net/nfp: support CPP

CPP refers to the internal NFP Command Push Pull bus. This patch allows
to create CPP commands from user space allowing to access any single
part of the chip.

This CPP interface is the base for having other functionalities like
mutexes when accessing specific chip components, chip resources management,
firmware upload or using the NSP, an embedded arm processor which can
perform tasks on demand.

NSP was the previous only way for doing things in the chip by the PMD,
where a NSPU interface was used for commands like firmware upload or
port link configuration. CPP interface supersedes NSPU, but it is still
possible to use NSP through CPP.

CPP interface adds a great flexibility for doing things like extended
stats or firmware debugging.

Signed-off-by: Alejandro Lucero <alejandro.lucero@netronome.com>
This commit is contained in:
Alejandro Lucero 2018-04-05 15:42:44 +01:00 committed by Ferruh Yigit
parent adcca66765
commit c7e9729da6
26 changed files with 8044 additions and 0 deletions

View File

@ -0,0 +1,722 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#ifndef __NFP_CPPAT_H__
#define __NFP_CPPAT_H__
#include "nfp_platform.h"
#include "nfp_resid.h"
/* This file contains helpers for creating CPP commands
*
* All magic NFP-6xxx IMB 'mode' numbers here are from:
* Databook (1 August 2013)
* - System Overview and Connectivity
* -- Internal Connectivity
* --- Distributed Switch Fabric - Command Push/Pull (DSF-CPP) Bus
* ---- CPP addressing
* ----- Table 3.6. CPP Address Translation Mode Commands
*/
#define _NIC_NFP6000_MU_LOCALITY_DIRECT 2
static inline int
_nfp6000_decode_basic(uint64_t addr, int *dest_island, int cpp_tgt, int mode,
int addr40, int isld1, int isld0);
static uint64_t
_nic_mask64(int msb, int lsb, int at0)
{
uint64_t v;
int w = msb - lsb + 1;
if (w == 64)
return ~(uint64_t)0;
if ((lsb + w) > 64)
return 0;
v = (UINT64_C(1) << w) - 1;
if (at0)
return v;
return v << lsb;
}
/* For VQDR, we may not modify the Channel bits, which might overlap
* with the Index bit. When it does, we need to ensure that isld0 == isld1.
*/
static inline int
_nfp6000_encode_basic(uint64_t *addr, int dest_island, int cpp_tgt, int mode,
int addr40, int isld1, int isld0)
{
uint64_t _u64;
int iid_lsb, idx_lsb;
int i, v = 0;
int isld[2];
isld[0] = isld0;
isld[1] = isld1;
switch (cpp_tgt) {
case NFP6000_CPPTGT_MU:
/* This function doesn't handle MU */
return NFP_ERRNO(EINVAL);
case NFP6000_CPPTGT_CTXPB:
/* This function doesn't handle CTXPB */
return NFP_ERRNO(EINVAL);
default:
break;
}
switch (mode) {
case 0:
if (cpp_tgt == NFP6000_CPPTGT_VQDR && !addr40) {
/*
* In this specific mode we'd rather not modify the
* address but we can verify if the existing contents
* will point to a valid island.
*/
i = _nfp6000_decode_basic(*addr, &v, cpp_tgt, mode,
addr40, isld1,
isld0);
if (i != 0)
/* Full Island ID and channel bits overlap */
return i;
/*
* If dest_island is invalid, the current address won't
* go where expected.
*/
if (dest_island != -1 && dest_island != v)
return NFP_ERRNO(EINVAL);
/* If dest_island was -1, we don't care */
return 0;
}
iid_lsb = (addr40) ? 34 : 26;
/* <39:34> or <31:26> */
_u64 = _nic_mask64((iid_lsb + 5), iid_lsb, 0);
*addr &= ~_u64;
*addr |= (((uint64_t)dest_island) << iid_lsb) & _u64;
return 0;
case 1:
if (cpp_tgt == NFP6000_CPPTGT_VQDR && !addr40) {
i = _nfp6000_decode_basic(*addr, &v, cpp_tgt, mode,
addr40, isld1, isld0);
if (i != 0)
/* Full Island ID and channel bits overlap */
return i;
/*
* If dest_island is invalid, the current address won't
* go where expected.
*/
if (dest_island != -1 && dest_island != v)
return NFP_ERRNO(EINVAL);
/* If dest_island was -1, we don't care */
return 0;
}
idx_lsb = (addr40) ? 39 : 31;
if (dest_island == isld0) {
/* Only need to clear the Index bit */
*addr &= ~_nic_mask64(idx_lsb, idx_lsb, 0);
return 0;
}
if (dest_island == isld1) {
/* Only need to set the Index bit */
*addr |= (UINT64_C(1) << idx_lsb);
return 0;
}
return NFP_ERRNO(ENODEV);
case 2:
if (cpp_tgt == NFP6000_CPPTGT_VQDR && !addr40) {
/* iid<0> = addr<30> = channel<0> */
/* channel<1> = addr<31> = Index */
/*
* Special case where we allow channel bits to be set
* before hand and with them select an island.
* So we need to confirm that it's at least plausible.
*/
i = _nfp6000_decode_basic(*addr, &v, cpp_tgt, mode,
addr40, isld1, isld0);
if (i != 0)
/* Full Island ID and channel bits overlap */
return i;
/*
* If dest_island is invalid, the current address won't
* go where expected.
*/
if (dest_island != -1 && dest_island != v)
return NFP_ERRNO(EINVAL);
/* If dest_island was -1, we don't care */
return 0;
}
/*
* Make sure we compare against isldN values by clearing the
* LSB. This is what the silicon does.
**/
isld[0] &= ~1;
isld[1] &= ~1;
idx_lsb = (addr40) ? 39 : 31;
iid_lsb = idx_lsb - 1;
/*
* Try each option, take first one that fits. Not sure if we
* would want to do some smarter searching and prefer 0 or non-0
* island IDs.
*/
for (i = 0; i < 2; i++) {
for (v = 0; v < 2; v++) {
if (dest_island != (isld[i] | v))
continue;
*addr &= ~_nic_mask64(idx_lsb, iid_lsb, 0);
*addr |= (((uint64_t)i) << idx_lsb);
*addr |= (((uint64_t)v) << iid_lsb);
return 0;
}
}
return NFP_ERRNO(ENODEV);
case 3:
if (cpp_tgt == NFP6000_CPPTGT_VQDR && !addr40) {
/*
* iid<0> = addr<29> = data
* iid<1> = addr<30> = channel<0>
* channel<1> = addr<31> = Index
*/
i = _nfp6000_decode_basic(*addr, &v, cpp_tgt, mode,
addr40, isld1, isld0);
if (i != 0)
/* Full Island ID and channel bits overlap */
return i;
if (dest_island != -1 && dest_island != v)
return NFP_ERRNO(EINVAL);
/* If dest_island was -1, we don't care */
return 0;
}
isld[0] &= ~3;
isld[1] &= ~3;
idx_lsb = (addr40) ? 39 : 31;
iid_lsb = idx_lsb - 2;
for (i = 0; i < 2; i++) {
for (v = 0; v < 4; v++) {
if (dest_island != (isld[i] | v))
continue;
*addr &= ~_nic_mask64(idx_lsb, iid_lsb, 0);
*addr |= (((uint64_t)i) << idx_lsb);
*addr |= (((uint64_t)v) << iid_lsb);
return 0;
}
}
return NFP_ERRNO(ENODEV);
default:
break;
}
return NFP_ERRNO(EINVAL);
}
static inline int
_nfp6000_decode_basic(uint64_t addr, int *dest_island, int cpp_tgt, int mode,
int addr40, int isld1, int isld0)
{
int iid_lsb, idx_lsb;
switch (cpp_tgt) {
case NFP6000_CPPTGT_MU:
/* This function doesn't handle MU */
return NFP_ERRNO(EINVAL);
case NFP6000_CPPTGT_CTXPB:
/* This function doesn't handle CTXPB */
return NFP_ERRNO(EINVAL);
default:
break;
}
switch (mode) {
case 0:
/*
* For VQDR, in this mode for 32-bit addressing it would be
* islands 0, 16, 32 and 48 depending on channel and upper
* address bits. Since those are not all valid islands, most
* decode cases would result in bad island IDs, but we do them
* anyway since this is decoding an address that is already
* assumed to be used as-is to get to sram.
*/
iid_lsb = (addr40) ? 34 : 26;
*dest_island = (int)(addr >> iid_lsb) & 0x3F;
return 0;
case 1:
/*
* For VQDR 32-bit, this would decode as:
* Channel 0: island#0
* Channel 1: island#0
* Channel 2: island#1
* Channel 3: island#1
*
* That would be valid as long as both islands have VQDR.
* Let's allow this.
*/
idx_lsb = (addr40) ? 39 : 31;
if (addr & _nic_mask64(idx_lsb, idx_lsb, 0))
*dest_island = isld1;
else
*dest_island = isld0;
return 0;
case 2:
/*
* For VQDR 32-bit:
* Channel 0: (island#0 | 0)
* Channel 1: (island#0 | 1)
* Channel 2: (island#1 | 0)
* Channel 3: (island#1 | 1)
*
* Make sure we compare against isldN values by clearing the
* LSB. This is what the silicon does.
*/
isld0 &= ~1;
isld1 &= ~1;
idx_lsb = (addr40) ? 39 : 31;
iid_lsb = idx_lsb - 1;
if (addr & _nic_mask64(idx_lsb, idx_lsb, 0))
*dest_island = isld1 | (int)((addr >> iid_lsb) & 1);
else
*dest_island = isld0 | (int)((addr >> iid_lsb) & 1);
return 0;
case 3:
/*
* In this mode the data address starts to affect the island ID
* so rather not allow it. In some really specific case one
* could use this to send the upper half of the VQDR channel to
* another MU, but this is getting very specific. However, as
* above for mode 0, this is the decoder and the caller should
* validate the resulting IID. This blindly does what the
* silicon would do.
*/
isld0 &= ~3;
isld1 &= ~3;
idx_lsb = (addr40) ? 39 : 31;
iid_lsb = idx_lsb - 2;
if (addr & _nic_mask64(idx_lsb, idx_lsb, 0))
*dest_island = isld1 | (int)((addr >> iid_lsb) & 3);
else
*dest_island = isld0 | (int)((addr >> iid_lsb) & 3);
return 0;
default:
break;
}
return NFP_ERRNO(EINVAL);
}
static inline int
_nfp6000_cppat_mu_locality_lsb(int mode, int addr40)
{
switch (mode) {
case 0:
case 1:
case 2:
case 3:
return (addr40) ? 38 : 30;
default:
break;
}
return NFP_ERRNO(EINVAL);
}
static inline int
_nfp6000_encode_mu(uint64_t *addr, int dest_island, int mode, int addr40,
int isld1, int isld0)
{
uint64_t _u64;
int iid_lsb, idx_lsb, locality_lsb;
int i, v;
int isld[2];
int da;
isld[0] = isld0;
isld[1] = isld1;
locality_lsb = _nfp6000_cppat_mu_locality_lsb(mode, addr40);
if (((*addr >> locality_lsb) & 3) == _NIC_NFP6000_MU_LOCALITY_DIRECT)
da = 1;
else
da = 0;
switch (mode) {
case 0:
iid_lsb = (addr40) ? 32 : 24;
_u64 = _nic_mask64((iid_lsb + 5), iid_lsb, 0);
*addr &= ~_u64;
*addr |= (((uint64_t)dest_island) << iid_lsb) & _u64;
return 0;
case 1:
if (da) {
iid_lsb = (addr40) ? 32 : 24;
_u64 = _nic_mask64((iid_lsb + 5), iid_lsb, 0);
*addr &= ~_u64;
*addr |= (((uint64_t)dest_island) << iid_lsb) & _u64;
return 0;
}
idx_lsb = (addr40) ? 37 : 29;
if (dest_island == isld0) {
*addr &= ~_nic_mask64(idx_lsb, idx_lsb, 0);
return 0;
}
if (dest_island == isld1) {
*addr |= (UINT64_C(1) << idx_lsb);
return 0;
}
return NFP_ERRNO(ENODEV);
case 2:
if (da) {
iid_lsb = (addr40) ? 32 : 24;
_u64 = _nic_mask64((iid_lsb + 5), iid_lsb, 0);
*addr &= ~_u64;
*addr |= (((uint64_t)dest_island) << iid_lsb) & _u64;
return 0;
}
/*
* Make sure we compare against isldN values by clearing the
* LSB. This is what the silicon does.
*/
isld[0] &= ~1;
isld[1] &= ~1;
idx_lsb = (addr40) ? 37 : 29;
iid_lsb = idx_lsb - 1;
/*
* Try each option, take first one that fits. Not sure if we
* would want to do some smarter searching and prefer 0 or
* non-0 island IDs.
*/
for (i = 0; i < 2; i++) {
for (v = 0; v < 2; v++) {
if (dest_island != (isld[i] | v))
continue;
*addr &= ~_nic_mask64(idx_lsb, iid_lsb, 0);
*addr |= (((uint64_t)i) << idx_lsb);
*addr |= (((uint64_t)v) << iid_lsb);
return 0;
}
}
return NFP_ERRNO(ENODEV);
case 3:
/*
* Only the EMU will use 40 bit addressing. Silently set the
* direct locality bit for everyone else. The SDK toolchain
* uses dest_island <= 0 to test for atypical address encodings
* to support access to local-island CTM with a 32-but address
* (high-locality is effectively ignored and just used for
* routing to island #0).
*/
if (dest_island > 0 &&
(dest_island < 24 || dest_island > 26)) {
*addr |= ((uint64_t)_NIC_NFP6000_MU_LOCALITY_DIRECT)
<< locality_lsb;
da = 1;
}
if (da) {
iid_lsb = (addr40) ? 32 : 24;
_u64 = _nic_mask64((iid_lsb + 5), iid_lsb, 0);
*addr &= ~_u64;
*addr |= (((uint64_t)dest_island) << iid_lsb) & _u64;
return 0;
}
isld[0] &= ~3;
isld[1] &= ~3;
idx_lsb = (addr40) ? 37 : 29;
iid_lsb = idx_lsb - 2;
for (i = 0; i < 2; i++) {
for (v = 0; v < 4; v++) {
if (dest_island != (isld[i] | v))
continue;
*addr &= ~_nic_mask64(idx_lsb, iid_lsb, 0);
*addr |= (((uint64_t)i) << idx_lsb);
*addr |= (((uint64_t)v) << iid_lsb);
return 0;
}
}
return NFP_ERRNO(ENODEV);
default:
break;
}
return NFP_ERRNO(EINVAL);
}
static inline int
_nfp6000_decode_mu(uint64_t addr, int *dest_island, int mode, int addr40,
int isld1, int isld0)
{
int iid_lsb, idx_lsb, locality_lsb;
int da;
locality_lsb = _nfp6000_cppat_mu_locality_lsb(mode, addr40);
if (((addr >> locality_lsb) & 3) == _NIC_NFP6000_MU_LOCALITY_DIRECT)
da = 1;
else
da = 0;
switch (mode) {
case 0:
iid_lsb = (addr40) ? 32 : 24;
*dest_island = (int)(addr >> iid_lsb) & 0x3F;
return 0;
case 1:
if (da) {
iid_lsb = (addr40) ? 32 : 24;
*dest_island = (int)(addr >> iid_lsb) & 0x3F;
return 0;
}
idx_lsb = (addr40) ? 37 : 29;
if (addr & _nic_mask64(idx_lsb, idx_lsb, 0))
*dest_island = isld1;
else
*dest_island = isld0;
return 0;
case 2:
if (da) {
iid_lsb = (addr40) ? 32 : 24;
*dest_island = (int)(addr >> iid_lsb) & 0x3F;
return 0;
}
/*
* Make sure we compare against isldN values by clearing the
* LSB. This is what the silicon does.
*/
isld0 &= ~1;
isld1 &= ~1;
idx_lsb = (addr40) ? 37 : 29;
iid_lsb = idx_lsb - 1;
if (addr & _nic_mask64(idx_lsb, idx_lsb, 0))
*dest_island = isld1 | (int)((addr >> iid_lsb) & 1);
else
*dest_island = isld0 | (int)((addr >> iid_lsb) & 1);
return 0;
case 3:
if (da) {
iid_lsb = (addr40) ? 32 : 24;
*dest_island = (int)(addr >> iid_lsb) & 0x3F;
return 0;
}
isld0 &= ~3;
isld1 &= ~3;
idx_lsb = (addr40) ? 37 : 29;
iid_lsb = idx_lsb - 2;
if (addr & _nic_mask64(idx_lsb, idx_lsb, 0))
*dest_island = isld1 | (int)((addr >> iid_lsb) & 3);
else
*dest_island = isld0 | (int)((addr >> iid_lsb) & 3);
return 0;
default:
break;
}
return NFP_ERRNO(EINVAL);
}
static inline int
_nfp6000_cppat_addr_encode(uint64_t *addr, int dest_island, int cpp_tgt,
int mode, int addr40, int isld1, int isld0)
{
switch (cpp_tgt) {
case NFP6000_CPPTGT_NBI:
case NFP6000_CPPTGT_VQDR:
case NFP6000_CPPTGT_ILA:
case NFP6000_CPPTGT_PCIE:
case NFP6000_CPPTGT_ARM:
case NFP6000_CPPTGT_CRYPTO:
case NFP6000_CPPTGT_CLS:
return _nfp6000_encode_basic(addr, dest_island, cpp_tgt, mode,
addr40, isld1, isld0);
case NFP6000_CPPTGT_MU:
return _nfp6000_encode_mu(addr, dest_island, mode, addr40,
isld1, isld0);
case NFP6000_CPPTGT_CTXPB:
if (mode != 1 || addr40 != 0)
return NFP_ERRNO(EINVAL);
*addr &= ~_nic_mask64(29, 24, 0);
*addr |= (((uint64_t)dest_island) << 24) &
_nic_mask64(29, 24, 0);
return 0;
default:
break;
}
return NFP_ERRNO(EINVAL);
}
static inline int
_nfp6000_cppat_addr_decode(uint64_t addr, int *dest_island, int cpp_tgt,
int mode, int addr40, int isld1, int isld0)
{
switch (cpp_tgt) {
case NFP6000_CPPTGT_NBI:
case NFP6000_CPPTGT_VQDR:
case NFP6000_CPPTGT_ILA:
case NFP6000_CPPTGT_PCIE:
case NFP6000_CPPTGT_ARM:
case NFP6000_CPPTGT_CRYPTO:
case NFP6000_CPPTGT_CLS:
return _nfp6000_decode_basic(addr, dest_island, cpp_tgt, mode,
addr40, isld1, isld0);
case NFP6000_CPPTGT_MU:
return _nfp6000_decode_mu(addr, dest_island, mode, addr40,
isld1, isld0);
case NFP6000_CPPTGT_CTXPB:
if (mode != 1 || addr40 != 0)
return -EINVAL;
*dest_island = (int)(addr >> 24) & 0x3F;
return 0;
default:
break;
}
return -EINVAL;
}
static inline int
_nfp6000_cppat_addr_iid_clear(uint64_t *addr, int cpp_tgt, int mode, int addr40)
{
int iid_lsb, locality_lsb, da;
switch (cpp_tgt) {
case NFP6000_CPPTGT_NBI:
case NFP6000_CPPTGT_VQDR:
case NFP6000_CPPTGT_ILA:
case NFP6000_CPPTGT_PCIE:
case NFP6000_CPPTGT_ARM:
case NFP6000_CPPTGT_CRYPTO:
case NFP6000_CPPTGT_CLS:
switch (mode) {
case 0:
iid_lsb = (addr40) ? 34 : 26;
*addr &= ~(UINT64_C(0x3F) << iid_lsb);
return 0;
case 1:
iid_lsb = (addr40) ? 39 : 31;
*addr &= ~_nic_mask64(iid_lsb, iid_lsb, 0);
return 0;
case 2:
iid_lsb = (addr40) ? 38 : 30;
*addr &= ~_nic_mask64(iid_lsb + 1, iid_lsb, 0);
return 0;
case 3:
iid_lsb = (addr40) ? 37 : 29;
*addr &= ~_nic_mask64(iid_lsb + 2, iid_lsb, 0);
return 0;
default:
break;
}
case NFP6000_CPPTGT_MU:
locality_lsb = _nfp6000_cppat_mu_locality_lsb(mode, addr40);
da = (((*addr >> locality_lsb) & 3) ==
_NIC_NFP6000_MU_LOCALITY_DIRECT);
switch (mode) {
case 0:
iid_lsb = (addr40) ? 32 : 24;
*addr &= ~(UINT64_C(0x3F) << iid_lsb);
return 0;
case 1:
if (da) {
iid_lsb = (addr40) ? 32 : 24;
*addr &= ~(UINT64_C(0x3F) << iid_lsb);
return 0;
}
iid_lsb = (addr40) ? 37 : 29;
*addr &= ~_nic_mask64(iid_lsb, iid_lsb, 0);
return 0;
case 2:
if (da) {
iid_lsb = (addr40) ? 32 : 24;
*addr &= ~(UINT64_C(0x3F) << iid_lsb);
return 0;
}
iid_lsb = (addr40) ? 36 : 28;
*addr &= ~_nic_mask64(iid_lsb + 1, iid_lsb, 0);
return 0;
case 3:
if (da) {
iid_lsb = (addr40) ? 32 : 24;
*addr &= ~(UINT64_C(0x3F) << iid_lsb);
return 0;
}
iid_lsb = (addr40) ? 35 : 27;
*addr &= ~_nic_mask64(iid_lsb + 2, iid_lsb, 0);
return 0;
default:
break;
}
case NFP6000_CPPTGT_CTXPB:
if (mode != 1 || addr40 != 0)
return 0;
*addr &= ~(UINT64_C(0x3F) << 24);
return 0;
default:
break;
}
return NFP_ERRNO(EINVAL);
}
#endif /* __NFP_CPPAT_H__ */

