baseband/fpga_5gnr_fec: add queue configuration

Adding function to create and configure queues for
the device. Still no capability.

Signed-off-by: Nicolas Chautru <nicolas.chautru@intel.com>
Acked-by: Dave Burley <dave.burley@accelercomm.com>
Acked-by: Niall Power <niall.power@intel.com>
Reviewed-by: Rosen Xu <rosen.xu@intel.com>
Acked-by: Akhil Goyal <akhil.goyal@nxp.com>
This commit is contained in:
Nicolas Chautru 2020-04-18 15:46:41 -07:00 committed by Akhil Goyal
parent 57936c36fd
commit c58109a887
2 changed files with 474 additions and 1 deletions

View File

@ -223,10 +223,120 @@ struct __rte_packed fpga_ring_ctrl_reg {
struct fpga_5gnr_fec_device {
/** Base address of MMIO registers (BAR0) */
void *mmio_base;
/** Base address of memory for sw rings */
void *sw_rings;
/** Physical address of sw_rings */
rte_iova_t sw_rings_phys;
/** Number of bytes available for each queue in device. */
uint32_t sw_ring_size;
/** Max number of entries available for each queue in device */
uint32_t sw_ring_max_depth;
/** Base address of response tail pointer buffer */
uint32_t *tail_ptrs;
/** Physical address of tail pointers */
rte_iova_t tail_ptr_phys;
/** Queues flush completion flag */
uint64_t *flush_queue_status;
/* Bitmap capturing which Queues are bound to the PF/VF */
uint64_t q_bound_bit_map;
/* Bitmap capturing which Queues have already been assigned */
uint64_t q_assigned_bit_map;
/** True if this is a PF FPGA FEC device */
bool pf_device;
};
/* Structure associated with each queue. */
struct __rte_cache_aligned fpga_queue {
struct fpga_ring_ctrl_reg ring_ctrl_reg; /* Ring Control Register */
union fpga_dma_desc *ring_addr; /* Virtual address of software ring */
uint64_t *ring_head_addr; /* Virtual address of completion_head */
uint64_t shadow_completion_head; /* Shadow completion head value */
uint16_t head_free_desc; /* Ring head */
uint16_t tail; /* Ring tail */
/* Mask used to wrap enqueued descriptors on the sw ring */
uint32_t sw_ring_wrap_mask;
uint32_t irq_enable; /* Enable ops dequeue interrupts if set to 1 */
uint8_t q_idx; /* Queue index */
struct fpga_5gnr_fec_device *d;
/* MMIO register of shadow_tail used to enqueue descriptors */
void *shadow_tail_addr;
};
/* Write to 16 bit MMIO register address */
static inline void
mmio_write_16(void *addr, uint16_t value)
{
*((volatile uint16_t *)(addr)) = rte_cpu_to_le_16(value);
}
/* Write to 32 bit MMIO register address */
static inline void
mmio_write_32(void *addr, uint32_t value)
{
*((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
}
/* Write to 64 bit MMIO register address */
static inline void
mmio_write_64(void *addr, uint64_t value)
{
*((volatile uint64_t *)(addr)) = rte_cpu_to_le_64(value);
}
/* Write a 8 bit register of a FPGA 5GNR FEC device */
static inline void
fpga_reg_write_8(void *mmio_base, uint32_t offset, uint8_t payload)
{
void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
*((volatile uint8_t *)(reg_addr)) = payload;
}
/* Write a 16 bit register of a FPGA 5GNR FEC device */
static inline void
fpga_reg_write_16(void *mmio_base, uint32_t offset, uint16_t payload)
{
void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
mmio_write_16(reg_addr, payload);
}
/* Write a 32 bit register of a FPGA 5GNR FEC device */
static inline void
fpga_reg_write_32(void *mmio_base, uint32_t offset, uint32_t payload)
{
void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
mmio_write_32(reg_addr, payload);
}
/* Write a 64 bit register of a FPGA 5GNR FEC device */
static inline void
fpga_reg_write_64(void *mmio_base, uint32_t offset, uint64_t payload)
{
void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
mmio_write_64(reg_addr, payload);
}
/* Write a ring control register of a FPGA 5GNR FEC device */
static inline void
fpga_ring_reg_write(void *mmio_base, uint32_t offset,
