriptor individually. */
|
||||
while (to_send) {
|
||||
bnxt_xmit_one(pkts[0], txbd++, tx_buf++);
|
||||
to_send--;
|
||||
pkts++;
|
||||
}
|
||||
|
||||
/* Request a completion for the final packet of the burst. */
|
||||
txbd[-1].opaque = nb_pkts;
|
||||
txbd[-1].flags_type &= ~TX_BD_LONG_FLAGS_NO_CMPL;
|
||||
|
||||
tx_raw_prod += nb_pkts;
|
||||
bnxt_db_write(&txr->tx_db, tx_raw_prod);
|
||||
|
||||
txr->tx_raw_prod = tx_raw_prod;
|
||||
|
||||
return nb_pkts;
|
||||
}
|
||||
|
||||
uint16_t
|
||||
bnxt_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
|
||||
uint16_t nb_pkts)
|
||||
{
|
||||
int nb_sent = 0;
|
||||
struct bnxt_tx_queue *txq = tx_queue;
|
||||
struct bnxt_tx_ring_info *txr = txq->tx_ring;
|
||||
uint16_t ring_size = txr->tx_ring_struct->ring_size;
|
||||
|
||||
/* Tx queue was stopped; wait for it to be restarted */
|
||||
if (unlikely(!txq->tx_started)) {
|
||||
PMD_DRV_LOG(DEBUG, "Tx q stopped;return\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Handle TX completions */
|
||||
if (bnxt_tx_bds_in_hw(txq) >= txq->tx_free_thresh)
|
||||
bnxt_handle_tx_cp_vec(txq);
|
||||
|
||||
while (nb_pkts) {
|
||||
uint16_t ret, num;
|
||||
|
||||
/*
|
||||
* Ensure that no more than RTE_BNXT_MAX_TX_BURST packets
|
||||
* are transmitted before the next completion.
|
||||
*/
|
||||
num = RTE_MIN(nb_pkts, RTE_BNXT_MAX_TX_BURST);
|
||||
|
||||
/*
|
||||
* Ensure that a ring wrap does not occur within a call to
|
||||
* bnxt_xmit_fixed_burst_vec().
|
||||
*/
|
||||
num = RTE_MIN(num, ring_size -
|
||||
(txr->tx_raw_prod & (ring_size - 1)));
|
||||
ret = bnxt_xmit_fixed_burst_vec(txq, &tx_pkts[nb_sent], num);
|
||||
nb_sent += ret;
|
||||
nb_pkts -= ret;
|
||||
if (ret < num)
|
||||
break;
|
||||
}
|
||||
|
||||
return nb_sent;
|
||||
}
|
@ -200,17 +200,20 @@ recv_burst_vec_neon(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
||||
* maximum number of packets to receive to be a multiple of the per-
|
||||
* loop count.
|
||||
*/
|
||||
if (nb_pkts < RTE_BNXT_DESCS_PER_LOOP)
|
||||
desc_valid_mask >>= 16 * (RTE_BNXT_DESCS_PER_LOOP - nb_pkts);
|
||||
else
|
||||
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_BNXT_DESCS_PER_LOOP);
|
||||
if (nb_pkts < BNXT_RX_DESCS_PER_LOOP_VEC128) {
|
||||
desc_valid_mask >>=
|
||||
16 * (BNXT_RX_DESCS_PER_LOOP_VEC128 - nb_pkts);
|
||||
} else {
|
||||
nb_pkts =
|
||||
RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC128);
|
||||
}
|
||||
|
||||
/* Handle RX burst request */
|
||||
for (i = 0; i < nb_pkts; i += RTE_BNXT_DESCS_PER_LOOP,
|
||||
cons += RTE_BNXT_DESCS_PER_LOOP * 2,
|
||||
mbcons += RTE_BNXT_DESCS_PER_LOOP) {
|
||||
uint32x4_t rxcmp1[RTE_BNXT_DESCS_PER_LOOP];
|
||||
uint32x4_t rxcmp[RTE_BNXT_DESCS_PER_LOOP];
|
||||
for (i = 0; i < nb_pkts; i += BNXT_RX_DESCS_PER_LOOP_VEC128,
|
||||
cons += BNXT_RX_DESCS_PER_LOOP_VEC128 * 2,