View File

@ -0,0 +1,36 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#ifndef __NFP_PLATFORM_H__
#define __NFP_PLATFORM_H__
#include <fcntl.h>
#include <unistd.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <inttypes.h>
#include <sys/cdefs.h>
#include <sys/stat.h>
#include <limits.h>
#include <errno.h>
#ifndef BIT_ULL
#define BIT(x) (1 << (x))
#define BIT_ULL(x) (1ULL << (x))
#endif
#ifndef ARRAY_SIZE
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#endif
#define NFP_ERRNO(err) (errno = (err), -1)
#define NFP_ERRNO_RET(err, ret) (errno = (err), (ret))
#define NFP_NOERR(errv) (errno)
#define NFP_ERRPTR(err) (errno = (err), NULL)
#define NFP_PTRERR(errv) (errno)
#endif /* __NFP_PLATFORM_H__ */

View File

@ -0,0 +1,592 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#ifndef __NFP_RESID_H__
#define __NFP_RESID_H__
#if (!defined(_NFP_RESID_NO_C_FUNC) && \
(defined(__NFP_TOOL_NFCC) || defined(__NFP_TOOL_NFAS)))
#define _NFP_RESID_NO_C_FUNC
#endif
#ifndef _NFP_RESID_NO_C_FUNC
#include "nfp_platform.h"
#endif
/*
* NFP Chip Architectures
*
* These are semi-arbitrary values to indicate an NFP architecture.
* They serve as a software view of a group of chip families, not necessarily a
* direct mapping to actual hardware design.
*/
#define NFP_CHIP_ARCH_YD 1
#define NFP_CHIP_ARCH_TH 2
/*
* NFP Chip Families.
*
* These are not enums, because they need to be microcode compatible.
* They are also not maskable.
*
* Note: The NFP-4xxx family is handled as NFP-6xxx in most software
* components.
*
*/
#define NFP_CHIP_FAMILY_NFP6000 0x6000 /* ARCH_TH */
/* NFP Microengine/Flow Processing Core Versions */
#define NFP_CHIP_ME_VERSION_2_7 0x0207
#define NFP_CHIP_ME_VERSION_2_8 0x0208
#define NFP_CHIP_ME_VERSION_2_9 0x0209
/* NFP Chip Base Revisions. Minor stepping can just be added to these */
#define NFP_CHIP_REVISION_A0 0x00
#define NFP_CHIP_REVISION_B0 0x10
#define NFP_CHIP_REVISION_C0 0x20
#define NFP_CHIP_REVISION_PF 0xff /* Maximum possible revision */
/* CPP Targets for each chip architecture */
#define NFP6000_CPPTGT_NBI 1
#define NFP6000_CPPTGT_VQDR 2
#define NFP6000_CPPTGT_ILA 6
#define NFP6000_CPPTGT_MU 7
#define NFP6000_CPPTGT_PCIE 9
#define NFP6000_CPPTGT_ARM 10
#define NFP6000_CPPTGT_CRYPTO 12
#define NFP6000_CPPTGT_CTXPB 14
#define NFP6000_CPPTGT_CLS 15
/*
* Wildcard indicating a CPP read or write action
*
* The action used will be either read or write depending on whether a read or
* write instruction/call is performed on the NFP_CPP_ID. It is recomended that
* the RW action is used even if all actions to be performed on a NFP_CPP_ID are
* known to be only reads or writes. Doing so will in many cases save NFP CPP
* internal software resources.
*/
#define NFP_CPP_ACTION_RW 32
#define NFP_CPP_TARGET_ID_MASK 0x1f
/*
* NFP_CPP_ID - pack target, token, and action into a CPP ID.
*
* Create a 32-bit CPP identifier representing the access to be made.
* These identifiers are used as parameters to other NFP CPP functions. Some
* CPP devices may allow wildcard identifiers to be specified.
*
* @param[in] target NFP CPP target id
* @param[in] action NFP CPP action id
* @param[in] token NFP CPP token id
* @return NFP CPP ID
*/
#define NFP_CPP_ID(target, action, token) \
((((target) & 0x7f) << 24) | (((token) & 0xff) << 16) | \
(((action) & 0xff) << 8))
#define NFP_CPP_ISLAND_ID(target, action, token, island) \
((((target) & 0x7f) << 24) | (((token) & 0xff) << 16) | \
(((action) & 0xff) << 8) | (((island) & 0xff) << 0))
#ifndef _NFP_RESID_NO_C_FUNC
/**
* Return the NFP CPP target of a NFP CPP ID
* @param[in] id NFP CPP ID
* @return NFP CPP target
*/
static inline uint8_t
NFP_CPP_ID_TARGET_of(uint32_t id)
{
return (id >> 24) & NFP_CPP_TARGET_ID_MASK;
}
/*
* Return the NFP CPP token of a NFP CPP ID
* @param[in] id NFP CPP ID
* @return NFP CPP token
*/
static inline uint8_t
NFP_CPP_ID_TOKEN_of(uint32_t id)
{
return (id >> 16) & 0xff;
}
/*
* Return the NFP CPP action of a NFP CPP ID
* @param[in] id NFP CPP ID
* @return NFP CPP action
*/
static inline uint8_t
NFP_CPP_ID_ACTION_of(uint32_t id)
{
return (id >> 8) & 0xff;
}
/*
* Return the NFP CPP action of a NFP CPP ID
* @param[in] id NFP CPP ID
* @return NFP CPP action
*/
static inline uint8_t
NFP_CPP_ID_ISLAND_of(uint32_t id)
{
return (id) & 0xff;
}
#endif /* _NFP_RESID_NO_C_FUNC */
/*
* Check if @p chip_family is an ARCH_TH chip.
* @param chip_family One of NFP_CHIP_FAMILY_*
*/
#define NFP_FAMILY_IS_ARCH_TH(chip_family) \
((int)(chip_family) == (int)NFP_CHIP_FAMILY_NFP6000)
/*
* Get the NFP_CHIP_ARCH_* of @p chip_family.
* @param chip_family One of NFP_CHIP_FAMILY_*
*/
#define NFP_FAMILY_ARCH(x) \
(__extension__ ({ \
typeof(x) _x = (x); \
(NFP_FAMILY_IS_ARCH_TH(_x) ? NFP_CHIP_ARCH_TH : \
NFP_FAMILY_IS_ARCH_YD(_x) ? NFP_CHIP_ARCH_YD : -1) \
}))
/*
* Check if @p chip_family is an NFP-6xxx chip.
* @param chip_family One of NFP_CHIP_FAMILY_*
*/
#define NFP_FAMILY_IS_NFP6000(chip_family) \
((int)(chip_family) == (int)NFP_CHIP_FAMILY_NFP6000)
/*
* Make microengine ID for NFP-6xxx.
* @param island_id Island ID.
* @param menum ME number, 0 based, within island.
*
* NOTE: menum should really be unsigned - MSC compiler throws error (not
* warning) if a clause is always true i.e. menum >= 0 if cluster_num is type
* unsigned int hence the cast of the menum to an int in that particular clause
*/
#define NFP6000_MEID(a, b) \
(__extension__ ({ \
typeof(a) _a = (a); \
typeof(b) _b = (b); \
(((((int)(_a) & 0x3F) == (int)(_a)) && \
(((int)(_b) >= 0) && ((int)(_b) < 12))) ? \
(int)(((_a) << 4) | ((_b) + 4)) : -1) \
}))
/*
* Do a general sanity check on the ME ID.
* The check is on the highest possible island ID for the chip family and the
* microengine number must be a master ID.
* @param meid ME ID as created by NFP6000_MEID
*/
#define NFP6000_MEID_IS_VALID(meid) \
(__extension__ ({ \
typeof(meid) _a = (meid); \
((((_a) >> 4) < 64) && (((_a) >> 4) >= 0) && \
(((_a) & 0xF) >= 4)) \
}))
/*
* Extract island ID from ME ID.
* @param meid ME ID as created by NFP6000_MEID
*/
#define NFP6000_MEID_ISLAND_of(meid) (((meid) >> 4) & 0x3F)
/*
* Extract microengine number (0 based) from ME ID.
* @param meid ME ID as created by NFP6000_MEID
*/
#define NFP6000_MEID_MENUM_of(meid) (((meid) & 0xF) - 4)
/*
* Extract microengine group number (0 based) from ME ID.
* The group is two code-sharing microengines, so group 0 refers to MEs 0,1,
* group 1 refers to MEs 2,3 etc.
* @param meid ME ID as created by NFP6000_MEID
*/
#define NFP6000_MEID_MEGRP_of(meid) (NFP6000_MEID_MENUM_of(meid) >> 1)
#ifndef _NFP_RESID_NO_C_FUNC
/*
* Convert a string to an ME ID.
*
* @param s A string of format iX.meY
* @param endptr If non-NULL, *endptr will point to the trailing string
* after the ME ID part of the string, which is either
* an empty string or the first character after the separating
* period.
* @return ME ID on success, -1 on error.
*/
int nfp6000_idstr2meid(const char *s, const char **endptr);
/*
* Extract island ID from string.
*
* Example:
* char *c;
* int val = nfp6000_idstr2island("i32.me5", &c);
* // val == 32, c == "me5"
* val = nfp6000_idstr2island("i32", &c);
* // val == 32, c == ""
*
* @param s A string of format "iX.anything" or "iX"
* @param endptr If non-NULL, *endptr will point to the trailing string
* after the island part of the string, which is either
* an empty string or the first character after the separating
* period.
* @return If successful, the island ID, -1 on error.
*/
int nfp6000_idstr2island(const char *s, const char **endptr);
/*
* Extract microengine number from string.
*
* Example:
* char *c;
* int menum = nfp6000_idstr2menum("me5.anything", &c);
* // menum == 5, c == "anything"
* menum = nfp6000_idstr2menum("me5", &c);
* // menum == 5, c == ""
*
* @param s A string of format "meX.anything" or "meX"
* @param endptr If non-NULL, *endptr will point to the trailing string
* after the ME number part of the string, which is either
* an empty string or the first character after the separating
* period.
* @return If successful, the ME number, -1 on error.
*/
int nfp6000_idstr2menum(const char *s, const char **endptr);
/*
* Extract context number from string.
*
* Example:
* char *c;
* int val = nfp6000_idstr2ctxnum("ctx5.anything", &c);
* // val == 5, c == "anything"
* val = nfp6000_idstr2ctxnum("ctx5", &c);
* // val == 5, c == ""
*
* @param s A string of format "ctxN.anything" or "ctxN"
* @param endptr If non-NULL, *endptr will point to the trailing string
* after the context number part of the string, which is either
* an empty string or the first character after the separating
* period.
* @return If successful, the context number, -1 on error.
*/
int nfp6000_idstr2ctxnum(const char *s, const char **endptr);
/*
* Extract microengine group number from string.
*
* Example:
* char *c;
* int val = nfp6000_idstr2megrp("tg2.anything", &c);
* // val == 2, c == "anything"
* val = nfp6000_idstr2megrp("tg5", &c);
* // val == 2, c == ""
*
* @param s A string of format "tgX.anything" or "tgX"
* @param endptr If non-NULL, *endptr will point to the trailing string
* after the ME group part of the string, which is either
* an empty string or the first character after the separating
* period.
* @return If successful, the ME group number, -1 on error.
*/
int nfp6000_idstr2megrp(const char *s, const char **endptr);
/*
* Create ME ID string of format "iX[.meY]".
*
* @param s Pointer to char buffer of size NFP_MEID_STR_SZ.
* The resulting string is output here.
* @param meid Microengine ID.
* @return Pointer to "s" on success, NULL on error.
*/
const char *nfp6000_meid2str(char *s, int meid);
/*
* Create ME ID string of format "name[.meY]" or "iX[.meY]".
*
* @param s Pointer to char buffer of size NFP_MEID_STR_SZ.
* The resulting string is output here.
* @param meid Microengine ID.
* @return Pointer to "s" on success, NULL on error.
*
* Similar to nfp6000_meid2str() except use an alias instead of "iX"
* if one exists for the island.
*/
const char *nfp6000_meid2altstr(char *s, int meid);
/*
* Create string of format "iX".
*
* @param s Pointer to char buffer of size NFP_MEID_STR_SZ.
* The resulting string is output here.
* @param island_id Island ID.
* @return Pointer to "s" on success, NULL on error.
*/
const char *nfp6000_island2str(char *s, int island_id);
/*
* Create string of format "name", an island alias.
*
* @param s Pointer to char buffer of size NFP_MEID_STR_SZ.
* The resulting string is output here.
* @param island_id Island ID.
* @return Pointer to "s" on success, NULL on error.
*/
const char *nfp6000_island2altstr(char *s, int island_id);
/*
* Create string of format "meY".
*
* @param s Pointer to char buffer of size NFP_MEID_STR_SZ.
* The resulting string is output here.
* @param menum Microengine number within island.
* @return Pointer to "s" on success, NULL on error.
*/
const char *nfp6000_menum2str(char *s, int menum);
/*
* Create string of format "ctxY".
*
* @param s Pointer to char buffer of size NFP_MEID_STR_SZ.
* The resulting string is output here.
* @param ctxnum Context number within microengine.
* @return Pointer to "s" on success, NULL on error.
*/
const char *nfp6000_ctxnum2str(char *s, int ctxnum);
/*
* Create string of format "tgY".
*
* @param s Pointer to char buffer of size NFP_MEID_STR_SZ.
* The resulting string is output here.
* @param megrp Microengine group number within cluster.
* @return Pointer to "s" on success, NULL on error.
*/
const char *nfp6000_megrp2str(char *s, int megrp);
/*
* Convert a string to an ME ID.
*
* @param chip_family Chip family ID
* @param s A string of format iX.meY (or clX.meY)
* @param endptr If non-NULL, *endptr will point to the trailing
* string after the ME ID part of the string, which
* is either an empty string or the first character
* after the separating period.
* @return ME ID on success, -1 on error.
*/
int nfp_idstr2meid(int chip_family, const char *s, const char **endptr);
/*
* Extract island ID from string.
*
* Example:
* char *c;
* int val = nfp_idstr2island(chip, "i32.me5", &c);
* // val == 32, c == "me5"
* val = nfp_idstr2island(chip, "i32", &c);
* // val == 32, c == ""
*
* @param chip_family Chip family ID
* @param s A string of format "iX.anything" or "iX"
* @param endptr If non-NULL, *endptr will point to the trailing
* striong after the ME ID part of the string, which
* is either an empty string or the first character
* after the separating period.
* @return The island ID on succes, -1 on error.
*/
int nfp_idstr2island(int chip_family, const char *s, const char **endptr);
/*
* Extract microengine number from string.
*
* Example:
* char *c;
* int menum = nfp_idstr2menum("me5.anything", &c);
* // menum == 5, c == "anything"
* menum = nfp_idstr2menum("me5", &c);
* // menum == 5, c == ""
*
* @param chip_family Chip family ID
* @param s A string of format "meX.anything" or "meX"
* @param endptr If non-NULL, *endptr will point to the trailing
* striong after the ME ID part of the string, which
* is either an empty string or the first character
* after the separating period.
* @return The ME number on succes, -1 on error.
*/
int nfp_idstr2menum(int chip_family, const char *s, const char **endptr);
/*
* Extract context number from string.
*
* Example:
* char *c;
* int val = nfp_idstr2ctxnum("ctx5.anything", &c);
* // val == 5, c == "anything"
* val = nfp_idstr2ctxnum("ctx5", &c);
* // val == 5, c == ""
*
* @param s A string of format "ctxN.anything" or "ctxN"
* @param endptr If non-NULL, *endptr will point to the trailing string
* after the context number part of the string, which is either
* an empty string or the first character after the separating
* period.
* @return If successful, the context number, -1 on error.
*/
int nfp_idstr2ctxnum(int chip_family, const char *s, const char **endptr);
/*
* Extract microengine group number from string.
*
* Example:
* char *c;
* int val = nfp_idstr2megrp("tg2.anything", &c);
* // val == 2, c == "anything"
* val = nfp_idstr2megrp("tg5", &c);
* // val == 5, c == ""
*
* @param s A string of format "tgX.anything" or "tgX"
* @param endptr If non-NULL, *endptr will point to the trailing string
* after the ME group part of the string, which is either
* an empty string or the first character after the separating
* period.
* @return If successful, the ME group number, -1 on error.
*/
int nfp_idstr2megrp(int chip_family, const char *s, const char **endptr);
/*
* Create ME ID string of format "iX[.meY]".
*
* @param chip_family Chip family ID
* @param s Pointer to char buffer of size NFP_MEID_STR_SZ.
* The resulting string is output here.
* @param meid Microengine ID.
* @return Pointer to "s" on success, NULL on error.
*/
const char *nfp_meid2str(int chip_family, char *s, int meid);
/*
* Create ME ID string of format "name[.meY]" or "iX[.meY]".
*
* @param chip_family Chip family ID
* @param s Pointer to char buffer of size NFP_MEID_STR_SZ.
* The resulting string is output here.
* @param meid Microengine ID.
* @return Pointer to "s" on success, NULL on error.
*
* Similar to nfp_meid2str() except use an alias instead of "iX"
* if one exists for the island.
*/
const char *nfp_meid2altstr(int chip_family, char *s, int meid);
/*
* Create string of format "iX".
*
* @param chip_family Chip family ID
* @param s Pointer to char buffer of size NFP_MEID_STR_SZ.
* The resulting string is output here.
* @param island_id Island ID.
* @return Pointer to "s" on success, NULL on error.
*/
const char *nfp_island2str(int chip_family, char *s, int island_id);
/*
* Create string of format "name", an island alias.
*
* @param chip_family Chip family ID
* @param s Pointer to char buffer of size NFP_MEID_STR_SZ.
* The resulting string is output here.
* @param island_id Island ID.
* @return Pointer to "s" on success, NULL on error.
*/
const char *nfp_island2altstr(int chip_family, char *s, int island_id);
/*
* Create string of format "meY".
*
* @param chip_family Chip family ID
* @param s Pointer to char buffer of size NFP_MEID_STR_SZ.
* The resulting string is output here.
* @param menum Microengine number within island.
* @return Pointer to "s" on success, NULL on error.
*/
const char *nfp_menum2str(int chip_family, char *s, int menum);
/*
* Create string of format "ctxY".
*
* @param s Pointer to char buffer of size NFP_MEID_STR_SZ.
* The resulting string is output here.
* @param ctxnum Context number within microengine.
* @return Pointer to "s" on success, NULL on error.
*/
const char *nfp_ctxnum2str(int chip_family, char *s, int ctxnum);
/*
* Create string of format "tgY".
*
* @param s Pointer to char buffer of size NFP_MEID_STR_SZ.
* The resulting string is output here.
* @param megrp Microengine group number within cluster.
* @return Pointer to "s" on success, NULL on error.
*/
const char *nfp_megrp2str(int chip_family, char *s, int megrp);
/*
* Convert a two character string to revision number.
*
* Revision integer is 0x00 for A0, 0x11 for B1 etc.
*
* @param s Two character string.
* @return Revision number, -1 on error
*/
int nfp_idstr2rev(const char *s);
/*
* Create string from revision number.
*
* String will be upper case.
*
* @param s Pointer to char buffer with size of at least 3
* for 2 characters and string terminator.
* @param rev Revision number.
* @return Pointer to "s" on success, NULL on error.
*/
const char *nfp_rev2str(char *s, int rev);
/*
* Get the NFP CPP address from a string
*
* String is in the format [island@]target[:[action:[token:]]address]
*
* @param chip_family Chip family ID
* @param tid Pointer to string to parse
* @param cpp_idp Pointer to CPP ID
* @param cpp_addrp Pointer to CPP address
* @return 0 on success, or -1 and errno
*/
int nfp_str2cpp(int chip_family,
const char *tid,
uint32_t *cpp_idp,
uint64_t *cpp_addrp);
#endif /* _NFP_RESID_NO_C_FUNC */
#endif /* __NFP_RESID_H__ */