struct fpga_ring_ctrl_reg payload)
{
fpga_reg_write_64(mmio_base, offset, payload.ring_base_addr);
fpga_reg_write_64(mmio_base, offset + FPGA_5GNR_FEC_RING_HEAD_ADDR,
payload.ring_head_addr);
fpga_reg_write_16(mmio_base, offset + FPGA_5GNR_FEC_RING_SIZE,
payload.ring_size);
fpga_reg_write_16(mmio_base, offset + FPGA_5GNR_FEC_RING_HEAD_POINT,
payload.head_point);
fpga_reg_write_8(mmio_base, offset + FPGA_5GNR_FEC_RING_FLUSH_QUEUE_EN,
payload.flush_queue_en);
fpga_reg_write_16(mmio_base, offset + FPGA_5GNR_FEC_RING_SHADOW_TAIL,
payload.shadow_tail);
fpga_reg_write_8(mmio_base, offset + FPGA_5GNR_FEC_RING_MISC,
payload.misc);
fpga_reg_write_8(mmio_base, offset + FPGA_5GNR_FEC_RING_ENABLE,
payload.enable);
}
/* Read a register of FPGA 5GNR FEC device */
static inline uint32_t
fpga_reg_read_32(void *mmio_base, uint32_t offset)

View File

@ -23,8 +23,113 @@
static int fpga_5gnr_fec_logtype;
static int
fpga_dev_close(struct rte_bbdev *dev __rte_unused)
fpga_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
{
/* Number of queues bound to a PF/VF */
uint32_t hw_q_num = 0;
uint32_t ring_size, payload, address, q_id, offset;
rte_iova_t phys_addr;
struct fpga_ring_ctrl_reg ring_reg;
struct fpga_5gnr_fec_device *fpga_dev = dev->data->dev_private;
address = FPGA_5GNR_FEC_QUEUE_PF_VF_MAP_DONE;
if (!(fpga_reg_read_32(fpga_dev->mmio_base, address) & 0x1)) {
rte_bbdev_log(ERR,
"Queue-PF/VF mapping is not set! Was PF configured for device (%s) ?",
dev->data->name);
return -EPERM;
}
/* Clear queue registers structure */
memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
/* Scan queue map.
* If a queue is valid and mapped to a calling PF/VF the read value is
* replaced with a queue ID and if it's not then
* FPGA_INVALID_HW_QUEUE_ID is returned.
*/
for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
uint32_t hw_q_id = fpga_reg_read_32(fpga_dev->mmio_base,
FPGA_5GNR_FEC_QUEUE_MAP + (q_id << 2));
rte_bbdev_log_debug("%s: queue ID: %u, registry queue ID: %u",
dev->device->name, q_id, hw_q_id);
if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID) {
fpga_dev->q_bound_bit_map |= (1ULL << q_id);
/* Clear queue register of found queue */
offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
(sizeof(struct fpga_ring_ctrl_reg) * q_id);
fpga_ring_reg_write(fpga_dev->mmio_base,
offset, ring_reg);
++hw_q_num;
}
}
if (hw_q_num == 0) {
rte_bbdev_log(ERR,
"No HW queues assigned to this device. Probably this is a VF configured for PF mode. Check device configuration!");
return -ENODEV;
}
if (num_queues > hw_q_num) {
rte_bbdev_log(ERR,
"Not enough queues for device %s! Requested: %u, available: %u",
dev->device->name, num_queues, hw_q_num);
return -EINVAL;
}
ring_size = FPGA_RING_MAX_SIZE * sizeof(struct fpga_dma_dec_desc);
/* Enforce 32 byte alignment */
RTE_BUILD_BUG_ON((RTE_CACHE_LINE_SIZE % 32) != 0);
/* Allocate memory for SW descriptor rings */
fpga_dev->sw_rings = rte_zmalloc_socket(dev->device->driver->name,
num_queues * ring_size, RTE_CACHE_LINE_SIZE,
socket_id);
if (fpga_dev->sw_rings == NULL) {
rte_bbdev_log(ERR,
"Failed to allocate memory for %s:%u sw_rings",
dev->device->driver->name, dev->data->dev_id);
return -ENOMEM;
}
fpga_dev->sw_rings_phys = rte_malloc_virt2iova(fpga_dev->sw_rings);
fpga_dev->sw_ring_size = ring_size;
fpga_dev->sw_ring_max_depth = FPGA_RING_MAX_SIZE;
/* Allocate memory for ring flush status */
fpga_dev->flush_queue_status = rte_zmalloc_socket(NULL,
sizeof(uint64_t), RTE_CACHE_LINE_SIZE, socket_id);
if (fpga_dev->flush_queue_status == NULL) {
rte_bbdev_log(ERR,
"Failed to allocate memory for %s:%u flush_queue_status",
dev->device->driver->name, dev->data->dev_id);
return -ENOMEM;
}
/* Set the flush status address registers */
phys_addr = rte_malloc_virt2iova(fpga_dev->flush_queue_status);
address = FPGA_5GNR_FEC_VFQ_FLUSH_STATUS_LW;
payload = (uint32_t)(phys_addr);
fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
address = FPGA_5GNR_FEC_VFQ_FLUSH_STATUS_HI;
payload = (uint32_t)(phys_addr >> 32);
fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
return 0;
}
static int
fpga_dev_close(struct rte_bbdev *dev)
{
struct fpga_5gnr_fec_device *fpga_dev = dev->data->dev_private;
rte_free(fpga_dev->sw_rings);
rte_free(fpga_dev->flush_queue_status);
return 0;
}
@ -80,9 +185,267 @@ fpga_dev_info_get(struct rte_bbdev *dev,
}
}
/**
* Find index of queue bound to current PF/VF which is unassigned. Return -1
* when there is no available queue
*/
static inline int
fpga_find_free_queue_idx(struct rte_bbdev *dev,
const struct rte_bbdev_queue_conf *conf)
{
struct fpga_5gnr_fec_device *d = dev->data->dev_private;
uint64_t q_idx;
uint8_t i = 0;
uint8_t range = FPGA_TOTAL_NUM_QUEUES >> 1;
if (conf->op_type == RTE_BBDEV_OP_LDPC_ENC) {
i = FPGA_NUM_DL_QUEUES;
range = FPGA_TOTAL_NUM_QUEUES;
}
for (; i < range; ++i) {
q_idx = 1ULL << i;
/* Check if index of queue is bound to current PF/VF */
if (d->q_bound_bit_map & q_idx)
/* Check if found queue was not already assigned */
if (!(d->q_assigned_bit_map & q_idx)) {
d->q_assigned_bit_map |= q_idx;
return i;
}
}
rte_bbdev_log(INFO, "Failed to find free queue on %s", dev->data->name);
return -1;
}
static int
fpga_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
const struct rte_bbdev_queue_conf *conf)
{
uint32_t address, ring_offset;
struct fpga_5gnr_fec_device *d = dev->data->dev_private;
struct fpga_queue *q;
int8_t q_idx;
/* Check if there is a free queue to assign */
q_idx = fpga_find_free_queue_idx(dev, conf);
if (q_idx == -1)
return -1;
/* Allocate the queue data structure. */
q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
RTE_CACHE_LINE_SIZE, conf->socket);
if (q == NULL) {
/* Mark queue as un-assigned */
d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
rte_bbdev_log(ERR, "Failed to allocate queue memory");
return -ENOMEM;
}
q->d = d;
q->q_idx = q_idx;
/* Set ring_base_addr */
q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
q->ring_ctrl_reg.ring_base_addr = d->sw_rings_phys +
(d->sw_ring_size * queue_id);
/* Allocate memory for Completion Head variable*/
q->ring_head_addr = rte_zmalloc_socket(dev->device->driver->name,
sizeof(uint64_t), RTE_CACHE_LINE_SIZE, conf->socket);
if (q->ring_head_addr == NULL) {
/* Mark queue as un-assigned */
d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
rte_free(q);
rte_bbdev_log(ERR,
"Failed to allocate memory for %s:%u completion_head",
dev->device->driver->name, dev->data->dev_id);
return -ENOMEM;
}
/* Set ring_head_addr */
q->ring_ctrl_reg.ring_head_addr =
rte_malloc_virt2iova(q->ring_head_addr);
/* Clear shadow_completion_head */
q->shadow_completion_head = 0;
/* Set ring_size */
if (conf->queue_size > FPGA_RING_MAX_SIZE) {
/* Mark queue as un-assigned */
d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
rte_free(q->ring_head_addr);
rte_free(q);
rte_bbdev_log(ERR,
"Size of queue is too big %d (MAX: %d ) for %s:%u",
conf->queue_size, FPGA_RING_MAX_SIZE,
dev->device->driver->name, dev->data->dev_id);
return -EINVAL;
}
q->ring_ctrl_reg.ring_size = conf->queue_size;
/* Set Miscellaneous FPGA register*/
/* Max iteration number for TTI mitigation - todo */
q->ring_ctrl_reg.max_ul_dec = 0;
/* Enable max iteration number for TTI - todo */
q->ring_ctrl_reg.max_ul_dec_en = 0;
/* Enable the ring */
q->ring_ctrl_reg.enable = 1;
/* Set FPGA head_point and tail registers */
q->ring_ctrl_reg.head_point = q->tail = 0;
/* Set FPGA shadow_tail register */
q->ring_ctrl_reg.shadow_tail = q->tail;
/* Calculates the ring offset for found queue */
ring_offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
(sizeof(struct fpga_ring_ctrl_reg) * q_idx);
/* Set FPGA Ring Control Registers */