|
||||
mbcons += BNXT_RX_DESCS_PER_LOOP_VEC128) {
|
||||
uint32x4_t rxcmp1[BNXT_RX_DESCS_PER_LOOP_VEC128];
|
||||
uint32x4_t rxcmp[BNXT_RX_DESCS_PER_LOOP_VEC128];
|
||||
uint32x4_t info3_v;
|
||||
uint64x2_t t0, t1;
|
||||
uint32_t num_valid;
|
||||
@ -226,7 +229,7 @@ recv_burst_vec_neon(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
||||
#endif
|
||||
|
||||
/* Prefetch four descriptor pairs for next iteration. */
|
||||
if (i + RTE_BNXT_DESCS_PER_LOOP < nb_pkts) {
|
||||
if (i + BNXT_RX_DESCS_PER_LOOP_VEC128 < nb_pkts) {
|
||||
rte_prefetch0(&cp_desc_ring[cons + 8]);
|
||||
rte_prefetch0(&cp_desc_ring[cons + 12]);
|
||||
}
|
||||
@ -284,7 +287,7 @@ recv_burst_vec_neon(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
||||
rxr);
|
||||
nb_rx_pkts += num_valid;
|
||||
|
||||
if (num_valid < RTE_BNXT_DESCS_PER_LOOP)
|
||||
if (num_valid < BNXT_RX_DESCS_PER_LOOP_VEC128)
|
||||
break;
|
||||
}
|
||||
|
||||
|
@ -191,17 +191,20 @@ recv_burst_vec_sse(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
||||
* maximum number of packets to receive to be a multiple of the per-
|
||||
* loop count.
|
||||
*/
|
||||
if (nb_pkts < RTE_BNXT_DESCS_PER_LOOP)
|
||||
desc_valid_mask >>= 16 * (RTE_BNXT_DESCS_PER_LOOP - nb_pkts);
|
||||
else
|
||||
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_BNXT_DESCS_PER_LOOP);
|
||||
if (nb_pkts < BNXT_RX_DESCS_PER_LOOP_VEC128) {
|
||||
desc_valid_mask >>=
|
||||
16 * (BNXT_RX_DESCS_PER_LOOP_VEC128 - nb_pkts);
|
||||
} else {
|
||||
nb_pkts =
|
||||
RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC128);
|
||||
}
|
||||
|
||||
/* Handle RX burst request */
|
||||
for (i = 0; i < nb_pkts; i += RTE_BNXT_DESCS_PER_LOOP,
|
||||
cons += RTE_BNXT_DESCS_PER_LOOP * 2,
|
||||
mbcons += RTE_BNXT_DESCS_PER_LOOP) {
|
||||
__m128i rxcmp1[RTE_BNXT_DESCS_PER_LOOP];
|
||||
__m128i rxcmp[RTE_BNXT_DESCS_PER_LOOP];
|
||||
for (i = 0; i < nb_pkts; i += BNXT_RX_DESCS_PER_LOOP_VEC128,
|
||||
cons += BNXT_RX_DESCS_PER_LOOP_VEC128 * 2,
|
||||
mbcons += BNXT_RX_DESCS_PER_LOOP_VEC128) {
|
||||
__m128i rxcmp1[BNXT_RX_DESCS_PER_LOOP_VEC128];
|
||||
__m128i rxcmp[BNXT_RX_DESCS_PER_LOOP_VEC128];
|
||||
__m128i tmp0, tmp1, info3_v;
|
||||
uint32_t num_valid;
|
||||
|
||||
@ -216,7 +219,7 @@ recv_burst_vec_sse(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
||||
#endif
|
||||
|
||||
/* Prefetch four descriptor pairs for next iteration. */
|
||||
if (i + RTE_BNXT_DESCS_PER_LOOP < nb_pkts) {
|
||||
if (i + BNXT_RX_DESCS_PER_LOOP_VEC128 < nb_pkts) {
|
||||
rte_prefetch0(&cp_desc_ring[cons + 8]);
|
||||
rte_prefetch0(&cp_desc_ring[cons + 12]);
|
||||
}
|
||||
@ -265,7 +268,7 @@ recv_burst_vec_sse(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
|
||||
rxr);
|
||||
nb_rx_pkts += num_valid;
|
||||
|
||||
if (num_valid < RTE_BNXT_DESCS_PER_LOOP)
|
||||