View File

@ -0,0 +1,40 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#ifndef __NFP_NFP6000_H__
#define __NFP_NFP6000_H__
/* CPP Target IDs */
#define NFP_CPP_TARGET_INVALID 0
#define NFP_CPP_TARGET_NBI 1
#define NFP_CPP_TARGET_QDR 2
#define NFP_CPP_TARGET_ILA 6
#define NFP_CPP_TARGET_MU 7
#define NFP_CPP_TARGET_PCIE 9
#define NFP_CPP_TARGET_ARM 10
#define NFP_CPP_TARGET_CRYPTO 12
#define NFP_CPP_TARGET_ISLAND_XPB 14 /* Shared with CAP */
#define NFP_CPP_TARGET_ISLAND_CAP 14 /* Shared with XPB */
#define NFP_CPP_TARGET_CT_XPB 14
#define NFP_CPP_TARGET_LOCAL_SCRATCH 15
#define NFP_CPP_TARGET_CLS NFP_CPP_TARGET_LOCAL_SCRATCH
#define NFP_ISL_EMEM0 24
#define NFP_MU_ADDR_ACCESS_TYPE_MASK 3ULL
#define NFP_MU_ADDR_ACCESS_TYPE_DIRECT 2ULL
static inline int
nfp_cppat_mu_locality_lsb(int mode, int addr40)
{
switch (mode) {
case 0 ... 3:
return addr40 ? 38 : 30;
default:
return -EINVAL;
}
}
#endif /* NFP_NFP6000_H */

View File

@ -0,0 +1,26 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#ifndef __NFP_XPB_H__
#define __NFP_XPB_H__
/*
* For use with NFP6000 Databook "XPB Addressing" section
*/
#define NFP_XPB_OVERLAY(island) (((island) & 0x3f) << 24)
#define NFP_XPB_ISLAND(island) (NFP_XPB_OVERLAY(island) + 0x60000)
#define NFP_XPB_ISLAND_of(offset) (((offset) >> 24) & 0x3F)
/*
* For use with NFP6000 Databook "XPB Island and Device IDs" chapter
*/
#define NFP_XPB_DEVICE(island, slave, device) \
(NFP_XPB_OVERLAY(island) | \
(((slave) & 3) << 22) | \
(((device) & 0x3f) << 16))
#endif /* NFP_XPB_H */

View File

@ -0,0 +1,776 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#ifndef __NFP_CPP_H__
#define __NFP_CPP_H__
#include "nfp-common/nfp_platform.h"
#include "nfp-common/nfp_resid.h"
struct nfp_cpp_mutex;
/*
* NFP CPP handle
*/
struct nfp_cpp {
uint32_t model;
uint32_t interface;
uint8_t *serial;
int serial_len;
void *priv;
/* Mutex cache */
struct nfp_cpp_mutex *mutex_cache;
const struct nfp_cpp_operations *op;
/*
* NFP-6xxx originating island IMB CPP Address Translation. CPP Target
* ID is index into array. Values are obtained at runtime from local
* island XPB CSRs.
*/
uint32_t imb_cat_table[16];
};
/*
* NFP CPP device area handle
*/
struct nfp_cpp_area {
struct nfp_cpp *cpp;
char *name;
unsigned long long offset;
unsigned long size;
/* Here follows the 'priv' part of nfp_cpp_area. */
};
/*
* NFP CPP operations structure
*/
struct nfp_cpp_operations {
/* Size of priv area in struct nfp_cpp_area */
size_t area_priv_size;
/* Instance an NFP CPP */
int (*init)(struct nfp_cpp *cpp, const char *devname);
/*
* Free the bus.
* Called only once, during nfp_cpp_unregister()
*/
void (*free)(struct nfp_cpp *cpp);
/*
* Initialize a new NFP CPP area
* NOTE: This is _not_ serialized
*/
int (*area_init)(struct nfp_cpp_area *area,
uint32_t dest,
unsigned long long address,
unsigned long size);
/*
* Clean up a NFP CPP area before it is freed
* NOTE: This is _not_ serialized
*/
void (*area_cleanup)(struct nfp_cpp_area *area);
/*
* Acquire resources for a NFP CPP area
* Serialized
*/
int (*area_acquire)(struct nfp_cpp_area *area);
/*
* Release resources for a NFP CPP area
* Serialized
*/
void (*area_release)(struct nfp_cpp_area *area);
/*
* Return a void IO pointer to a NFP CPP area
* NOTE: This is _not_ serialized
*/
void *(*area_iomem)(struct nfp_cpp_area *area);
void *(*area_mapped)(struct nfp_cpp_area *area);
/*
* Perform a read from a NFP CPP area
* Serialized
*/
int (*area_read)(struct nfp_cpp_area *area,
void *kernel_vaddr,
unsigned long offset,
unsigned int length);
/*
* Perform a write to a NFP CPP area
* Serialized
*/
int (*area_write)(struct nfp_cpp_area *area,
const void *kernel_vaddr,
unsigned long offset,
unsigned int length);
};
/*
* This should be the only external function the transport
* module supplies
*/
const struct nfp_cpp_operations *nfp_cpp_transport_operations(void);
/*
* Set the model id
*
* @param cpp NFP CPP operations structure
* @param model Model ID
*/
void nfp_cpp_model_set(struct nfp_cpp *cpp, uint32_t model);
/*
* Set the private instance owned data of a nfp_cpp struct
*
* @param cpp NFP CPP operations structure
* @param interface Interface ID
*/
void nfp_cpp_interface_set(struct nfp_cpp *cpp, uint32_t interface);
/*
* Set the private instance owned data of a nfp_cpp struct
*
* @param cpp NFP CPP operations structure
* @param serial NFP serial byte array
* @param len Length of the serial byte array
*/
int nfp_cpp_serial_set(struct nfp_cpp *cpp, const uint8_t *serial,
size_t serial_len);
/*
* Set the private data of the nfp_cpp instance
*
* @param cpp NFP CPP operations structure
* @return Opaque device pointer
*/
void nfp_cpp_priv_set(struct nfp_cpp *cpp, void *priv);
/*
* Return the private data of the nfp_cpp instance
*
* @param cpp NFP CPP operations structure
* @return Opaque device pointer
*/
void *nfp_cpp_priv(struct nfp_cpp *cpp);
/*
* Get the privately allocated portion of a NFP CPP area handle
*
* @param cpp_area NFP CPP area handle
* @return Pointer to the private area, or NULL on failure
*/
void *nfp_cpp_area_priv(struct nfp_cpp_area *cpp_area);
uint32_t __nfp_cpp_model_autodetect(struct nfp_cpp *cpp);
/*
* NFP CPP core interface for CPP clients.
*/
/*
* Open a NFP CPP handle to a CPP device
*
* @param[in] id 0-based ID for the CPP interface to use
*
* @return NFP CPP handle, or NULL on failure (and set errno accordingly).
*/
struct nfp_cpp *nfp_cpp_from_device_name(const char *devname);
/*
* Free a NFP CPP handle
*
* @param[in] cpp NFP CPP handle
*/
void nfp_cpp_free(struct nfp_cpp *cpp);
#define NFP_CPP_MODEL_INVALID 0xffffffff
/*
* NFP_CPP_MODEL_CHIP_of - retrieve the chip ID from the model ID
*
* The chip ID is a 16-bit BCD+A-F encoding for the chip type.
*
* @param[in] model NFP CPP model id
* @return NFP CPP chip id
*/
#define NFP_CPP_MODEL_CHIP_of(model) (((model) >> 16) & 0xffff)
/*
* NFP_CPP_MODEL_IS_6000 - Check for the NFP6000 family of devices
*
* NOTE: The NFP4000 series is considered as a NFP6000 series variant.
*
* @param[in] model NFP CPP model id
* @return true if model is in the NFP6000 family, false otherwise.
*/
#define NFP_CPP_MODEL_IS_6000(model) \
((NFP_CPP_MODEL_CHIP_of(model) >= 0x4000) && \
(NFP_CPP_MODEL_CHIP_of(model) < 0x7000))
/*
* nfp_cpp_model - Retrieve the Model ID of the NFP
*
* @param[in] cpp NFP CPP handle
* @return NFP CPP Model ID
*/
uint32_t nfp_cpp_model(struct nfp_cpp *cpp);
/*
* NFP Interface types - logical interface for this CPP connection 4 bits are
* reserved for interface type.
*/
#define NFP_CPP_INTERFACE_TYPE_INVALID 0x0
#define NFP_CPP_INTERFACE_TYPE_PCI 0x1
#define NFP_CPP_INTERFACE_TYPE_ARM 0x2
#define NFP_CPP_INTERFACE_TYPE_RPC 0x3
#define NFP_CPP_INTERFACE_TYPE_ILA 0x4
/*
* Construct a 16-bit NFP Interface ID
*
* Interface IDs consists of 4 bits of interface type, 4 bits of unit
* identifier, and 8 bits of channel identifier.
*
* The NFP Interface ID is used in the implementation of NFP CPP API mutexes,
* which use the MU Atomic CompareAndWrite operation - hence the limit to 16
* bits to be able to use the NFP Interface ID as a lock owner.
*
* @param[in] type NFP Interface Type
* @param[in] unit Unit identifier for the interface type
* @param[in] channel Channel identifier for the interface unit
* @return Interface ID
*/
#define NFP_CPP_INTERFACE(type, unit, channel) \
((((type) & 0xf) << 12) | \
(((unit) & 0xf) << 8) | \
(((channel) & 0xff) << 0))
/*
* Get the interface type of a NFP Interface ID
* @param[in] interface NFP Interface ID
* @return NFP Interface ID's type
*/
#define NFP_CPP_INTERFACE_TYPE_of(interface) (((interface) >> 12) & 0xf)
/*
* Get the interface unit of a NFP Interface ID
* @param[in] interface NFP Interface ID
* @return NFP Interface ID's unit
*/
#define NFP_CPP_INTERFACE_UNIT_of(interface) (((interface) >> 8) & 0xf)
/*
* Get the interface channel of a NFP Interface ID
* @param[in] interface NFP Interface ID
* @return NFP Interface ID's channel
*/
#define NFP_CPP_INTERFACE_CHANNEL_of(interface) (((interface) >> 0) & 0xff)
/*
* Retrieve the Interface ID of the NFP
* @param[in] cpp NFP CPP handle
* @return NFP CPP Interface ID
*/
uint16_t nfp_cpp_interface(struct nfp_cpp *cpp);
/*
* Retrieve the NFP Serial Number (unique per NFP)
* @param[in] cpp NFP CPP handle
* @param[out] serial Pointer to reference the serial number array
*
* @return size of the NFP6000 serial number, in bytes
*/
int nfp_cpp_serial(struct nfp_cpp *cpp, const uint8_t **serial);
/*
* Allocate a NFP CPP area handle, as an offset into a CPP ID
* @param[in] cpp NFP CPP handle
* @param[in] cpp_id NFP CPP ID
* @param[in] address Offset into the NFP CPP ID address space
* @param[in] size Size of the area to reserve
*
* @return NFP CPP handle, or NULL on failure (and set errno accordingly).
*/
struct nfp_cpp_area *nfp_cpp_area_alloc(struct nfp_cpp *cpp, uint32_t cpp_id,
unsigned long long address,
unsigned long size);
/*
* Allocate a NFP CPP area handle, as an offset into a CPP ID, by a named owner
* @param[in] cpp NFP CPP handle
* @param[in] cpp_id NFP CPP ID
* @param[in] name Name of owner of the area
* @param[in] address Offset into the NFP CPP ID address space
* @param[in] size Size of the area to reserve
*
* @return NFP CPP handle, or NULL on failure (and set errno accordingly).
*/
struct nfp_cpp_area *nfp_cpp_area_alloc_with_name(struct nfp_cpp *cpp,
uint32_t cpp_id,
const char *name,
unsigned long long address,
unsigned long size);
/*
* Free an allocated NFP CPP area handle
* @param[in] area NFP CPP area handle
*/
void nfp_cpp_area_free(struct nfp_cpp_area *area);
/*
* Acquire the resources needed to access the NFP CPP area handle
*
* @param[in] area NFP CPP area handle
*
* @return 0 on success, -1 on failure (and set errno accordingly).
*/
int nfp_cpp_area_acquire(struct nfp_cpp_area *area);
/*
* Release the resources needed to access the NFP CPP area handle
*
* @param[in] area NFP CPP area handle
*/
void nfp_cpp_area_release(struct nfp_cpp_area *area);
/*
* Allocate, then acquire the resources needed to access the NFP CPP area handle
* @param[in] cpp NFP CPP handle
* @param[in] cpp_id NFP CPP ID
* @param[in] address Offset into the NFP CPP ID address space
* @param[in] size Size of the area to reserve
*
* @return NFP CPP handle, or NULL on failure (and set errno accordingly).
*/
struct nfp_cpp_area *nfp_cpp_area_alloc_acquire(struct nfp_cpp *cpp,
uint32_t cpp_id,
unsigned long long address,
unsigned long size);
/*
* Release the resources, then free the NFP CPP area handle
* @param[in] area NFP CPP area handle
*/
void nfp_cpp_area_release_free(struct nfp_cpp_area *area);
uint8_t *nfp_cpp_map_area(struct nfp_cpp *cpp, int domain, int target,
uint64_t addr, unsigned long size,
struct nfp_cpp_area **area);
/*
* Return an IO pointer to the beginning of the NFP CPP area handle. The area
* must be acquired with 'nfp_cpp_area_acquire()' before calling this operation.
*
* @param[in] area NFP CPP area handle
*
* @return Pointer to IO memory, or NULL on failure (and set errno accordingly).
*/
void *nfp_cpp_area_mapped(struct nfp_cpp_area *area);
/*
* Read from a NFP CPP area handle into a buffer. The area must be acquired with
* 'nfp_cpp_area_acquire()' before calling this operation.
*
* @param[in] area NFP CPP area handle
* @param[in] offset Offset into the area
* @param[in] buffer Location of buffer to receive the data
* @param[in] length Length of the data to read
*
* @return bytes read on success, -1 on failure (and set errno accordingly).
*
*/
int nfp_cpp_area_read(struct nfp_cpp_area *area, unsigned long offset,
void *buffer, size_t length);
/*
* Write to a NFP CPP area handle from a buffer. The area must be acquired with
* 'nfp_cpp_area_acquire()' before calling this operation.
*
* @param[in] area NFP CPP area handle
* @param[in] offset Offset into the area
* @param[in] buffer Location of buffer that holds the data
* @param[in] length Length of the data to read
*
* @return bytes written on success, -1 on failure (and set errno accordingly).
*/
int nfp_cpp_area_write(struct nfp_cpp_area *area, unsigned long offset,
const void *buffer, size_t length);
/*
* nfp_cpp_area_iomem() - get IOMEM region for CPP area
* @area: CPP area handle
*
* Returns an iomem pointer for use with readl()/writel() style operations.
*
* NOTE: Area must have been locked down with an 'acquire'.
*
* Return: pointer to the area, or NULL
*/
void *nfp_cpp_area_iomem(struct nfp_cpp_area *area);
/*
* Verify that IO can be performed on an offset in an area
*
* @param[in] area NFP CPP area handle
* @param[in] offset Offset into the area
* @param[in] size Size of region to validate
*
* @return 0 on success, -1 on failure (and set errno accordingly).
*/
int nfp_cpp_area_check_range(struct nfp_cpp_area *area,
unsigned long long offset, unsigned long size);
/*
* Get the NFP CPP handle that is the parent of a NFP CPP area handle
*
* @param cpp_area NFP CPP area handle
* @return NFP CPP handle
*/
struct nfp_cpp *nfp_cpp_area_cpp(struct nfp_cpp_area *cpp_area);
/*
* Get the name passed during allocation of the NFP CPP area handle
*
* @param cpp_area NFP CPP area handle
* @return Pointer to the area's name
*/
const char *nfp_cpp_area_name(struct nfp_cpp_area *cpp_area);
/*
* Read a block of data from a NFP CPP ID
*
* @param[in] cpp NFP CPP handle
* @param[in] cpp_id NFP CPP ID
* @param[in] address Offset into the NFP CPP ID address space
* @param[in] kernel_vaddr Buffer to copy read data to
* @param[in] length Size of the area to reserve
*
* @return bytes read on success, -1 on failure (and set errno accordingly).
*/
int nfp_cpp_read(struct nfp_cpp *cpp, uint32_t cpp_id,
unsigned long long address, void *kernel_vaddr, size_t length);
/*
* Write a block of data to a NFP CPP ID
*
* @param[in] cpp NFP CPP handle
* @param[in] cpp_id NFP CPP ID
* @param[in] address Offset into the NFP CPP ID address space
* @param[in] kernel_vaddr Buffer to copy write data from
* @param[in] length Size of the area to reserve
*
* @return bytes written on success, -1 on failure (and set errno accordingly).
*/
int nfp_cpp_write(struct nfp_cpp *cpp, uint32_t cpp_id,
unsigned long long address, const void *kernel_vaddr,
size_t length);
/*
* Fill a NFP CPP area handle and offset with a value
*
* @param[in] area NFP CPP area handle
* @param[in] offset Offset into the NFP CPP ID address space
* @param[in] value 32-bit value to fill area with
* @param[in] length Size of the area to reserve
*
* @return bytes written on success, -1 on failure (and set errno accordingly).
*/
int nfp_cpp_area_fill(struct nfp_cpp_area *area, unsigned long offset,
uint32_t value, size_t length);
/*
* Read a single 32-bit value from a NFP CPP area handle
*
* @param area NFP CPP area handle
* @param offset offset into NFP CPP area handle
* @param value output value
*
* The area must be acquired with 'nfp_cpp_area_acquire()' before calling this
* operation.
*
* NOTE: offset must be 32-bit aligned.
*
* @return 0 on success, or -1 on error (and set errno accordingly).
*/
int nfp_cpp_area_readl(struct nfp_cpp_area *area, unsigned long offset,
uint32_t *value);
/*
* Write a single 32-bit value to a NFP CPP area handle
*
* @param area NFP CPP area handle
* @param offset offset into NFP CPP area handle
* @param value value to write
*
* The area must be acquired with 'nfp_cpp_area_acquire()' before calling this
* operation.
*
* NOTE: offset must be 32-bit aligned.
*
* @return 0 on success, or -1 on error (and set errno accordingly).
*/
int nfp_cpp_area_writel(struct nfp_cpp_area *area, unsigned long offset,
uint32_t value);
/*
* Read a single 64-bit value from a NFP CPP area handle
*
* @param area NFP CPP area handle
* @param offset offset into NFP CPP area handle
* @param value output value
*
* The area must be acquired with 'nfp_cpp_area_acquire()' before calling this
* operation.
*
* NOTE: offset must be 64-bit aligned.
*
* @return 0 on success, or -1 on error (and set errno accordingly).
*/
int nfp_cpp_area_readq(struct nfp_cpp_area *area, unsigned long offset,
uint64_t *value);
/*
* Write a single 64-bit value to a NFP CPP area handle
*
* @param area NFP CPP area handle
* @param offset offset into NFP CPP area handle
* @param value value to write
*
* The area must be acquired with 'nfp_cpp_area_acquire()' before calling this
* operation.
*
* NOTE: offset must be 64-bit aligned.
*
* @return 0 on success, or -1 on error (and set errno accordingly).
*/
int nfp_cpp_area_writeq(struct nfp_cpp_area *area, unsigned long offset,
uint64_t value);
/*
* Write a single 32-bit value on the XPB bus
*
* @param cpp NFP CPP device handle
* @param xpb_tgt XPB target and address
* @param value value to write
*
* @return 0 on success, or -1 on failure (and set errno accordingly).
*/
int nfp_xpb_writel(struct nfp_cpp *cpp, uint32_t xpb_tgt, uint32_t value);
/*
* Read a single 32-bit value from the XPB bus
*
* @param cpp NFP CPP device handle
* @param xpb_tgt XPB target and address
* @param value output value
*
* @return 0 on success, or -1 on failure (and set errno accordingly).
*/
int nfp_xpb_readl(struct nfp_cpp *cpp, uint32_t xpb_tgt, uint32_t *value);
/*
* Modify bits of a 32-bit value from the XPB bus
*
* @param cpp NFP CPP device handle
* @param xpb_tgt XPB target and address
* @param mask mask of bits to alter
* @param value value to modify
*
* @return 0 on success, or -1 on failure (and set errno accordingly).
*/
int nfp_xpb_writelm(struct nfp_cpp *cpp, uint32_t xpb_tgt, uint32_t mask,
uint32_t value);
/*
* Modify bits of a 32-bit value from the XPB bus
*
* @param cpp NFP CPP device handle
* @param xpb_tgt XPB target and address
* @param mask mask of bits to alter
* @param value value to monitor for
* @param timeout_us maximum number of us to wait (-1 for forever)
*
* @return >= 0 on success, or -1 on failure (and set errno accordingly).
*/
int nfp_xpb_waitlm(struct nfp_cpp *cpp, uint32_t xpb_tgt, uint32_t mask,
uint32_t value, int timeout_us);
/*
* Read a 32-bit word from a NFP CPP ID
*
* @param cpp NFP CPP handle
* @param cpp_id NFP CPP ID
* @param address offset into the NFP CPP ID address space
* @param value output value
*
* @return 0 on success, or -1 on failure (and set errno accordingly).
*/
int nfp_cpp_readl(struct nfp_cpp *cpp, uint32_t cpp_id,
unsigned long long address, uint32_t *value);
/*
* Write a 32-bit value to a NFP CPP ID
*
* @param cpp NFP CPP handle
* @param cpp_id NFP CPP ID
* @param address offset into the NFP CPP ID address space
* @param value value to write
*
* @return 0 on success, or -1 on failure (and set errno accordingly).
*
*/
int nfp_cpp_writel(struct nfp_cpp *cpp, uint32_t cpp_id,
unsigned long long address, uint32_t value);
/*
* Read a 64-bit work from a NFP CPP ID
*
* @param cpp NFP CPP handle
* @param cpp_id NFP CPP ID
* @param address offset into the NFP CPP ID address space
* @param value output value
*
* @return 0 on success, or -1 on failure (and set errno accordingly).
*/
int nfp_cpp_readq(struct nfp_cpp *cpp, uint32_t cpp_id,
unsigned long long address, uint64_t *value);
/*
* Write a 64-bit value to a NFP CPP ID
*
* @param cpp NFP CPP handle
* @param cpp_id NFP CPP ID
* @param address offset into the NFP CPP ID address space
* @param value value to write
*
* @return 0 on success, or -1 on failure (and set errno accordingly).
*/
int nfp_cpp_writeq(struct nfp_cpp *cpp, uint32_t cpp_id,
unsigned long long address, uint64_t value);
/*
* Initialize a mutex location
* The CPP target:address must point to a 64-bit aligned location, and will
* initialize 64 bits of data at the location.
*
* This creates the initial mutex state, as locked by this nfp_cpp_interface().
*
* This function should only be called when setting up the initial lock state
* upon boot-up of the system.
*
* @param cpp NFP CPP handle
* @param target NFP CPP target ID
* @param address Offset into the address space of the NFP CPP target ID
* @param key_id Unique 32-bit value for this mutex
*
* @return 0 on success, or -1 on failure (and set errno accordingly).
*/
int nfp_cpp_mutex_init(struct nfp_cpp *cpp, int target,
unsigned long long address, uint32_t key_id);
/*
* Create a mutex handle from an address controlled by a MU Atomic engine
*
* The CPP target:address must point to a 64-bit aligned location, and reserve
* 64 bits of data at the location for use by the handle.
*
* Only target/address pairs that point to entities that support the MU Atomic
* Engine's CmpAndSwap32 command are supported.
*
* @param cpp NFP CPP handle
* @param target NFP CPP target ID
* @param address Offset into the address space of the NFP CPP target ID
* @param key_id 32-bit unique key (must match the key at this location)
*
* @return A non-NULL struct nfp_cpp_mutex * on success, NULL on
* failure.
*/
struct nfp_cpp_mutex *nfp_cpp_mutex_alloc(struct nfp_cpp *cpp, int target,
unsigned long long address,
uint32_t key_id);
/*
* Get the NFP CPP handle the mutex was created with
*
* @param mutex NFP mutex handle
* @return NFP CPP handle
*/
struct nfp_cpp *nfp_cpp_mutex_cpp(struct nfp_cpp_mutex *mutex);
/*
* Get the mutex key
*
* @param mutex NFP mutex handle
* @return Mutex key
*/
uint32_t nfp_cpp_mutex_key(struct nfp_cpp_mutex *mutex);
/*
* Get the mutex owner
*
* @param mutex NFP mutex handle
* @return Interface ID of the mutex owner
*
* NOTE: This is for debug purposes ONLY - the owner may change at any time,
* unless it has been locked by this NFP CPP handle.
*/
uint16_t nfp_cpp_mutex_owner(struct nfp_cpp_mutex *mutex);
/*
* Get the mutex target
*
* @param mutex NFP mutex handle
* @return Mutex CPP target (ie NFP_CPP_TARGET_MU)
*/
int nfp_cpp_mutex_target(struct nfp_cpp_mutex *mutex);
/*
* Get the mutex address
*
* @param mutex NFP mutex handle
* @return Mutex CPP address
*/
uint64_t nfp_cpp_mutex_address(struct nfp_cpp_mutex *mutex);
/*
* Free a mutex handle - does not alter the lock state
*
* @param mutex NFP CPP Mutex handle
*/
void nfp_cpp_mutex_free(struct nfp_cpp_mutex *mutex);
/*
* Lock a mutex handle, using the NFP MU Atomic Engine
*
* @param mutex NFP CPP Mutex handle
*
* @return 0 on success, or -1 on failure (and set errno accordingly).
*/
int nfp_cpp_mutex_lock(struct nfp_cpp_mutex *mutex);
/*
* Unlock a mutex handle, using the NFP MU Atomic Engine
*
* @param mutex NFP CPP Mutex handle
*
* @return 0 on success, or -1 on failure (and set errno accordingly).
*/
int nfp_cpp_mutex_unlock(struct nfp_cpp_mutex *mutex);
/*
* Attempt to lock a mutex handle, using the NFP MU Atomic Engine
*
* @param mutex NFP CPP Mutex handle
* @return 0 if the lock succeeded, -1 on failure (and errno set
* appropriately).
*/
int nfp_cpp_mutex_trylock(struct nfp_cpp_mutex *mutex);
#endif /* !__NFP_CPP_H__ */