fpga_ring_reg_write(d->mmio_base, ring_offset, q->ring_ctrl_reg);
/* Store MMIO register of shadow_tail */
address = ring_offset + FPGA_5GNR_FEC_RING_SHADOW_TAIL;
q->shadow_tail_addr = RTE_PTR_ADD(d->mmio_base, address);
q->head_free_desc = q->tail;
/* Set wrap mask */
q->sw_ring_wrap_mask = conf->queue_size - 1;
rte_bbdev_log_debug("Setup dev%u q%u: queue_idx=%u",
dev->data->dev_id, queue_id, q->q_idx);
dev->data->queues[queue_id].queue_private = q;
rte_bbdev_log_debug("BBDEV queue[%d] set up for FPGA queue[%d]",
queue_id, q_idx);
return 0;
}
static int
fpga_queue_release(struct rte_bbdev *dev, uint16_t queue_id)
{
struct fpga_5gnr_fec_device *d = dev->data->dev_private;
struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
struct fpga_ring_ctrl_reg ring_reg;
uint32_t offset;
rte_bbdev_log_debug("FPGA Queue[%d] released", queue_id);
if (q != NULL) {
memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
/* Disable queue */
fpga_reg_write_8(d->mmio_base,
offset + FPGA_5GNR_FEC_RING_ENABLE, 0x00);
/* Clear queue registers */
fpga_ring_reg_write(d->mmio_base, offset, ring_reg);
/* Mark the Queue as un-assigned */
d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q->q_idx));
rte_free(q->ring_head_addr);
rte_free(q);
dev->data->queues[queue_id].queue_private = NULL;
}
return 0;
}
/* Function starts a device queue. */
static int
fpga_queue_start(struct rte_bbdev *dev, uint16_t queue_id)
{
struct fpga_5gnr_fec_device *d = dev->data->dev_private;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (d == NULL) {
rte_bbdev_log(ERR, "Invalid device pointer");
return -1;
}
#endif
struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
uint32_t offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
uint8_t enable = 0x01;
uint16_t zero = 0x0000;
/* Clear queue head and tail variables */
q->tail = q->head_free_desc = 0;
/* Clear FPGA head_point and tail registers */
fpga_reg_write_16(d->mmio_base, offset + FPGA_5GNR_FEC_RING_HEAD_POINT,
zero);
fpga_reg_write_16(d->mmio_base, offset + FPGA_5GNR_FEC_RING_SHADOW_TAIL,
zero);
/* Enable queue */
fpga_reg_write_8(d->mmio_base, offset + FPGA_5GNR_FEC_RING_ENABLE,
enable);
rte_bbdev_log_debug("FPGA Queue[%d] started", queue_id);
return 0;
}
/* Function stops a device queue. */
static int
fpga_queue_stop(struct rte_bbdev *dev, uint16_t queue_id)
{
struct fpga_5gnr_fec_device *d = dev->data->dev_private;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (d == NULL) {
rte_bbdev_log(ERR, "Invalid device pointer");
return -1;
}
#endif
struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
uint32_t offset = FPGA_5GNR_FEC_RING_CTRL_REGS +
(sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
uint8_t payload = 0x01;
uint8_t counter = 0;
uint8_t timeout = FPGA_QUEUE_FLUSH_TIMEOUT_US /
FPGA_TIMEOUT_CHECK_INTERVAL;
/* Set flush_queue_en bit to trigger queue flushing */
fpga_reg_write_8(d->mmio_base,
offset + FPGA_5GNR_FEC_RING_FLUSH_QUEUE_EN, payload);
/** Check if queue flush is completed.
* FPGA will update the completion flag after queue flushing is
* completed. If completion flag is not updated within 1ms it is
* considered as a failure.
*/
while (!(*((volatile uint8_t *)d->flush_queue_status + q->q_idx)
& payload)) {
if (counter > timeout) {
rte_bbdev_log(ERR, "FPGA Queue Flush failed for queue %d",
queue_id);
return -1;
}
usleep(FPGA_TIMEOUT_CHECK_INTERVAL);
counter++;
}
/* Disable queue */
payload = 0x00;
fpga_reg_write_8(d->mmio_base, offset + FPGA_5GNR_FEC_RING_ENABLE,
payload);
rte_bbdev_log_debug("FPGA Queue[%d] stopped", queue_id);
return 0;
}
static const struct rte_bbdev_ops fpga_ops = {
.setup_queues = fpga_setup_queues,
.close = fpga_dev_close,
.info_get = fpga_dev_info_get,
.queue_setup = fpga_queue_setup,
.queue_stop = fpga_queue_stop,
.queue_start = fpga_queue_start,
.queue_release = fpga_queue_release,
};
/* Initialization Function */