if (num_valid < BNXT_RX_DESCS_PER_LOOP_VEC128)
|
||||
break;
|
||||
}
|
||||
|
||||
@ -383,7 +386,7 @@ bnxt_xmit_fixed_burst_vec(struct bnxt_tx_queue *txq, struct rte_mbuf **tx_pkts,
|
||||
|
||||
/* Handle TX burst request */
|
||||
to_send = nb_pkts;
|
||||
while (to_send >= RTE_BNXT_DESCS_PER_LOOP) {
|
||||
while (to_send >= BNXT_TX_DESCS_PER_LOOP) {
|
||||
/* Prefetch next transmit buffer descriptors. */
|
||||
rte_prefetch0(txbd + 4);
|
||||
rte_prefetch0(txbd + 7);
|
||||
@ -393,8 +396,8 @@ bnxt_xmit_fixed_burst_vec(struct bnxt_tx_queue *txq, struct rte_mbuf **tx_pkts,
|
||||
bnxt_xmit_one(tx_pkts[2], txbd++, tx_buf++);
|
||||
bnxt_xmit_one(tx_pkts[3], txbd++, tx_buf++);
|
||||
|
||||
to_send -= RTE_BNXT_DESCS_PER_LOOP;
|
||||
tx_pkts += RTE_BNXT_DESCS_PER_LOOP;
|
||||
to_send -= BNXT_TX_DESCS_PER_LOOP;
|
||||
tx_pkts += BNXT_TX_DESCS_PER_LOOP;
|
||||
}
|
||||
|
||||
while (to_send) {
|
||||
|
@ -11,6 +11,9 @@
|
||||
#define BNXT_MAX_TSO_SEGS 32
|
||||
#define BNXT_MIN_PKT_SIZE 52
|
||||
|
||||
/* Number of transmit descriptors processed per inner loop in vector mode. */
|
||||
#define BNXT_TX_DESCS_PER_LOOP 4U
|
||||
|
||||
struct bnxt_tx_ring_info {
|
||||
uint16_t tx_raw_prod;
|
||||
uint16_t tx_raw_cons;
|
||||
@ -48,6 +51,10 @@ uint16_t bnxt_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
|
||||
uint16_t bnxt_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
|
||||
uint16_t nb_pkts);
|
||||
#endif
|
||||
#if defined(RTE_ARCH_X86) && defined(CC_AVX2_SUPPORT)
|
||||
uint16_t bnxt_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
|
||||
uint16_t nb_pkts);
|
||||
#endif
|
||||
|
||||
int bnxt_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id);
|
||||
int bnxt_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id);
|
||||
|
@ -82,6 +82,23 @@ sources = files(
|
||||
|
||||
if arch_subdir == 'x86'
|
||||
sources += files('bnxt_rxtx_vec_sse.c')
|
||||
# compile AVX2 version if either:
|
||||
# a. we have AVX supported in minimum instruction set baseline
|
||||
# b. it's not minimum instruction set, but supported by compiler
|
||||
if cc.get_define('__AVX2__', args: machine_args) != ''
|
||||
cflags += ['-DCC_AVX2_SUPPORT']
|
||||
sources += files('bnxt_rxtx_vec_avx2.c')
|
||||
elif cc.has_argument('-mavx2')
|
||||
cflags += ['-DCC_AVX2_SUPPORT']
|
||||
bnxt_avx2_lib = static_library('bnxt_avx2_lib',
|
||||
'bnxt_rxtx_vec_avx2.c',
|
||||
dependencies: [static_rte_ethdev,
|
||||
static_rte_bus_pci,
|
||||
static_rte_kvargs, static_rte_hash],
|
||||
include_directories: includes,
|
||||
c_args: [cflags, '-mavx2'])
|
||||
objs += bnxt_avx2_lib.extract_objects('bnxt_rxtx_vec_avx2.c')
|
||||
endif
|
||||
elif arch_subdir == 'arm' and host_machine.cpu_family().startswith('aarch64')
|
||||
sources += files('bnxt_rxtx_vec_neon.c')
|
||||
endif
|
||||
|
Loading…
x
Reference in New Issue
Block a user