View File

@ -0,0 +1,936 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
/*
* nfp_cpp_pcie_ops.c
* Authors: Vinayak Tammineedi <vinayak.tammineedi@netronome.com>
*
* Multiplexes the NFP BARs between NFP internal resources and
* implements the PCIe specific interface for generic CPP bus access.
*
* The BARs are managed and allocated if they are available.
* The generic CPP bus abstraction builds upon this BAR interface.
*/
#include <assert.h>
#include <stdio.h>
#include <execinfo.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdint.h>
#include <stdbool.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <dirent.h>
#include <libgen.h>
#include <sys/mman.h>
#include <sys/file.h>
#include <sys/stat.h>
#include "nfp_cpp.h"
#include "nfp_target.h"
#include "nfp6000/nfp6000.h"
#define NFP_PCIE_BAR(_pf) (0x30000 + ((_pf) & 7) * 0xc0)
#define NFP_PCIE_BAR_PCIE2CPP_ACTION_BASEADDRESS(_x) (((_x) & 0x1f) << 16)
#define NFP_PCIE_BAR_PCIE2CPP_BASEADDRESS(_x) (((_x) & 0xffff) << 0)
#define NFP_PCIE_BAR_PCIE2CPP_LENGTHSELECT(_x) (((_x) & 0x3) << 27)
#define NFP_PCIE_BAR_PCIE2CPP_LENGTHSELECT_32BIT 0
#define NFP_PCIE_BAR_PCIE2CPP_LENGTHSELECT_64BIT 1
#define NFP_PCIE_BAR_PCIE2CPP_LENGTHSELECT_0BYTE 3
#define NFP_PCIE_BAR_PCIE2CPP_MAPTYPE(_x) (((_x) & 0x7) << 29)
#define NFP_PCIE_BAR_PCIE2CPP_MAPTYPE_OF(_x) (((_x) >> 29) & 0x7)
#define NFP_PCIE_BAR_PCIE2CPP_MAPTYPE_FIXED 0
#define NFP_PCIE_BAR_PCIE2CPP_MAPTYPE_BULK 1
#define NFP_PCIE_BAR_PCIE2CPP_MAPTYPE_TARGET 2
#define NFP_PCIE_BAR_PCIE2CPP_MAPTYPE_GENERAL 3
#define NFP_PCIE_BAR_PCIE2CPP_TARGET_BASEADDRESS(_x) (((_x) & 0xf) << 23)
#define NFP_PCIE_BAR_PCIE2CPP_TOKEN_BASEADDRESS(_x) (((_x) & 0x3) << 21)
/*
* Minimal size of the PCIe cfg memory we depend on being mapped,
* queue controller and DMA controller don't have to be covered.
*/
#define NFP_PCI_MIN_MAP_SIZE 0x080000
#define NFP_PCIE_P2C_FIXED_SIZE(bar) (1 << (bar)->bitsize)
#define NFP_PCIE_P2C_BULK_SIZE(bar) (1 << (bar)->bitsize)
#define NFP_PCIE_P2C_GENERAL_TARGET_OFFSET(bar, x) ((x) << ((bar)->bitsize - 2))
#define NFP_PCIE_P2C_GENERAL_TOKEN_OFFSET(bar, x) ((x) << ((bar)->bitsize - 4))
#define NFP_PCIE_P2C_GENERAL_SIZE(bar) (1 << ((bar)->bitsize - 4))
#define NFP_PCIE_CFG_BAR_PCIETOCPPEXPBAR(bar, slot) \
(NFP_PCIE_BAR(0) + ((bar) * 8 + (slot)) * 4)
#define NFP_PCIE_CPP_BAR_PCIETOCPPEXPBAR(bar, slot) \
(((bar) * 8 + (slot)) * 4)
/*
* Define to enable a bit more verbose debug output.
* Set to 1 to enable a bit more verbose debug output.
*/
struct nfp_pcie_user;
struct nfp6000_area_priv;
/*
* struct nfp_bar - describes BAR configuration and usage
* @nfp: backlink to owner
* @barcfg: cached contents of BAR config CSR
* @base: the BAR's base CPP offset
* @mask: mask for the BAR aperture (read only)
* @bitsize: bitsize of BAR aperture (read only)
* @index: index of the BAR
* @lock: lock to specify if bar is in use
* @refcnt: number of current users
* @iomem: mapped IO memory
*/
#define NFP_BAR_MAX 7
struct nfp_bar {
struct nfp_pcie_user *nfp;
uint32_t barcfg;
uint64_t base; /* CPP address base */
uint64_t mask; /* Bit mask of the bar */
uint32_t bitsize; /* Bit size of the bar */
int index;
int lock;
char *csr;
char *iomem;
};
#define BUSDEV_SZ 13
struct nfp_pcie_user {
struct nfp_bar bar[NFP_BAR_MAX];
int device;
int lock;
char busdev[BUSDEV_SZ];
int barsz;
char *cfg;
};
static uint32_t
nfp_bar_maptype(struct nfp_bar *bar)
{
return NFP_PCIE_BAR_PCIE2CPP_MAPTYPE_OF(bar->barcfg);
}
#define TARGET_WIDTH_32 4
#define TARGET_WIDTH_64 8
static int
nfp_compute_bar(const struct nfp_bar *bar, uint32_t *bar_config,
uint64_t *bar_base, int tgt, int act, int tok,
uint64_t offset, size_t size, int width)
{
uint32_t bitsize;
uint32_t newcfg;
uint64_t mask;
if (tgt >= 16)
return -EINVAL;
switch (width) {
case 8:
newcfg =
NFP_PCIE_BAR_PCIE2CPP_LENGTHSELECT
(NFP_PCIE_BAR_PCIE2CPP_LENGTHSELECT_64BIT);
break;
case 4:
newcfg =
NFP_PCIE_BAR_PCIE2CPP_LENGTHSELECT
(NFP_PCIE_BAR_PCIE2CPP_LENGTHSELECT_32BIT);
break;
case 0:
newcfg =
NFP_PCIE_BAR_PCIE2CPP_LENGTHSELECT
(NFP_PCIE_BAR_PCIE2CPP_LENGTHSELECT_0BYTE);
break;
default:
return -EINVAL;
}
if (act != NFP_CPP_ACTION_RW && act != 0) {
/* Fixed CPP mapping with specific action */
mask = ~(NFP_PCIE_P2C_FIXED_SIZE(bar) - 1);
newcfg |=
NFP_PCIE_BAR_PCIE2CPP_MAPTYPE
(NFP_PCIE_BAR_PCIE2CPP_MAPTYPE_FIXED);
newcfg |= NFP_PCIE_BAR_PCIE2CPP_TARGET_BASEADDRESS(tgt);
newcfg |= NFP_PCIE_BAR_PCIE2CPP_ACTION_BASEADDRESS(act);
newcfg |= NFP_PCIE_BAR_PCIE2CPP_TOKEN_BASEADDRESS(tok);
if ((offset & mask) != ((offset + size - 1) & mask)) {
printf("BAR%d: Won't use for Fixed mapping\n",
bar->index);
printf("\t<%#llx,%#llx>, action=%d\n",
(unsigned long long)offset,
(unsigned long long)(offset + size), act);
printf("\tBAR too small (0x%llx).\n",
(unsigned long long)mask);
return -EINVAL;
}
offset &= mask;
#ifdef DEBUG
printf("BAR%d: Created Fixed mapping\n", bar->index);
printf("\t%d:%d:%d:0x%#llx-0x%#llx>\n", tgt, act, tok,
(unsigned long long)offset,
(unsigned long long)(offset + mask));
#endif
bitsize = 40 - 16;
} else {
mask = ~(NFP_PCIE_P2C_BULK_SIZE(bar) - 1);
/* Bulk mapping */
newcfg |=
NFP_PCIE_BAR_PCIE2CPP_MAPTYPE
(NFP_PCIE_BAR_PCIE2CPP_MAPTYPE_BULK);
newcfg |= NFP_PCIE_BAR_PCIE2CPP_TARGET_BASEADDRESS(tgt);
newcfg |= NFP_PCIE_BAR_PCIE2CPP_TOKEN_BASEADDRESS(tok);
if ((offset & mask) != ((offset + size - 1) & mask)) {
printf("BAR%d: Won't use for bulk mapping\n",
bar->index);
printf("\t<%#llx,%#llx>\n", (unsigned long long)offset,
(unsigned long long)(offset + size));
printf("\ttarget=%d, token=%d\n", tgt, tok);
printf("\tBAR too small (%#llx) - (%#llx != %#llx).\n",
(unsigned long long)mask,
(unsigned long long)(offset & mask),
(unsigned long long)(offset + size - 1) & mask);
return -EINVAL;
}
offset &= mask;
#ifdef DEBUG
printf("BAR%d: Created bulk mapping %d:x:%d:%#llx-%#llx\n",
bar->index, tgt, tok, (unsigned long long)offset,
(unsigned long long)(offset + ~mask));
#endif
bitsize = 40 - 21;
}
if (bar->bitsize < bitsize) {
printf("BAR%d: Too small for %d:%d:%d\n", bar->index, tgt, tok,
act);
return -EINVAL;
}
newcfg |= offset >> bitsize;
if (bar_base)
*bar_base = offset;
if (bar_config)
*bar_config = newcfg;
return 0;
}
static int
nfp_bar_write(struct nfp_pcie_user *nfp, struct nfp_bar *bar,
uint32_t newcfg)
{
int base, slot;
base = bar->index >> 3;
slot = bar->index & 7;
if (!nfp->cfg)
return (-ENOMEM);
bar->csr = nfp->cfg +
NFP_PCIE_CFG_BAR_PCIETOCPPEXPBAR(base, slot);
*(uint32_t *)(bar->csr) = newcfg;
bar->barcfg = newcfg;
#ifdef DEBUG
printf("BAR%d: updated to 0x%08x\n", bar->index, newcfg);
#endif
return 0;
}
static int
nfp_reconfigure_bar(struct nfp_pcie_user *nfp, struct nfp_bar *bar, int tgt,
int act, int tok, uint64_t offset, size_t size, int width)
{
uint64_t newbase;
uint32_t newcfg;
int err;
err = nfp_compute_bar(bar, &newcfg, &newbase, tgt, act, tok, offset,
size, width);
if (err)
return err;
bar->base = newbase;
return nfp_bar_write(nfp, bar, newcfg);
}
/*
* Map all PCI bars. We assume that the BAR with the PCIe config block is
* already mapped.
*
* BAR0.0: Reserved for General Mapping (for MSI-X access to PCIe SRAM)
*/
static int
nfp_enable_bars(struct nfp_pcie_user *nfp)
{
struct nfp_bar *bar;
int x;
for (x = ARRAY_SIZE(nfp->bar); x > 0; x--) {
bar = &nfp->bar[x - 1];
bar->barcfg = 0;
bar->nfp = nfp;
bar->index = x;
bar->mask = (1 << (nfp->barsz - 3)) - 1;
bar->bitsize = nfp->barsz - 3;
bar->base = 0;
bar->iomem = NULL;
bar->lock = 0;
bar->csr = nfp->cfg +
NFP_PCIE_CFG_BAR_PCIETOCPPEXPBAR(bar->index >> 3,
bar->index & 7);
bar->iomem =
(char *)mmap(0, 1 << bar->bitsize, PROT_READ | PROT_WRITE,
MAP_SHARED, nfp->device,
bar->index << bar->bitsize);
if (bar->iomem == MAP_FAILED)
return (-ENOMEM);
}
return 0;
}
static struct nfp_bar *
nfp_alloc_bar(struct nfp_pcie_user *nfp)
{
struct nfp_bar *bar;
int x;
for (x = ARRAY_SIZE(nfp->bar); x > 0; x--) {
bar = &nfp->bar[x - 1];
if (!bar->lock) {
bar->lock = 1;
return bar;
}
}
return NULL;
}
static void
nfp_disable_bars(struct nfp_pcie_user *nfp)
{
struct nfp_bar *bar;
int x;
for (x = ARRAY_SIZE(nfp->bar); x > 0; x--) {
bar = &nfp->bar[x - 1];
if (bar->iomem) {
munmap(bar->iomem, 1 << (nfp->barsz - 3));
bar->iomem = NULL;
bar->lock = 0;
}
}
}
/*
* Generic CPP bus access interface.
*/
struct nfp6000_area_priv {
struct nfp_bar *bar;
uint32_t bar_offset;
uint32_t target;
uint32_t action;
uint32_t token;
uint64_t offset;
struct {
int read;
int write;
int bar;
} width;
size_t size;
char *iomem;
};
static int
nfp6000_area_init(struct nfp_cpp_area *area, uint32_t dest,
unsigned long long address, unsigned long size)
{
struct nfp_pcie_user *nfp = nfp_cpp_priv(nfp_cpp_area_cpp(area));
struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);
uint32_t target = NFP_CPP_ID_TARGET_of(dest);
uint32_t action = NFP_CPP_ID_ACTION_of(dest);
uint32_t token = NFP_CPP_ID_TOKEN_of(dest);
int pp, ret = 0;
pp = nfp6000_target_pushpull(NFP_CPP_ID(target, action, token),
address);
if (pp < 0)
return pp;
priv->width.read = PUSH_WIDTH(pp);
priv->width.write = PULL_WIDTH(pp);
if (priv->width.read > 0 &&
priv->width.write > 0 && priv->width.read != priv->width.write)
return -EINVAL;
if (priv->width.read > 0)
priv->width.bar = priv->width.read;
else
priv->width.bar = priv->width.write;
priv->bar = nfp_alloc_bar(nfp);
if (priv->bar == NULL)
return -ENOMEM;
priv->target = target;
priv->action = action;
priv->token = token;
priv->offset = address;
priv->size = size;
ret = nfp_reconfigure_bar(nfp, priv->bar, priv->target, priv->action,
priv->token, priv->offset, priv->size,
priv->width.bar);
return ret;
}
static int
nfp6000_area_acquire(struct nfp_cpp_area *area)
{
struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);
/* Calculate offset into BAR. */
if (nfp_bar_maptype(priv->bar) ==
NFP_PCIE_BAR_PCIE2CPP_MAPTYPE_GENERAL) {
priv->bar_offset = priv->offset &
(NFP_PCIE_P2C_GENERAL_SIZE(priv->bar) - 1);
priv->bar_offset +=
NFP_PCIE_P2C_GENERAL_TARGET_OFFSET(priv->bar,
priv->target);
priv->bar_offset +=
NFP_PCIE_P2C_GENERAL_TOKEN_OFFSET(priv->bar, priv->token);
} else {
priv->bar_offset = priv->offset & priv->bar->mask;
}
/* Must have been too big. Sub-allocate. */
if (!priv->bar->iomem)
return (-ENOMEM);
priv->iomem = priv->bar->iomem + priv->bar_offset;
return 0;
}
static void *
nfp6000_area_mapped(struct nfp_cpp_area *area)
{
struct nfp6000_area_priv *area_priv = nfp_cpp_area_priv(area);
if (!area_priv->iomem)
return NULL;
return area_priv->iomem;
}
static void
nfp6000_area_release(struct nfp_cpp_area *area)
{
struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);
priv->bar->lock = 0;
priv->bar = NULL;
priv->iomem = NULL;
}
static void *
nfp6000_area_iomem(struct nfp_cpp_area *area)
{
struct nfp6000_area_priv *priv = nfp_cpp_area_priv(area);
return priv->iomem;
}
static int
nfp6000_area_read(struct nfp_cpp_area *area, void *kernel_vaddr,
unsigned long offset, unsigned int length)
{
uint64_t *wrptr64 = kernel_vaddr;
const volatile uint64_t *rdptr64;
struct nfp6000_area_priv *priv;
uint32_t *wrptr32 = kernel_vaddr;
const volatile uint32_t *rdptr32;
int width;
unsigned int n;
bool is_64;
priv = nfp_cpp_area_priv(area);
rdptr64 = (uint64_t *)(priv->iomem + offset);
rdptr32 = (uint32_t *)(priv->iomem + offset);
if (offset + length > priv->size)
return -EFAULT;
width = priv->width.read;
if (width <= 0)
return -EINVAL;
/* Unaligned? Translate to an explicit access */
if ((priv->offset + offset) & (width - 1)) {
printf("aread_read unaligned!!!\n");
return -EINVAL;
}
is_64 = width == TARGET_WIDTH_64;
/* MU reads via a PCIe2CPP BAR supports 32bit (and other) lengths */
if (priv->target == (NFP_CPP_TARGET_ID_MASK & NFP_CPP_TARGET_MU) &&
priv->action == NFP_CPP_ACTION_RW) {
is_64 = false;
}
if (is_64) {
if (offset % sizeof(uint64_t) != 0 ||
length % sizeof(uint64_t) != 0)
return -EINVAL;
} else {
if (offset % sizeof(uint32_t) != 0 ||
length % sizeof(uint32_t) != 0)
return -EINVAL;
}
if (!priv->bar)
return -EFAULT;
if (is_64)
for (n = 0; n < length; n += sizeof(uint64_t)) {
*wrptr64 = *rdptr64;
wrptr64++;
rdptr64++;
}
else
for (n = 0; n < length; n += sizeof(uint32_t)) {
*wrptr32 = *rdptr32;
wrptr32++;
rdptr32++;
}
return n;
}
static int
nfp6000_area_write(struct nfp_cpp_area *area, const void *kernel_vaddr,
unsigned long offset, unsigned int length)
{
const uint64_t *rdptr64 = kernel_vaddr;
uint64_t *wrptr64;
const uint32_t *rdptr32 = kernel_vaddr;
struct nfp6000_area_priv *priv;
uint32_t *wrptr32;
int width;
unsigned int n;
bool is_64;
priv = nfp_cpp_area_priv(area);
wrptr64 = (uint64_t *)(priv->iomem + offset);
wrptr32 = (uint32_t *)(priv->iomem + offset);
if (offset + length > priv->size)
return -EFAULT;
width = priv->width.write;
if (width <= 0)
return -EINVAL;
/* Unaligned? Translate to an explicit access */
if ((priv->offset + offset) & (width - 1))
return -EINVAL;
is_64 = width == TARGET_WIDTH_64;
/* MU writes via a PCIe2CPP BAR supports 32bit (and other) lengths */
if (priv->target == (NFP_CPP_TARGET_ID_MASK & NFP_CPP_TARGET_MU) &&
priv->action == NFP_CPP_ACTION_RW)
is_64 = false;
if (is_64) {
if (offset % sizeof(uint64_t) != 0 ||
length % sizeof(uint64_t) != 0)
return -EINVAL;
} else {
if (offset % sizeof(uint32_t) != 0 ||
length % sizeof(uint32_t) != 0)
return -EINVAL;
}
if (!priv->bar)
return -EFAULT;
if (is_64)
for (n = 0; n < length; n += sizeof(uint64_t)) {
*wrptr64 = *rdptr64;
wrptr64++;
rdptr64++;
}
else
for (n = 0; n < length; n += sizeof(uint32_t)) {
*wrptr32 = *rdptr32;
wrptr32++;
rdptr32++;
}
return n;
}
#define PCI_DEVICES "/sys/bus/pci/devices"
static int
nfp_acquire_process_lock(struct nfp_pcie_user *desc)
{
int rc;
struct flock lock;
char lockname[30];
memset(&lock, 0, sizeof(lock));
snprintf(lockname, sizeof(lockname), "/var/lock/nfp_%s", desc->busdev);
desc->lock = open(lockname, O_RDWR | O_CREAT, 0666);
if (desc->lock < 0)
return desc->lock;
lock.l_type = F_WRLCK;
lock.l_whence = SEEK_SET;
rc = -1;
while (rc != 0) {
rc = fcntl(desc->lock, F_SETLKW, &lock);
if (rc < 0) {
if (errno != EAGAIN && errno != EACCES) {
close(desc->lock);
return rc;
}
}
}
return 0;
}
static int
nfp6000_set_model(struct nfp_pcie_user *desc, struct nfp_cpp *cpp)
{
char tmp_str[80];
uint32_t tmp;
int fp;
snprintf(tmp_str, sizeof(tmp_str), "%s/%s/config", PCI_DEVICES,
desc->busdev);
fp = open(tmp_str, O_RDONLY);
if (!fp)
return -1;
lseek(fp, 0x2e, SEEK_SET);
if (read(fp, &tmp, sizeof(tmp)) != sizeof(tmp)) {
printf("Error reading config file for model\n");
return -1;
}
tmp = tmp << 16;
if (close(fp) == -1)
return -1;
nfp_cpp_model_set(cpp, tmp);
return 0;
}
static int
nfp6000_set_interface(struct nfp_pcie_user *desc, struct nfp_cpp *cpp)
{
char tmp_str[80];
uint16_t tmp;
int fp;
snprintf(tmp_str, sizeof(tmp_str), "%s/%s/config", PCI_DEVICES,
desc->busdev);
fp = open(tmp_str, O_RDONLY);
if (!fp)
return -1;
lseek(fp, 0x154, SEEK_SET);
if (read(fp, &tmp, sizeof(tmp)) != sizeof(tmp)) {
printf("error reading config file for interface\n");
return -1;
}
if (close(fp) == -1)
return -1;
nfp_cpp_interface_set(cpp, tmp);
return 0;
}
#define PCI_CFG_SPACE_SIZE 256
#define PCI_CFG_SPACE_EXP_SIZE 4096
#define PCI_EXT_CAP_ID(header) (int)(header & 0x0000ffff)
#define PCI_EXT_CAP_NEXT(header) ((header >> 20) & 0xffc)
#define PCI_EXT_CAP_ID_DSN 0x03
static int
nfp_pci_find_next_ext_capability(int fp, int cap)
{
uint32_t header;
int ttl;
int pos = PCI_CFG_SPACE_SIZE;
/* minimum 8 bytes per capability */
ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
lseek(fp, pos, SEEK_SET);
if (read(fp, &header, sizeof(header)) != sizeof(header)) {
printf("error reading config file for serial\n");
return -1;
}
/*
* If we have no capabilities, this is indicated by cap ID,
* cap version and next pointer all being 0.
*/
if (header == 0)
return 0;
while (ttl-- > 0) {
if (PCI_EXT_CAP_ID(header) == cap)
return pos;
pos = PCI_EXT_CAP_NEXT(header);
if (pos < PCI_CFG_SPACE_SIZE)
break;
lseek(fp, pos, SEEK_SET);
if (read(fp, &header, sizeof(header)) != sizeof(header)) {
printf("error reading config file for serial\n");
return -1;
}
}
return 0;
}
static int
nfp6000_set_serial(struct nfp_pcie_user *desc, struct nfp_cpp *cpp)
{
char tmp_str[80];
uint16_t tmp;
uint8_t serial[6];
int serial_len = 6;
int fp, pos;
snprintf(tmp_str, sizeof(tmp_str), "%s/%s/config", PCI_DEVICES,
desc->busdev);
fp = open(tmp_str, O_RDONLY);
if (!fp)
return -1;
pos = nfp_pci_find_next_ext_capability(fp, PCI_EXT_CAP_ID_DSN);
if (pos <= 0) {
printf("PCI_EXT_CAP_ID_DSN not found. Using default offset\n");
lseek(fp, 0x156, SEEK_SET);
} else {
lseek(fp, pos + 6, SEEK_SET);
}
if (read(fp, &tmp, sizeof(tmp)) != sizeof(tmp)) {
printf("error reading config file for serial\n");
return -1;
}
serial[4] = (uint8_t)((tmp >> 8) & 0xff);
serial[5] = (uint8_t)(tmp & 0xff);
if (read(fp, &tmp, sizeof(tmp)) != sizeof(tmp)) {
printf("error reading config file for serial\n");
return -1;
}
serial[2] = (uint8_t)((tmp >> 8) & 0xff);
serial[3] = (uint8_t)(tmp & 0xff);
if (read(fp, &tmp, sizeof(tmp)) != sizeof(tmp)) {
printf("error reading config file for serial\n");
return -1;
}
serial[0] = (uint8_t)((tmp >> 8) & 0xff);
serial[1] = (uint8_t)(tmp & 0xff);
if (close(fp) == -1)
return -1;
nfp_cpp_serial_set(cpp, serial, serial_len);
return 0;
}
static int
nfp6000_set_barsz(struct nfp_pcie_user *desc)
{
char tmp_str[80];
unsigned long start, end, flags, tmp;
int i;
FILE *fp;
snprintf(tmp_str, sizeof(tmp_str), "%s/%s/resource", PCI_DEVICES,
desc->busdev);
fp = fopen(tmp_str, "r");
if (!fp)
return -1;
if (fscanf(fp, "0x%lx 0x%lx 0x%lx", &start, &end, &flags) == 0) {
printf("error reading resource file for bar size\n");
return -1;
}
if (fclose(fp) == -1)
return -1;
tmp = (end - start) + 1;
i = 0;
while (tmp >>= 1)
i++;
desc->barsz = i;
return 0;
}
static int
nfp6000_init(struct nfp_cpp *cpp, const char *devname)
{
char link[120];
char tmp_str[80];
ssize_t size;
int ret = 0;
uint32_t model;
struct nfp_pcie_user *desc;
desc = malloc(sizeof(*desc));
if (!desc)
return -1;
memset(desc->busdev, 0, BUSDEV_SZ);
strncpy(desc->busdev, devname, strlen(devname));
ret = nfp_acquire_process_lock(desc);
if (ret)
return -1;
snprintf(tmp_str, sizeof(tmp_str), "%s/%s/driver", PCI_DEVICES,
desc->busdev);
size = readlink(tmp_str, link, sizeof(link));
if (size == -1)
tmp_str[0] = '\0';
if (size == sizeof(link))
tmp_str[0] = '\0';
snprintf(tmp_str, sizeof(tmp_str), "%s/%s/resource0", PCI_DEVICES,
desc->busdev);
desc->device = open(tmp_str, O_RDWR);
if (desc->device == -1)
return -1;
if (nfp6000_set_model(desc, cpp) < 0)
return -1;
if (nfp6000_set_interface(desc, cpp) < 0)
return -1;
if (nfp6000_set_serial(desc, cpp) < 0)
return -1;
if (nfp6000_set_barsz(desc) < 0)
return -1;
desc->cfg = (char *)mmap(0, 1 << (desc->barsz - 3),
PROT_READ | PROT_WRITE,
MAP_SHARED, desc->device, 0);
if (desc->cfg == MAP_FAILED)
return -1;
nfp_enable_bars(desc);
nfp_cpp_priv_set(cpp, desc);
model = __nfp_cpp_model_autodetect(cpp);
nfp_cpp_model_set(cpp, model);
return ret;
}
static void
nfp6000_free(struct nfp_cpp *cpp)
{
struct nfp_pcie_user *desc = nfp_cpp_priv(cpp);
int x;
/* Unmap may cause if there are any pending transaxctions */
nfp_disable_bars(desc);
munmap(desc->cfg, 1 << (desc->barsz - 3));
for (x = ARRAY_SIZE(desc->bar); x > 0; x--) {
if (desc->bar[x - 1].iomem)
munmap(desc->bar[x - 1].iomem, 1 << (desc->barsz - 3));
}
close(desc->lock);
close(desc->device);
free(desc);
}
static const struct nfp_cpp_operations nfp6000_pcie_ops = {
.init = nfp6000_init,
.free = nfp6000_free,
.area_priv_size = sizeof(struct nfp6000_area_priv),
.area_init = nfp6000_area_init,
.area_acquire = nfp6000_area_acquire,
.area_release = nfp6000_area_release,
.area_mapped = nfp6000_area_mapped,
.area_read = nfp6000_area_read,
.area_write = nfp6000_area_write,
.area_iomem = nfp6000_area_iomem,
};
const struct
nfp_cpp_operations *nfp_cpp_transport_operations(void)
{
return &nfp6000_pcie_ops;
}

View File

@ -0,0 +1,856 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <rte_byteorder.h>
#include "nfp_cpp.h"
#include "nfp_target.h"
#include "nfp6000/nfp6000.h"
#include "nfp6000/nfp_xpb.h"
#include "nfp_nffw.h"
#define NFP_PL_DEVICE_ID 0x00000004
#define NFP_PL_DEVICE_ID_MASK 0xff
#define NFP6000_ARM_GCSR_SOFTMODEL0 0x00400144
void
nfp_cpp_priv_set(struct nfp_cpp *cpp, void *priv)
{
cpp->priv = priv;
}
void *
nfp_cpp_priv(struct nfp_cpp *cpp)
{
return cpp->priv;
}
void
nfp_cpp_model_set(struct nfp_cpp *cpp, uint32_t model)
{
cpp->model = model;
}
uint32_t
nfp_cpp_model(struct nfp_cpp *cpp)
{
if (!cpp)
return NFP_CPP_MODEL_INVALID;
if (cpp->model == 0)
cpp->model = __nfp_cpp_model_autodetect(cpp);
return cpp->model;
}
void
nfp_cpp_interface_set(struct nfp_cpp *cpp, uint32_t interface)
{
cpp->interface = interface;
}
int
nfp_cpp_serial(struct nfp_cpp *cpp, const uint8_t **serial)
{
*serial = cpp->serial;
return cpp->serial_len;
}
int
nfp_cpp_serial_set(struct nfp_cpp *cpp, const uint8_t *serial,
size_t serial_len)
{
if (cpp->serial_len)
free(cpp->serial);
cpp->serial = malloc(serial_len);
if (!cpp->serial)
return -1;
memcpy(cpp->serial, serial, serial_len);
cpp->serial_len = serial_len;
return 0;
}
uint16_t
nfp_cpp_interface(struct nfp_cpp *cpp)
{
if (!cpp)
return NFP_CPP_INTERFACE(NFP_CPP_INTERFACE_TYPE_INVALID, 0, 0);
return cpp->interface;
}
void *
nfp_cpp_area_priv(struct nfp_cpp_area *cpp_area)
{
return &cpp_area[1];
}
struct nfp_cpp *
nfp_cpp_area_cpp(struct nfp_cpp_area *cpp_area)
{
return cpp_area->cpp;
}
const char *
nfp_cpp_area_name(struct nfp_cpp_area *cpp_area)
{
return cpp_area->name;
}
/*
* nfp_cpp_area_alloc - allocate a new CPP area
* @cpp: CPP handle
* @dest: CPP id
* @address: start address on CPP target
* @size: size of area in bytes
*
* Allocate and initialize a CPP area structure. The area must later
* be locked down with an 'acquire' before it can be safely accessed.
*
* NOTE: @address and @size must be 32-bit aligned values.
*/
struct nfp_cpp_area *
nfp_cpp_area_alloc_with_name(struct nfp_cpp *cpp, uint32_t dest,
const char *name, unsigned long long address,
unsigned long size)
{
struct nfp_cpp_area *area;
uint64_t tmp64 = (uint64_t)address;
int tmp, err;
if (!cpp)
return NULL;
/* CPP bus uses only a 40-bit address */
if ((address + size) > (1ULL << 40))
return NFP_ERRPTR(EFAULT);
/* Remap from cpp_island to cpp_target */
err = nfp_target_cpp(dest, tmp64, &dest, &tmp64, cpp->imb_cat_table);
if (err < 0)
return NULL;
address = (unsigned long long)tmp64;
if (!name)
name = "";
area = calloc(1, sizeof(*area) + cpp->op->area_priv_size +
strlen(name) + 1);
if (!area)
return NULL;
area->cpp = cpp;
area->name = ((char *)area) + sizeof(*area) + cpp->op->area_priv_size;
memcpy(area->name, name, strlen(name) + 1);
/*
* Preserve errno around the call to area_init, since most
* implementations will blindly call nfp_target_action_width()for both
* read or write modes, and that will set errno to EINVAL.
*/
tmp = errno;
err = cpp->op->area_init(area, dest, address, size);
if (err < 0) {
free(area);
return NULL;
}
/* Restore errno */
errno = tmp;
area->offset = address;
area->size = size;
return area;
}
struct nfp_cpp_area *
nfp_cpp_area_alloc(struct nfp_cpp *cpp, uint32_t dest,
unsigned long long address, unsigned long size)
{
return nfp_cpp_area_alloc_with_name(cpp, dest, NULL, address, size);
}
/*
* nfp_cpp_area_alloc_acquire - allocate a new CPP area and lock it down
*
* @cpp: CPP handle
* @dest: CPP id
* @address: start address on CPP target
* @size: size of area
*
* Allocate and initilizae a CPP area structure, and lock it down so
* that it can be accessed directly.
*
* NOTE: @address and @size must be 32-bit aligned values.
*
* NOTE: The area must also be 'released' when the structure is freed.
*/
struct nfp_cpp_area *
nfp_cpp_area_alloc_acquire(struct nfp_cpp *cpp, uint32_t destination,
unsigned long long address, unsigned long size)
{
struct nfp_cpp_area *area;
area = nfp_cpp_area_alloc(cpp, destination, address, size);
if (!area)
return NULL;
if (nfp_cpp_area_acquire(area)) {
nfp_cpp_area_free(area);
return NULL;
}
return area;
}
/*
* nfp_cpp_area_free - free up the CPP area
* area: CPP area handle
*
* Frees up memory resources held by the CPP area.
*/
void
nfp_cpp_area_free(struct nfp_cpp_area *area)
{
if (area->cpp->op->area_cleanup)
area->cpp->op->area_cleanup(area);
free(area);
}
/*
* nfp_cpp_area_release_free - release CPP area and free it
* area: CPP area handle
*
* Releases CPP area and frees up memory resources held by the it.
*/
void
nfp_cpp_area_release_free(struct nfp_cpp_area *area)
{
nfp_cpp_area_release(area);
nfp_cpp_area_free(area);
}
/*
* nfp_cpp_area_acquire - lock down a CPP area for access
* @area: CPP area handle
*
* Locks down the CPP area for a potential long term activity. Area
* must always be locked down before being accessed.
*/
int
nfp_cpp_area_acquire(struct nfp_cpp_area *area)
{
if (area->cpp->op->area_acquire) {
int err = area->cpp->op->area_acquire(area);
if (err < 0)
return -1;
}
return 0;
}
/*
* nfp_cpp_area_release - release a locked down CPP area
* @area: CPP area handle
*
* Releases a previously locked down CPP area.
*/
void
nfp_cpp_area_release(struct nfp_cpp_area *area)
{
if (area->cpp->op->area_release)
area->cpp->op->area_release(area);
}
/*
* nfp_cpp_area_iomem() - get IOMEM region for CPP area
*
* @area: CPP area handle
*
* Returns an iomem pointer for use with readl()/writel() style operations.
*
* NOTE: Area must have been locked down with an 'acquire'.
*
* Return: pointer to the area, or NULL
*/
void *
nfp_cpp_area_iomem(struct nfp_cpp_area *area)
{
void *iomem = NULL;
if (area->cpp->op->area_iomem)
iomem = area->cpp->op->area_iomem(area);
return iomem;
}
/*
* nfp_cpp_area_read - read data from CPP area
*
* @area: CPP area handle
* @offset: offset into CPP area
* @kernel_vaddr: kernel address to put data into
* @length: number of bytes to read
*
* Read data from indicated CPP region.
*
* NOTE: @offset and @length must be 32-bit aligned values.
*
* NOTE: Area must have been locked down with an 'acquire'.
*/
int
nfp_cpp_area_read(struct nfp_cpp_area *area, unsigned long offset,
void *kernel_vaddr, size_t length)
{
if ((offset + length) > area->size)
return NFP_ERRNO(EFAULT);
return area->cpp->op->area_read(area, kernel_vaddr, offset, length);
}
/*
* nfp_cpp_area_write - write data to CPP area
*
* @area: CPP area handle
* @offset: offset into CPP area
* @kernel_vaddr: kernel address to read data from
* @length: number of bytes to write
*
* Write data to indicated CPP region.
*
* NOTE: @offset and @length must be 32-bit aligned values.
*
* NOTE: Area must have been locked down with an 'acquire'.
*/
int
nfp_cpp_area_write(struct nfp_cpp_area *area, unsigned long offset,
const void *kernel_vaddr, size_t length)
{
if ((offset + length) > area->size)
return NFP_ERRNO(EFAULT);
return area->cpp->op->area_write(area, kernel_vaddr, offset, length);
}
void *
nfp_cpp_area_mapped(struct nfp_cpp_area *area)
{
if (area->cpp->op->area_mapped)
return area->cpp->op->area_mapped(area);
return NULL;
}
/*
* nfp_cpp_area_check_range - check if address range fits in CPP area
*
* @area: CPP area handle
* @offset: offset into CPP area
* @length: size of address range in bytes
*
* Check if address range fits within CPP area. Return 0 if area fits
* or -1 on error.
*/
int
nfp_cpp_area_check_range(struct nfp_cpp_area *area, unsigned long long offset,
unsigned long length)
{
if (((offset + length) > area->size))
return NFP_ERRNO(EFAULT);
return 0;
}
/*
* Return the correct CPP address, and fixup xpb_addr as needed,
* based upon NFP model.
*/
static uint32_t
nfp_xpb_to_cpp(struct nfp_cpp *cpp, uint32_t *xpb_addr)
{
uint32_t xpb;
int island;
if (!NFP_CPP_MODEL_IS_6000(cpp->model))
return 0;
xpb = NFP_CPP_ID(14, NFP_CPP_ACTION_RW, 0);
/*
* Ensure that non-local XPB accesses go out through the
* global XPBM bus.
*/
island = ((*xpb_addr) >> 24) & 0x3f;
if (!island)
return xpb;
if (island == 1) {
/*
* Accesses to the ARM Island overlay uses Island 0
* Global Bit
*/
(*xpb_addr) &= ~0x7f000000;
if (*xpb_addr < 0x60000)
*xpb_addr |= (1 << 30);
else
/* And only non-ARM interfaces use island id = 1 */
if (NFP_CPP_INTERFACE_TYPE_of(nfp_cpp_interface(cpp)) !=
NFP_CPP_INTERFACE_TYPE_ARM)
*xpb_addr |= (1 << 24);
} else {
(*xpb_addr) |= (1 << 30);
}
return xpb;
}
int
nfp_cpp_area_readl(struct nfp_cpp_area *area, unsigned long offset,
uint32_t *value)
{
int sz;
uint32_t tmp = 0;
sz = nfp_cpp_area_read(area, offset, &tmp, sizeof(tmp));
*value = rte_le_to_cpu_32(tmp);
return (sz == sizeof(*value)) ? 0 : -1;
}
int
nfp_cpp_area_writel(struct nfp_cpp_area *area, unsigned long offset,
uint32_t value)
{
int sz;
value = rte_cpu_to_le_32(value);
sz = nfp_cpp_area_write(area, offset, &value, sizeof(value));
return (sz == sizeof(value)) ? 0 : -1;
}
int
nfp_cpp_area_readq(struct nfp_cpp_area *area, unsigned long offset,
uint64_t *value)
{
int sz;
uint64_t tmp = 0;
sz = nfp_cpp_area_read(area, offset, &tmp, sizeof(tmp));
*value = rte_le_to_cpu_64(tmp);
return (sz == sizeof(*value)) ? 0 : -1;
}
int
nfp_cpp_area_writeq(struct nfp_cpp_area *area, unsigned long offset,
uint64_t value)
{
int sz;
value = rte_cpu_to_le_64(value);
sz = nfp_cpp_area_write(area, offset, &value, sizeof(value));
return (sz == sizeof(value)) ? 0 : -1;
}
int
nfp_cpp_readl(struct nfp_cpp *cpp, uint32_t cpp_id, unsigned long long address,
uint32_t *value)
{
int sz;
uint32_t tmp;
sz = nfp_cpp_read(cpp, cpp_id, address, &tmp, sizeof(tmp));
*value = rte_le_to_cpu_32(tmp);
return (sz == sizeof(*value)) ? 0 : -1;
}
int
nfp_cpp_writel(struct nfp_cpp *cpp, uint32_t cpp_id, unsigned long long address,
uint32_t value)
{
int sz;
value = rte_cpu_to_le_32(value);
sz = nfp_cpp_write(cpp, cpp_id, address, &value, sizeof(value));
return (sz == sizeof(value)) ? 0 : -1;
}
int
nfp_cpp_readq(struct nfp_cpp *cpp, uint32_t cpp_id, unsigned long long address,
uint64_t *value)
{
int sz;
uint64_t tmp;
sz = nfp_cpp_read(cpp, cpp_id, address, &tmp, sizeof(tmp));
*value = rte_le_to_cpu_64(tmp);
return (sz == sizeof(*value)) ? 0 : -1;
}
int
nfp_cpp_writeq(struct nfp_cpp *cpp, uint32_t cpp_id, unsigned long long address,
uint64_t value)
{
int sz;
value = rte_cpu_to_le_64(value);
sz = nfp_cpp_write(cpp, cpp_id, address, &value, sizeof(value));
return (sz == sizeof(value)) ? 0 : -1;
}
int
nfp_xpb_writel(struct nfp_cpp *cpp, uint32_t xpb_addr, uint32_t value)
{
uint32_t cpp_dest;
cpp_dest = nfp_xpb_to_cpp(cpp, &xpb_addr);
return nfp_cpp_writel(cpp, cpp_dest, xpb_addr, value);
}
int
nfp_xpb_readl(struct nfp_cpp *cpp, uint32_t xpb_addr, uint32_t *value)
{
uint32_t cpp_dest;
cpp_dest = nfp_xpb_to_cpp(cpp, &xpb_addr);
return nfp_cpp_readl(cpp, cpp_dest, xpb_addr, value);
}
static struct nfp_cpp *
nfp_cpp_alloc(const char *devname)
{
const struct nfp_cpp_operations *ops;
struct nfp_cpp *cpp;
int err;
ops = nfp_cpp_transport_operations();
if (!ops || !ops->init)
return NFP_ERRPTR(EINVAL);
cpp = calloc(1, sizeof(*cpp));
if (!cpp)
return NULL;
cpp->op = ops;
if (cpp->op->init) {
err = cpp->op->init(cpp, devname);
if (err < 0) {
free(cpp);
return NULL;
}
}
if (NFP_CPP_MODEL_IS_6000(nfp_cpp_model(cpp))) {
uint32_t xpbaddr;
size_t tgt;
for (tgt = 0; tgt < ARRAY_SIZE(cpp->imb_cat_table); tgt++) {
/* Hardcoded XPB IMB Base, island 0 */
xpbaddr = 0x000a0000 + (tgt * 4);
err = nfp_xpb_readl(cpp, xpbaddr,
(uint32_t *)&cpp->imb_cat_table[tgt]);
if (err < 0) {
free(cpp);
return NULL;
}
}
}
return cpp;
}
/*
* nfp_cpp_free - free the CPP handle
* @cpp: CPP handle
*/
void
nfp_cpp_free(struct nfp_cpp *cpp)
{
if (cpp->op && cpp->op->free)
cpp->op->free(cpp);
if (cpp->serial_len)
free(cpp->serial);
free(cpp);
}
struct nfp_cpp *
nfp_cpp_from_device_name(const char *devname)
{
return nfp_cpp_alloc(devname);
}
/*
* Modify bits of a 32-bit value from the XPB bus
*
* @param cpp NFP CPP device handle
* @param xpb_tgt XPB target and address
* @param mask mask of bits to alter
* @param value value to modify
*
* @return 0 on success, or -1 on failure (and set errno accordingly).
*/
int
nfp_xpb_writelm(struct nfp_cpp *cpp, uint32_t xpb_tgt, uint32_t mask,
uint32_t value)
{
int err;
uint32_t tmp;
err = nfp_xpb_readl(cpp, xpb_tgt, &tmp);
if (err < 0)
return err;
tmp &= ~mask;
tmp |= (mask & value);
return nfp_xpb_writel(cpp, xpb_tgt, tmp);
}
/*
* Modify bits of a 32-bit value from the XPB bus
*
* @param cpp NFP CPP device handle
* @param xpb_tgt XPB target and address
* @param mask mask of bits to alter
* @param value value to monitor for
* @param timeout_us maximum number of us to wait (-1 for forever)
*
* @return >= 0 on success, or -1 on failure (and set errno accordingly).
*/
int
nfp_xpb_waitlm(struct nfp_cpp *cpp, uint32_t xpb_tgt, uint32_t mask,
uint32_t value, int timeout_us)
{
uint32_t tmp;
int err;
do {
err = nfp_xpb_readl(cpp, xpb_tgt, &tmp);
if (err < 0)
goto exit;
if ((tmp & mask) == (value & mask)) {
if (timeout_us < 0)
timeout_us = 0;
break;
}
if (timeout_us < 0)
continue;
timeout_us -= 100;
usleep(100);
} while (timeout_us >= 0);
if (timeout_us < 0)
err = NFP_ERRNO(ETIMEDOUT);
else
err = timeout_us;
exit:
return err;
}
/*
* nfp_cpp_read - read from CPP target
* @cpp: CPP handle
* @destination: CPP id
* @address: offset into CPP target
* @kernel_vaddr: kernel buffer for result
* @length: number of bytes to read
*/
int
nfp_cpp_read(struct nfp_cpp *cpp, uint32_t destination,
unsigned long long address, void *kernel_vaddr, size_t length)
{
struct nfp_cpp_area *area;
int err;
area = nfp_cpp_area_alloc_acquire(cpp, destination, address, length);
if (!area) {
printf("Area allocation/acquire failed\n");
return -1;
}
err = nfp_cpp_area_read(area, 0, kernel_vaddr, length);
nfp_cpp_area_release_free(area);
return err;
}
/*
* nfp_cpp_write - write to CPP target
* @cpp: CPP handle
* @destination: CPP id
* @address: offset into CPP target
* @kernel_vaddr: kernel buffer to read from
* @length: number of bytes to write
*/
int
nfp_cpp_write(struct nfp_cpp *cpp, uint32_t destination,
unsigned long long address, const void *kernel_vaddr,
size_t length)
{
struct nfp_cpp_area *area;
int err;
area = nfp_cpp_area_alloc_acquire(cpp, destination, address, length);
if (!area)
return -1;
err = nfp_cpp_area_write(area, 0, kernel_vaddr, length);
nfp_cpp_area_release_free(area);
return err;
}
/*
* nfp_cpp_area_fill - fill a CPP area with a value
* @area: CPP area
* @offset: offset into CPP area
* @value: value to fill with
* @length: length of area to fill
*/
int
nfp_cpp_area_fill(struct nfp_cpp_area *area, unsigned long offset,
uint32_t value, size_t length)
{
int err;
size_t i;
uint64_t value64;
value = rte_cpu_to_le_32(value);
value64 = ((uint64_t)value << 32) | value;
if ((offset + length) > area->size)
return NFP_ERRNO(EINVAL);
if ((area->offset + offset) & 3)
return NFP_ERRNO(EINVAL);
if (((area->offset + offset) & 7) == 4 && length >= 4) {
err = nfp_cpp_area_write(area, offset, &value, sizeof(value));
if (err < 0)
return err;
if (err != sizeof(value))
return NFP_ERRNO(ENOSPC);
offset += sizeof(value);
length -= sizeof(value);
}
for (i = 0; (i + sizeof(value)) < length; i += sizeof(value64)) {
err =
nfp_cpp_area_write(area, offset + i, &value64,
sizeof(value64));
if (err < 0)
return err;
if (err != sizeof(value64))
return NFP_ERRNO(ENOSPC);
}
if ((i + sizeof(value)) <= length) {
err =
nfp_cpp_area_write(area, offset + i, &value, sizeof(value));
if (err < 0)
return err;
if (err != sizeof(value))
return NFP_ERRNO(ENOSPC);
i += sizeof(value);
}
return (int)i;
}
/*
* NOTE: This code should not use nfp_xpb_* functions,
* as those are model-specific
*/
uint32_t
__nfp_cpp_model_autodetect(struct nfp_cpp *cpp)
{
uint32_t arm_id = NFP_CPP_ID(NFP_CPP_TARGET_ARM, 0, 0);
uint32_t model = 0;
nfp_cpp_readl(cpp, arm_id, NFP6000_ARM_GCSR_SOFTMODEL0, &model);
if (NFP_CPP_MODEL_IS_6000(model)) {
uint32_t tmp;
nfp_cpp_model_set(cpp, model);
/* The PL's PluDeviceID revision code is authoratative */
model &= ~0xff;
nfp_xpb_readl(cpp, NFP_XPB_DEVICE(1, 1, 16) +
NFP_PL_DEVICE_ID, &tmp);
model |= (NFP_PL_DEVICE_ID_MASK & tmp) - 0x10;
}
return model;
}
/*
* nfp_cpp_map_area() - Helper function to map an area
* @cpp: NFP CPP handler
* @domain: CPP domain
* @target: CPP target
* @addr: CPP address
* @size: Size of the area
* @area: Area handle (output)
*
* Map an area of IOMEM access. To undo the effect of this function call
* @nfp_cpp_area_release_free(*area).
*
* Return: Pointer to memory mapped area or ERR_PTR
*/
uint8_t *
nfp_cpp_map_area(struct nfp_cpp *cpp, int domain, int target, uint64_t addr,
unsigned long size, struct nfp_cpp_area **area)
{
uint8_t *res;
uint32_t dest;
dest = NFP_CPP_ISLAND_ID(target, NFP_CPP_ACTION_RW, 0, domain);
*area = nfp_cpp_area_alloc_acquire(cpp, dest, addr, size);
if (!*area)
goto err_eio;
res = nfp_cpp_area_iomem(*area);
if (!res)
goto err_release_free;
return res;
err_release_free:
nfp_cpp_area_release_free(*area);
err_eio:
return NULL;
}

View File

@ -0,0 +1,49 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#include <stdio.h>
#include <inttypes.h>
#include "nfp_crc.h"
static inline uint32_t
nfp_crc32_be_generic(uint32_t crc, unsigned char const *p, size_t len,
uint32_t polynomial)
{
int i;
while (len--) {
crc ^= *p++ << 24;
for (i = 0; i < 8; i++)
crc = (crc << 1) ^ ((crc & 0x80000000) ? polynomial :
0);
}
return crc;
}
static inline uint32_t
nfp_crc32_be(uint32_t crc, unsigned char const *p, size_t len)
{
return nfp_crc32_be_generic(crc, p, len, CRCPOLY_BE);
}
static uint32_t
nfp_crc32_posix_end(uint32_t crc, size_t total_len)
{
/* Extend with the length of the string. */
while (total_len != 0) {
uint8_t c = total_len & 0xff;
crc = nfp_crc32_be(crc, &c, 1);
total_len >>= 8;
}
return ~crc;
}
uint32_t
nfp_crc32_posix(const void *buff, size_t len)
{
return nfp_crc32_posix_end(nfp_crc32_be(0, buff, len), len);
}

View File

@ -0,0 +1,19 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#ifndef __NFP_CRC_H__
#define __NFP_CRC_H__
/*
* There are multiple 16-bit CRC polynomials in common use, but this is
* *the* standard CRC-32 polynomial, first popularized by Ethernet.
* x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x^1+x^0
*/
#define CRCPOLY_LE 0xedb88320
#define CRCPOLY_BE 0x04c11db7
uint32_t nfp_crc32_posix(const void *buff, size_t len);
#endif

View File

@ -0,0 +1,199 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
/* Parse the hwinfo table that the ARM firmware builds in the ARM scratch SRAM
* after chip reset.
*
* Examples of the fields:
* me.count = 40
* me.mask = 0x7f_ffff_ffff
*
* me.count is the total number of MEs on the system.
* me.mask is the bitmask of MEs that are available for application usage.
*
* (ie, in this example, ME 39 has been reserved by boardconfig.)
*/
#include <stdio.h>
#include <time.h>
#include "nfp_cpp.h"
#include "nfp6000/nfp6000.h"
#include "nfp_resource.h"
#include "nfp_hwinfo.h"
#include "nfp_crc.h"
static int
nfp_hwinfo_is_updating(struct nfp_hwinfo *hwinfo)
{
return hwinfo->version & NFP_HWINFO_VERSION_UPDATING;
}
static int
nfp_hwinfo_db_walk(struct nfp_hwinfo *hwinfo, uint32_t size)
{
const char *key, *val, *end = hwinfo->data + size;
for (key = hwinfo->data; *key && key < end;
key = val + strlen(val) + 1) {
val = key + strlen(key) + 1;
if (val >= end) {
printf("Bad HWINFO - overflowing key\n");
return -EINVAL;
}
if (val + strlen(val) + 1 > end) {
printf("Bad HWINFO - overflowing value\n");
return -EINVAL;
}
}
return 0;
}
static int
nfp_hwinfo_db_validate(struct nfp_hwinfo *db, uint32_t len)
{
uint32_t size, new_crc, *crc;
size = db->size;
if (size > len) {
printf("Unsupported hwinfo size %u > %u\n", size, len);
return -EINVAL;
}
size -= sizeof(uint32_t);
new_crc = nfp_crc32_posix((char *)db, size);
crc = (uint32_t *)(db->start + size);
if (new_crc != *crc) {
printf("Corrupt hwinfo table (CRC mismatch)\n");
printf("\tcalculated 0x%x, expected 0x%x\n", new_crc, *crc);
return -EINVAL;
}
return nfp_hwinfo_db_walk(db, size);
}
static struct nfp_hwinfo *
nfp_hwinfo_try_fetch(struct nfp_cpp *cpp, size_t *cpp_size)
{
struct nfp_hwinfo *header;
void *res;
uint64_t cpp_addr;
uint32_t cpp_id;
int err;
uint8_t *db;
res = nfp_resource_acquire(cpp, NFP_RESOURCE_NFP_HWINFO);
if (res) {
cpp_id = nfp_resource_cpp_id(res);
cpp_addr = nfp_resource_address(res);
*cpp_size = nfp_resource_size(res);
nfp_resource_release(res);
if (*cpp_size < HWINFO_SIZE_MIN)
return NULL;
} else {
return NULL;
}
db = malloc(*cpp_size + 1);
if (!db)
return NULL;
err = nfp_cpp_read(cpp, cpp_id, cpp_addr, db, *cpp_size);
if (err != (int)*cpp_size)
goto exit_free;
header = (void *)db;
printf("NFP HWINFO header: %08x\n", *(uint32_t *)header);
if (nfp_hwinfo_is_updating(header))
goto exit_free;
if (header->version != NFP_HWINFO_VERSION_2) {
printf("Unknown HWInfo version: 0x%08x\n",
header->version);
goto exit_free;
}
/* NULL-terminate for safety */
db[*cpp_size] = '\0';
return (void *)db;
exit_free:
free(db);
return NULL;
}
static struct nfp_hwinfo *
nfp_hwinfo_fetch(struct nfp_cpp *cpp, size_t *hwdb_size)
{
struct timespec wait;
struct nfp_hwinfo *db;
int count;
wait.tv_sec = 0;
wait.tv_nsec = 10000000;
count = 0;
for (;;) {
db = nfp_hwinfo_try_fetch(cpp, hwdb_size);
if (db)
return db;
nanosleep(&wait, NULL);
if (count++ > 200) {
printf("NFP access error\n");
return NULL;
}
}
}
struct nfp_hwinfo *
nfp_hwinfo_read(struct nfp_cpp *cpp)
{
struct nfp_hwinfo *db;
size_t hwdb_size = 0;
int err;
db = nfp_hwinfo_fetch(cpp, &hwdb_size);
if (!db)
return NULL;
err = nfp_hwinfo_db_validate(db, hwdb_size);
if (err) {
free(db);
return NULL;
}
return db;
}
/*
* nfp_hwinfo_lookup() - Find a value in the HWInfo table by name
* @hwinfo: NFP HWinfo table
* @lookup: HWInfo name to search for
*
* Return: Value of the HWInfo name, or NULL
*/
const char *
nfp_hwinfo_lookup(struct nfp_hwinfo *hwinfo, const char *lookup)
{
const char *key, *val, *end;
if (!hwinfo || !lookup)
return NULL;
end = hwinfo->data + hwinfo->size - sizeof(uint32_t);
for (key = hwinfo->data; *key && key < end;
key = val + strlen(val) + 1) {
val = key + strlen(key) + 1;
if (strcmp(key, lookup) == 0)
return val;
}
return NULL;
}

View File

@ -0,0 +1,85 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#ifndef __NFP_HWINFO_H__
#define __NFP_HWINFO_H__
#include <inttypes.h>
#define HWINFO_SIZE_MIN 0x100
/*
* The Hardware Info Table defines the properties of the system.
*
* HWInfo v1 Table (fixed size)
*
* 0x0000: uint32_t version Hardware Info Table version (1.0)
* 0x0004: uint32_t size Total size of the table, including the
* CRC32 (IEEE 802.3)
* 0x0008: uint32_t jumptab Offset of key/value table
* 0x000c: uint32_t keys Total number of keys in the key/value
* table
* NNNNNN: Key/value jump table and string data
* (size - 4): uint32_t crc32 CRC32 (same as IEEE 802.3, POSIX csum, etc)
* CRC32("",0) = ~0, CRC32("a",1) = 0x48C279FE
*
* HWInfo v2 Table (variable size)
*
* 0x0000: uint32_t version Hardware Info Table version (2.0)
* 0x0004: uint32_t size Current size of the data area, excluding
* CRC32
* 0x0008: uint32_t limit Maximum size of the table
* 0x000c: uint32_t reserved Unused, set to zero
* NNNNNN: Key/value data
* (size - 4): uint32_t crc32 CRC32 (same as IEEE 802.3, POSIX csum, etc)
* CRC32("",0) = ~0, CRC32("a",1) = 0x48C279FE
*
* If the HWInfo table is in the process of being updated, the low bit of
* version will be set.
*
* HWInfo v1 Key/Value Table
* -------------------------
*
* The key/value table is a set of offsets to ASCIIZ strings which have
* been strcmp(3) sorted (yes, please use bsearch(3) on the table).
*
* All keys are guaranteed to be unique.
*
* N+0: uint32_t key_1 Offset to the first key
* N+4: uint32_t val_1 Offset to the first value
* N+8: uint32_t key_2 Offset to the second key
* N+c: uint32_t val_2 Offset to the second value
* ...
*
* HWInfo v2 Key/Value Table
* -------------------------
*
* Packed UTF8Z strings, ie 'key1\000value1\000key2\000value2\000'
*
* Unsorted.
*/
#define NFP_HWINFO_VERSION_1 ('H' << 24 | 'I' << 16 | 1 << 8 | 0 << 1 | 0)
#define NFP_HWINFO_VERSION_2 ('H' << 24 | 'I' << 16 | 2 << 8 | 0 << 1 | 0)
#define NFP_HWINFO_VERSION_UPDATING BIT(0)
struct nfp_hwinfo {
uint8_t start[0];
uint32_t version;
uint32_t size;
/* v2 specific fields */
uint32_t limit;
uint32_t resv;
char data[];
};
struct nfp_hwinfo *nfp_hwinfo_read(struct nfp_cpp *cpp);
const char *nfp_hwinfo_lookup(struct nfp_hwinfo *hwinfo, const char *lookup);
#endif

View File

@ -0,0 +1,154 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#include <stdio.h>
#include <rte_byteorder.h>
#include "nfp_cpp.h"
#include "nfp_mip.h"
#include "nfp_nffw.h"
#define NFP_MIP_SIGNATURE rte_cpu_to_le_32(0x0050494d) /* "MIP\0" */
#define NFP_MIP_VERSION rte_cpu_to_le_32(1)
#define NFP_MIP_MAX_OFFSET (256 * 1024)
struct nfp_mip {
uint32_t signature;
uint32_t mip_version;
uint32_t mip_size;
uint32_t first_entry;
uint32_t version;
uint32_t buildnum;
uint32_t buildtime;
uint32_t loadtime;
uint32_t symtab_addr;
uint32_t symtab_size;
uint32_t strtab_addr;
uint32_t strtab_size;
char name[16];
char toolchain[32];
};
/* Read memory and check if it could be a valid MIP */
static int
nfp_mip_try_read(struct nfp_cpp *cpp, uint32_t cpp_id, uint64_t addr,
struct nfp_mip *mip)
{
int ret;
ret = nfp_cpp_read(cpp, cpp_id, addr, mip, sizeof(*mip));
if (ret != sizeof(*mip)) {
printf("Failed to read MIP data (%d, %zu)\n",
ret, sizeof(*mip));
return -EIO;
}
if (mip->signature != NFP_MIP_SIGNATURE) {
printf("Incorrect MIP signature (0x%08x)\n",
rte_le_to_cpu_32(mip->signature));
return -EINVAL;
}
if (mip->mip_version != NFP_MIP_VERSION) {
printf("Unsupported MIP version (%d)\n",
rte_le_to_cpu_32(mip->mip_version));
return -EINVAL;
}
return 0;
}
/* Try to locate MIP using the resource table */
static int
nfp_mip_read_resource(struct nfp_cpp *cpp, struct nfp_mip *mip)
{
struct nfp_nffw_info *nffw_info;
uint32_t cpp_id;
uint64_t addr;
int err;
nffw_info = nfp_nffw_info_open(cpp);
if (!nffw_info)
return -ENODEV;
err = nfp_nffw_info_mip_first(nffw_info, &cpp_id, &addr);
if (err)
goto exit_close_nffw;
err = nfp_mip_try_read(cpp, cpp_id, addr, mip);
exit_close_nffw:
nfp_nffw_info_close(nffw_info);
return err;
}
/*
* nfp_mip_open() - Get device MIP structure
* @cpp: NFP CPP Handle
*
* Copy MIP structure from NFP device and return it. The returned
* structure is handled internally by the library and should be
* freed by calling nfp_mip_close().
*
* Return: pointer to mip, NULL on failure.
*/
struct nfp_mip *
nfp_mip_open(struct nfp_cpp *cpp)
{
struct nfp_mip *mip;
int err;
mip = malloc(sizeof(*mip));
if (!mip)
return NULL;
err = nfp_mip_read_resource(cpp, mip);
if (err) {
free(mip);
return NULL;
}
mip->name[sizeof(mip->name) - 1] = 0;
return mip;
}
void
nfp_mip_close(struct nfp_mip *mip)
{
free(mip);
}
const char *
nfp_mip_name(const struct nfp_mip *mip)
{
return mip->name;
}
/*
* nfp_mip_symtab() - Get the address and size of the MIP symbol table
* @mip: MIP handle
* @addr: Location for NFP DDR address of MIP symbol table
* @size: Location for size of MIP symbol table
*/
void
nfp_mip_symtab(const struct nfp_mip *mip, uint32_t *addr, uint32_t *size)
{
*addr = rte_le_to_cpu_32(mip->symtab_addr);
*size = rte_le_to_cpu_32(mip->symtab_size);
}
/*
* nfp_mip_strtab() - Get the address and size of the MIP symbol name table
* @mip: MIP handle
* @addr: Location for NFP DDR address of MIP symbol name table
* @size: Location for size of MIP symbol name table
*/
void
nfp_mip_strtab(const struct nfp_mip *mip, uint32_t *addr, uint32_t *size)
{
*addr = rte_le_to_cpu_32(mip->strtab_addr);
*size = rte_le_to_cpu_32(mip->strtab_size);
}

View File

@ -0,0 +1,21 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#ifndef __NFP_MIP_H__
#define __NFP_MIP_H__
#include "nfp_nffw.h"
struct nfp_mip;
struct nfp_mip *nfp_mip_open(struct nfp_cpp *cpp);
void nfp_mip_close(struct nfp_mip *mip);
const char *nfp_mip_name(const struct nfp_mip *mip);
void nfp_mip_symtab(const struct nfp_mip *mip, uint32_t *addr, uint32_t *size);
void nfp_mip_strtab(const struct nfp_mip *mip, uint32_t *addr, uint32_t *size);
int nfp_nffw_info_mip_first(struct nfp_nffw_info *state, uint32_t *cpp_id,
uint64_t *off);
#endif

View File

@ -0,0 +1,424 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#include <errno.h>
#include <malloc.h>
#include <time.h>
#include <sched.h>
#include "nfp_cpp.h"
#include "nfp6000/nfp6000.h"
#define MUTEX_LOCKED(interface) ((((uint32_t)(interface)) << 16) | 0x000f)
#define MUTEX_UNLOCK(interface) (0 | 0x0000)
#define MUTEX_IS_LOCKED(value) (((value) & 0xffff) == 0x000f)
#define MUTEX_IS_UNLOCKED(value) (((value) & 0xffff) == 0x0000)
#define MUTEX_INTERFACE(value) (((value) >> 16) & 0xffff)
/*
* If you need more than 65536 recursive locks, please
* rethink your code.
*/
#define MUTEX_DEPTH_MAX 0xffff
struct nfp_cpp_mutex {
struct nfp_cpp *cpp;
uint8_t target;
uint16_t depth;
unsigned long long address;
uint32_t key;
unsigned int usage;
struct nfp_cpp_mutex *prev, *next;
};
static int
_nfp_cpp_mutex_validate(uint32_t model, int *target, unsigned long long address)
{
/* Address must be 64-bit aligned */
if (address & 7)
return NFP_ERRNO(EINVAL);
if (NFP_CPP_MODEL_IS_6000(model)) {
if (*target != NFP_CPP_TARGET_MU)
return NFP_ERRNO(EINVAL);
} else {
return NFP_ERRNO(EINVAL);
}
return 0;
}
/*
* Initialize a mutex location
*
* The CPP target:address must point to a 64-bit aligned location, and
* will initialize 64 bits of data at the location.
*
* This creates the initial mutex state, as locked by this
* nfp_cpp_interface().
*
* This function should only be called when setting up
* the initial lock state upon boot-up of the system.
*
* @param mutex NFP CPP Mutex handle
* @param target NFP CPP target ID (ie NFP_CPP_TARGET_CLS or
* NFP_CPP_TARGET_MU)
* @param address Offset into the address space of the NFP CPP target ID
* @param key Unique 32-bit value for this mutex
*
* @return 0 on success, or -1 on failure (and set errno accordingly).
*/
int
nfp_cpp_mutex_init(struct nfp_cpp *cpp, int target, unsigned long long address,
uint32_t key)
{
uint32_t model = nfp_cpp_model(cpp);
uint32_t muw = NFP_CPP_ID(target, 4, 0); /* atomic_write */
int err;
err = _nfp_cpp_mutex_validate(model, &target, address);
if (err < 0)
return err;
err = nfp_cpp_writel(cpp, muw, address + 4, key);
if (err < 0)
return err;
err =
nfp_cpp_writel(cpp, muw, address + 0,
MUTEX_LOCKED(nfp_cpp_interface(cpp)));
if (err < 0)
return err;
return 0;
}
/*
* Create a mutex handle from an address controlled by a MU Atomic engine
*
* The CPP target:address must point to a 64-bit aligned location, and
* reserve 64 bits of data at the location for use by the handle.
*
* Only target/address pairs that point to entities that support the
* MU Atomic Engine are supported.
*
* @param cpp NFP CPP handle
* @param target NFP CPP target ID (ie NFP_CPP_TARGET_CLS or
* NFP_CPP_TARGET_MU)
* @param address Offset into the address space of the NFP CPP target ID
* @param key 32-bit unique key (must match the key at this location)
*
* @return A non-NULL struct nfp_cpp_mutex * on success, NULL on failure.
*/
struct nfp_cpp_mutex *
nfp_cpp_mutex_alloc(struct nfp_cpp *cpp, int target,
unsigned long long address, uint32_t key)
{
uint32_t model = nfp_cpp_model(cpp);
struct nfp_cpp_mutex *mutex;
uint32_t mur = NFP_CPP_ID(target, 3, 0); /* atomic_read */
int err;
uint32_t tmp;
/* Look for cached mutex */
for (mutex = cpp->mutex_cache; mutex; mutex = mutex->next) {
if (mutex->target == target && mutex->address == address)
break;
}
if (mutex) {
if (mutex->key == key) {
mutex->usage++;
return mutex;
}
/* If the key doesn't match... */
return NFP_ERRPTR(EEXIST);
}
err = _nfp_cpp_mutex_validate(model, &target, address);
if (err < 0)
return NULL;
err = nfp_cpp_readl(cpp, mur, address + 4, &tmp);
if (err < 0)
return NULL;
if (tmp != key)
return NFP_ERRPTR(EEXIST);
mutex = calloc(sizeof(*mutex), 1);
if (!mutex)
return NFP_ERRPTR(ENOMEM);
mutex->cpp = cpp;
mutex->target = target;
mutex->address = address;
mutex->key = key;
mutex->depth = 0;
mutex->usage = 1;
/* Add mutex to the cache */
if (cpp->mutex_cache) {
cpp->mutex_cache->prev = mutex;
mutex->next = cpp->mutex_cache;
cpp->mutex_cache = mutex;
} else {
cpp->mutex_cache = mutex;
}
return mutex;
}
struct nfp_cpp *
nfp_cpp_mutex_cpp(struct nfp_cpp_mutex *mutex)
{
return mutex->cpp;
}
uint32_t
nfp_cpp_mutex_key(struct nfp_cpp_mutex *mutex)
{
return mutex->key;
}
uint16_t
nfp_cpp_mutex_owner(struct nfp_cpp_mutex *mutex)
{
uint32_t mur = NFP_CPP_ID(mutex->target, 3, 0); /* atomic_read */
uint32_t value, key;
int err;
err = nfp_cpp_readl(mutex->cpp, mur, mutex->address, &value);
if (err < 0)
return err;
err = nfp_cpp_readl(mutex->cpp, mur, mutex->address + 4, &key);
if (err < 0)
return err;
if (key != mutex->key)
return NFP_ERRNO(EPERM);
if (!MUTEX_IS_LOCKED(value))
return 0;
return MUTEX_INTERFACE(value);
}
int
nfp_cpp_mutex_target(struct nfp_cpp_mutex *mutex)
{
return mutex->target;
}
uint64_t
nfp_cpp_mutex_address(struct nfp_cpp_mutex *mutex)
{
return mutex->address;
}
/*
* Free a mutex handle - does not alter the lock state
*
* @param mutex NFP CPP Mutex handle
*/
void
nfp_cpp_mutex_free(struct nfp_cpp_mutex *mutex)
{
mutex->usage--;
if (mutex->usage > 0)
return;
/* Remove mutex from the cache */
if (mutex->next)
mutex->next->prev = mutex->prev;
if (mutex->prev)
mutex->prev->next = mutex->next;
/* If mutex->cpp == NULL, something broke */
if (mutex->cpp && mutex == mutex->cpp->mutex_cache)
mutex->cpp->mutex_cache = mutex->next;
free(mutex);
}
/*
* Lock a mutex handle, using the NFP MU Atomic Engine
*
* @param mutex NFP CPP Mutex handle
*
* @return 0 on success, or -1 on failure (and set errno accordingly).
*/
int
nfp_cpp_mutex_lock(struct nfp_cpp_mutex *mutex)
{
int err;
time_t warn_at = time(NULL) + 15;
while ((err = nfp_cpp_mutex_trylock(mutex)) != 0) {
/* If errno != EBUSY, then the lock was damaged */
if (err < 0 && errno != EBUSY)
return err;
if (time(NULL) >= warn_at) {
printf("Warning: waiting for NFP mutex\n");
printf("\tusage:%u\n", mutex->usage);
printf("\tdepth:%hd]\n", mutex->depth);
printf("\ttarget:%d\n", mutex->target);
printf("\taddr:%llx\n", mutex->address);
printf("\tkey:%08x]\n", mutex->key);
warn_at = time(NULL) + 60;
}
sched_yield();
}
return 0;
}
/*
* Unlock a mutex handle, using the NFP MU Atomic Engine
*
* @param mutex NFP CPP Mutex handle
*
* @return 0 on success, or -1 on failure (and set errno accordingly).
*/
int
nfp_cpp_mutex_unlock(struct nfp_cpp_mutex *mutex)
{
uint32_t muw = NFP_CPP_ID(mutex->target, 4, 0); /* atomic_write */
uint32_t mur = NFP_CPP_ID(mutex->target, 3, 0); /* atomic_read */
struct nfp_cpp *cpp = mutex->cpp;
uint32_t key, value;
uint16_t interface = nfp_cpp_interface(cpp);
int err;
if (mutex->depth > 1) {
mutex->depth--;
return 0;
}
err = nfp_cpp_readl(mutex->cpp, mur, mutex->address, &value);
if (err < 0)
goto exit;
err = nfp_cpp_readl(mutex->cpp, mur, mutex->address + 4, &key);
if (err < 0)
goto exit;
if (key != mutex->key) {
err = NFP_ERRNO(EPERM);
goto exit;
}
if (value != MUTEX_LOCKED(interface)) {
err = NFP_ERRNO(EACCES);
goto exit;
}
err = nfp_cpp_writel(cpp, muw, mutex->address, MUTEX_UNLOCK(interface));
if (err < 0)
goto exit;
mutex->depth = 0;
exit:
return err;
}
/*
* Attempt to lock a mutex handle, using the NFP MU Atomic Engine
*
* Valid lock states:
*
* 0x....0000 - Unlocked
* 0x....000f - Locked
*
* @param mutex NFP CPP Mutex handle
* @return 0 if the lock succeeded, -1 on failure (and errno set
* appropriately).
*/
int
nfp_cpp_mutex_trylock(struct nfp_cpp_mutex *mutex)
{
uint32_t mur = NFP_CPP_ID(mutex->target, 3, 0); /* atomic_read */
uint32_t muw = NFP_CPP_ID(mutex->target, 4, 0); /* atomic_write */
uint32_t mus = NFP_CPP_ID(mutex->target, 5, 3); /* test_set_imm */
uint32_t key, value, tmp;
struct nfp_cpp *cpp = mutex->cpp;
int err;
if (mutex->depth > 0) {
if (mutex->depth == MUTEX_DEPTH_MAX)
return NFP_ERRNO(E2BIG);
mutex->depth++;
return 0;
}
/* Verify that the lock marker is not damaged */
err = nfp_cpp_readl(cpp, mur, mutex->address + 4, &key);
if (err < 0)
goto exit;
if (key != mutex->key) {
err = NFP_ERRNO(EPERM);
goto exit;
}
/*
* Compare against the unlocked state, and if true,
* write the interface id into the top 16 bits, and
* mark as locked.
*/
value = MUTEX_LOCKED(nfp_cpp_interface(cpp));
/*
* We use test_set_imm here, as it implies a read
* of the current state, and sets the bits in the
* bytemask of the command to 1s. Since the mutex
* is guaranteed to be 64-bit aligned, the bytemask
* of this 32-bit command is ensured to be 8'b00001111,
* which implies that the lower 4 bits will be set to
* ones regardless of the initial state.
*
* Since this is a 'Readback' operation, with no Pull
* data, we can treat this as a normal Push (read)
* atomic, which returns the original value.
*/
err = nfp_cpp_readl(cpp, mus, mutex->address, &tmp);
if (err < 0)
goto exit;
/* Was it unlocked? */
if (MUTEX_IS_UNLOCKED(tmp)) {
/*
* The read value can only be 0x....0000 in the unlocked state.
* If there was another contending for this lock, then
* the lock state would be 0x....000f
*
* Write our owner ID into the lock
* While not strictly necessary, this helps with
* debug and bookkeeping.
*/
err = nfp_cpp_writel(cpp, muw, mutex->address, value);
if (err < 0)
goto exit;
mutex->depth = 1;
goto exit;
}
/* Already locked by us? Success! */
if (tmp == value) {
mutex->depth = 1;
goto exit;
}
err = NFP_ERRNO(MUTEX_IS_LOCKED(tmp) ? EBUSY : EINVAL);
exit:
return err;
}

View File

@ -0,0 +1,235 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#include "nfp_cpp.h"
#include "nfp_nffw.h"
#include "nfp_mip.h"
#include "nfp6000/nfp6000.h"
#include "nfp_resource.h"
/*
* flg_info_version = flags[0]<27:16>
* This is a small version counter intended only to detect if the current
* implementation can read the current struct. Struct changes should be very
* rare and as such a 12-bit counter should cover large spans of time. By the
* time it wraps around, we don't expect to have 4096 versions of this struct
* to be in use at the same time.
*/
static uint32_t
nffw_res_info_version_get(const struct nfp_nffw_info_data *res)
{
return (res->flags[0] >> 16) & 0xfff;
}
/* flg_init = flags[0]<0> */
static uint32_t
nffw_res_flg_init_get(const struct nfp_nffw_info_data *res)
{
return (res->flags[0] >> 0) & 1;
}
/* loaded = loaded__mu_da__mip_off_hi<31:31> */
static uint32_t
nffw_fwinfo_loaded_get(const struct nffw_fwinfo *fi)
{
return (fi->loaded__mu_da__mip_off_hi >> 31) & 1;
}
/* mip_cppid = mip_cppid */
static uint32_t
nffw_fwinfo_mip_cppid_get(const struct nffw_fwinfo *fi)
{
return fi->mip_cppid;
}
/* loaded = loaded__mu_da__mip_off_hi<8:8> */
static uint32_t
nffw_fwinfo_mip_mu_da_get(const struct nffw_fwinfo *fi)
{
return (fi->loaded__mu_da__mip_off_hi >> 8) & 1;
}
/* mip_offset = (loaded__mu_da__mip_off_hi<7:0> << 8) | mip_offset_lo */
static uint64_t
nffw_fwinfo_mip_offset_get(const struct nffw_fwinfo *fi)
{
uint64_t mip_off_hi = fi->loaded__mu_da__mip_off_hi;
return (mip_off_hi & 0xFF) << 32 | fi->mip_offset_lo;
}
#define NFP_IMB_TGTADDRESSMODECFG_MODE_of(_x) (((_x) >> 13) & 0x7)
#define NFP_IMB_TGTADDRESSMODECFG_ADDRMODE BIT(12)
#define NFP_IMB_TGTADDRESSMODECFG_ADDRMODE_32_BIT 0
#define NFP_IMB_TGTADDRESSMODECFG_ADDRMODE_40_BIT BIT(12)
static int
nfp_mip_mu_locality_lsb(struct nfp_cpp *cpp)
{
unsigned int mode, addr40;
uint32_t xpbaddr, imbcppat;
int err;
/* Hardcoded XPB IMB Base, island 0 */
xpbaddr = 0x000a0000 + NFP_CPP_TARGET_MU * 4;
err = nfp_xpb_readl(cpp, xpbaddr, &imbcppat);
if (err < 0)
return err;
mode = NFP_IMB_TGTADDRESSMODECFG_MODE_of(imbcppat);
addr40 = !!(imbcppat & NFP_IMB_TGTADDRESSMODECFG_ADDRMODE);
return nfp_cppat_mu_locality_lsb(mode, addr40);
}
static unsigned int
nffw_res_fwinfos(struct nfp_nffw_info_data *fwinf, struct nffw_fwinfo **arr)
{
/*
* For the this code, version 0 is most likely to be version 1 in this
* case. Since the kernel driver does not take responsibility for
* initialising the nfp.nffw resource, any previous code (CA firmware or
* userspace) that left the version 0 and did set the init flag is going
* to be version 1.
*/
switch (nffw_res_info_version_get(fwinf)) {
case 0:
case 1:
*arr = &fwinf->info.v1.fwinfo[0];
return NFFW_FWINFO_CNT_V1;
case 2:
*arr = &fwinf->info.v2.fwinfo[0];
return NFFW_FWINFO_CNT_V2;
default:
*arr = NULL;
return 0;
}
}
/*
* nfp_nffw_info_open() - Acquire the lock on the NFFW table
* @cpp: NFP CPP handle
*
* Return: 0, or -ERRNO
*/
struct nfp_nffw_info *
nfp_nffw_info_open(struct nfp_cpp *cpp)
{
struct nfp_nffw_info_data *fwinf;
struct nfp_nffw_info *state;
uint32_t info_ver;
int err;
state = malloc(sizeof(*state));
if (!state)
return NULL;
memset(state, 0, sizeof(*state));
state->res = nfp_resource_acquire(cpp, NFP_RESOURCE_NFP_NFFW);
if (!state->res)
goto err_free;
fwinf = &state->fwinf;
if (sizeof(*fwinf) > nfp_resource_size(state->res))
goto err_release;
err = nfp_cpp_read(cpp, nfp_resource_cpp_id(state->res),
nfp_resource_address(state->res),
fwinf, sizeof(*fwinf));
if (err < (int)sizeof(*fwinf))
goto err_release;
if (!nffw_res_flg_init_get(fwinf))
goto err_release;
info_ver = nffw_res_info_version_get(fwinf);
if (info_ver > NFFW_INFO_VERSION_CURRENT)
goto err_release;
state->cpp = cpp;
return state;
err_release:
nfp_resource_release(state->res);
err_free:
free(state);
return NULL;
}
/*
* nfp_nffw_info_release() - Release the lock on the NFFW table
* @state: NFP FW info state
*
* Return: 0, or -ERRNO
*/
void
nfp_nffw_info_close(struct nfp_nffw_info *state)
{
nfp_resource_release(state->res);
free(state);
}
/*
* nfp_nffw_info_fwid_first() - Return the first firmware ID in the NFFW
* @state: NFP FW info state
*
* Return: First NFFW firmware info, NULL on failure
*/
static struct nffw_fwinfo *
nfp_nffw_info_fwid_first(struct nfp_nffw_info *state)
{
struct nffw_fwinfo *fwinfo;
unsigned int cnt, i;
cnt = nffw_res_fwinfos(&state->fwinf, &fwinfo);
if (!cnt)
return NULL;
for (i = 0; i < cnt; i++)
if (nffw_fwinfo_loaded_get(&fwinfo[i]))
return &fwinfo[i];
return NULL;
}
/*
* nfp_nffw_info_mip_first() - Retrieve the location of the first FW's MIP
* @state: NFP FW info state
* @cpp_id: Pointer to the CPP ID of the MIP
* @off: Pointer to the CPP Address of the MIP
*
* Return: 0, or -ERRNO
*/
int
nfp_nffw_info_mip_first(struct nfp_nffw_info *state, uint32_t *cpp_id,
uint64_t *off)
{
struct nffw_fwinfo *fwinfo;
fwinfo = nfp_nffw_info_fwid_first(state);
if (!fwinfo)
return -EINVAL;
*cpp_id = nffw_fwinfo_mip_cppid_get(fwinfo);
*off = nffw_fwinfo_mip_offset_get(fwinfo);
if (nffw_fwinfo_mip_mu_da_get(fwinfo)) {
int locality_off;
if (NFP_CPP_ID_TARGET_of(*cpp_id) != NFP_CPP_TARGET_MU)
return 0;
locality_off = nfp_mip_mu_locality_lsb(state->cpp);
if (locality_off < 0)
return locality_off;
*off &= ~(NFP_MU_ADDR_ACCESS_TYPE_MASK << locality_off);
*off |= NFP_MU_ADDR_ACCESS_TYPE_DIRECT << locality_off;
}
return 0;
}

View File

@ -0,0 +1,86 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#ifndef __NFP_NFFW_H__
#define __NFP_NFFW_H__
#include "nfp-common/nfp_platform.h"
#include "nfp_cpp.h"
/*
* Init-CSR owner IDs for firmware map to firmware IDs which start at 4.
* Lower IDs are reserved for target and loader IDs.
*/
#define NFFW_FWID_EXT 3 /* For active MEs that we didn't load. */
#define NFFW_FWID_BASE 4
#define NFFW_FWID_ALL 255
/* Init-CSR owner IDs for firmware map to firmware IDs which start at 4.
* Lower IDs are reserved for target and loader IDs.
*/
#define NFFW_FWID_EXT 3 /* For active MEs that we didn't load. */
#define NFFW_FWID_BASE 4
#define NFFW_FWID_ALL 255
/**
* NFFW_INFO_VERSION history:
* 0: This was never actually used (before versioning), but it refers to
* the previous struct which had FWINFO_CNT = MEINFO_CNT = 120 that later
* changed to 200.
* 1: First versioned struct, with
* FWINFO_CNT = 120
* MEINFO_CNT = 120
* 2: FWINFO_CNT = 200
* MEINFO_CNT = 200
*/
#define NFFW_INFO_VERSION_CURRENT 2
/* Enough for all current chip families */
#define NFFW_MEINFO_CNT_V1 120
#define NFFW_FWINFO_CNT_V1 120
#define NFFW_MEINFO_CNT_V2 200
#define NFFW_FWINFO_CNT_V2 200
struct nffw_meinfo {
uint32_t ctxmask__fwid__meid;
};
struct nffw_fwinfo {
uint32_t loaded__mu_da__mip_off_hi;
uint32_t mip_cppid; /* 0 means no MIP */
uint32_t mip_offset_lo;
};
struct nfp_nffw_info_v1 {
struct nffw_meinfo meinfo[NFFW_MEINFO_CNT_V1];
struct nffw_fwinfo fwinfo[NFFW_FWINFO_CNT_V1];
};
struct nfp_nffw_info_v2 {
struct nffw_meinfo meinfo[NFFW_MEINFO_CNT_V2];
struct nffw_fwinfo fwinfo[NFFW_FWINFO_CNT_V2];
};
struct nfp_nffw_info_data {
uint32_t flags[2];
union {
struct nfp_nffw_info_v1 v1;
struct nfp_nffw_info_v2 v2;
} info;
};
struct nfp_nffw_info {
struct nfp_cpp *cpp;
struct nfp_resource *res;
struct nfp_nffw_info_data fwinf;
};
struct nfp_nffw_info *nfp_nffw_info_open(struct nfp_cpp *cpp);
void nfp_nffw_info_close(struct nfp_nffw_info *state);
#endif

View File

@ -0,0 +1,427 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#define NFP_SUBSYS "nfp_nsp"
#include <stdio.h>
#include <time.h>
#include <rte_common.h>
#include "nfp_cpp.h"
#include "nfp_nsp.h"
#include "nfp_resource.h"
int
nfp_nsp_config_modified(struct nfp_nsp *state)
{
return state->modified;
}
void
nfp_nsp_config_set_modified(struct nfp_nsp *state, int modified)
{
state->modified = modified;
}
void *
nfp_nsp_config_entries(struct nfp_nsp *state)
{
return state->entries;
}
unsigned int
nfp_nsp_config_idx(struct nfp_nsp *state)
{
return state->idx;
}
void
nfp_nsp_config_set_state(struct nfp_nsp *state, void *entries, unsigned int idx)
{
state->entries = entries;
state->idx = idx;
}
void
nfp_nsp_config_clear_state(struct nfp_nsp *state)
{
state->entries = NULL;
state->idx = 0;
}
static void
nfp_nsp_print_extended_error(uint32_t ret_val)
{
int i;
if (!ret_val)
return;
for (i = 0; i < (int)ARRAY_SIZE(nsp_errors); i++)
if (ret_val == (uint32_t)nsp_errors[i].code)
printf("err msg: %s\n", nsp_errors[i].msg);
}
static int
nfp_nsp_check(struct nfp_nsp *state)
{
struct nfp_cpp *cpp = state->cpp;
uint64_t nsp_status, reg;
uint32_t nsp_cpp;
int err;
nsp_cpp = nfp_resource_cpp_id(state->res);
nsp_status = nfp_resource_address(state->res) + NSP_STATUS;
err = nfp_cpp_readq(cpp, nsp_cpp, nsp_status, &reg);
if (err < 0)
return err;
if (FIELD_GET(NSP_STATUS_MAGIC, reg) != NSP_MAGIC) {
printf("Cannot detect NFP Service Processor\n");
return -ENODEV;
}
state->ver.major = FIELD_GET(NSP_STATUS_MAJOR, reg);
state->ver.minor = FIELD_GET(NSP_STATUS_MINOR, reg);
if (state->ver.major != NSP_MAJOR || state->ver.minor < NSP_MINOR) {
printf("Unsupported ABI %hu.%hu\n", state->ver.major,
state->ver.minor);
return -EINVAL;
}
if (reg & NSP_STATUS_BUSY) {
printf("Service processor busy!\n");
return -EBUSY;
}
return 0;
}
/*
* nfp_nsp_open() - Prepare for communication and lock the NSP resource.
* @cpp: NFP CPP Handle
*/
struct nfp_nsp *
nfp_nsp_open(struct nfp_cpp *cpp)
{
struct nfp_resource *res;
struct nfp_nsp *state;
int err;
res = nfp_resource_acquire(cpp, NFP_RESOURCE_NSP);
if (!res)
return NULL;
state = malloc(sizeof(*state));
if (!state) {
nfp_resource_release(res);
return NULL;
}
memset(state, 0, sizeof(*state));
state->cpp = cpp;
state->res = res;
err = nfp_nsp_check(state);
if (err) {
nfp_nsp_close(state);
return NULL;
}
return state;
}
/*
* nfp_nsp_close() - Clean up and unlock the NSP resource.
* @state: NFP SP state
*/
void
nfp_nsp_close(struct nfp_nsp *state)
{
nfp_resource_release(state->res);
free(state);
}
uint16_t
nfp_nsp_get_abi_ver_major(struct nfp_nsp *state)
{
return state->ver.major;
}
uint16_t
nfp_nsp_get_abi_ver_minor(struct nfp_nsp *state)
{
return state->ver.minor;
}
static int
nfp_nsp_wait_reg(struct nfp_cpp *cpp, uint64_t *reg, uint32_t nsp_cpp,
uint64_t addr, uint64_t mask, uint64_t val)
{
struct timespec wait;
int count;
int err;
wait.tv_sec = 0;
wait.tv_nsec = 25000000;
count = 0;
for (;;) {
err = nfp_cpp_readq(cpp, nsp_cpp, addr, reg);
if (err < 0)
return err;
if ((*reg & mask) == val)
return 0;
nanosleep(&wait, 0);
if (count++ > 1000)
return -ETIMEDOUT;
}
}
/*
* nfp_nsp_command() - Execute a command on the NFP Service Processor
* @state: NFP SP state
* @code: NFP SP Command Code
* @option: NFP SP Command Argument
* @buff_cpp: NFP SP Buffer CPP Address info
* @buff_addr: NFP SP Buffer Host address
*
* Return: 0 for success with no result
*
* positive value for NSP completion with a result code
*
* -EAGAIN if the NSP is not yet present
* -ENODEV if the NSP is not a supported model
* -EBUSY if the NSP is stuck
* -EINTR if interrupted while waiting for completion
* -ETIMEDOUT if the NSP took longer than 30 seconds to complete
*/
static int
nfp_nsp_command(struct nfp_nsp *state, uint16_t code, uint32_t option,
uint32_t buff_cpp, uint64_t buff_addr)
{
uint64_t reg, ret_val, nsp_base, nsp_buffer, nsp_status, nsp_command;
struct nfp_cpp *cpp = state->cpp;
uint32_t nsp_cpp;
int err;
nsp_cpp = nfp_resource_cpp_id(state->res);
nsp_base = nfp_resource_address(state->res);
nsp_status = nsp_base + NSP_STATUS;
nsp_command = nsp_base + NSP_COMMAND;
nsp_buffer = nsp_base + NSP_BUFFER;
err = nfp_nsp_check(state);
if (err)
return err;
if (!FIELD_FIT(NSP_BUFFER_CPP, buff_cpp >> 8) ||
!FIELD_FIT(NSP_BUFFER_ADDRESS, buff_addr)) {
printf("Host buffer out of reach %08x %" PRIx64 "\n",
buff_cpp, buff_addr);
return -EINVAL;
}
err = nfp_cpp_writeq(cpp, nsp_cpp, nsp_buffer,
FIELD_PREP(NSP_BUFFER_CPP, buff_cpp >> 8) |
FIELD_PREP(NSP_BUFFER_ADDRESS, buff_addr));
if (err < 0)
return err;
err = nfp_cpp_writeq(cpp, nsp_cpp, nsp_command,
FIELD_PREP(NSP_COMMAND_OPTION, option) |
FIELD_PREP(NSP_COMMAND_CODE, code) |
FIELD_PREP(NSP_COMMAND_START, 1));
if (err < 0)
return err;
/* Wait for NSP_COMMAND_START to go to 0 */
err = nfp_nsp_wait_reg(cpp, &reg, nsp_cpp, nsp_command,
NSP_COMMAND_START, 0);
if (err) {
printf("Error %d waiting for code 0x%04x to start\n",
err, code);
return err;
}
/* Wait for NSP_STATUS_BUSY to go to 0 */
err = nfp_nsp_wait_reg(cpp, &reg, nsp_cpp, nsp_status, NSP_STATUS_BUSY,
0);
if (err) {
printf("Error %d waiting for code 0x%04x to complete\n",
err, code);
return err;
}
err = nfp_cpp_readq(cpp, nsp_cpp, nsp_command, &ret_val);
if (err < 0)
return err;
ret_val = FIELD_GET(NSP_COMMAND_OPTION, ret_val);
err = FIELD_GET(NSP_STATUS_RESULT, reg);
if (err) {
printf("Result (error) code set: %d (%d) command: %d\n",
-err, (int)ret_val, code);
nfp_nsp_print_extended_error(ret_val);
return -err;
}
return ret_val;
}
#define SZ_1M 0x00100000
static int
nfp_nsp_command_buf(struct nfp_nsp *nsp, uint16_t code, uint32_t option,
const void *in_buf, unsigned int in_size, void *out_buf,
unsigned int out_size)
{
struct nfp_cpp *cpp = nsp->cpp;
unsigned int max_size;
uint64_t reg, cpp_buf;
int ret, err;
uint32_t cpp_id;
if (nsp->ver.minor < 13) {
printf("NSP: Code 0x%04x with buffer not supported\n", code);
printf("\t(ABI %hu.%hu)\n", nsp->ver.major, nsp->ver.minor);
return -EOPNOTSUPP;
}
err = nfp_cpp_readq(cpp, nfp_resource_cpp_id(nsp->res),
nfp_resource_address(nsp->res) +
NSP_DFLT_BUFFER_CONFIG,
&reg);
if (err < 0)
return err;
max_size = RTE_MAX(in_size, out_size);
if (FIELD_GET(NSP_DFLT_BUFFER_SIZE_MB, reg) * SZ_1M < max_size) {
printf("NSP: default buffer too small for command 0x%04x\n",
code);
printf("\t(%llu < %u)\n",
FIELD_GET(NSP_DFLT_BUFFER_SIZE_MB, reg) * SZ_1M,
max_size);
return -EINVAL;
}
err = nfp_cpp_readq(cpp, nfp_resource_cpp_id(nsp->res),
nfp_resource_address(nsp->res) +
NSP_DFLT_BUFFER,
&reg);
if (err < 0)
return err;
cpp_id = FIELD_GET(NSP_BUFFER_CPP, reg) << 8;
cpp_buf = FIELD_GET(NSP_BUFFER_ADDRESS, reg);
if (in_buf && in_size) {
err = nfp_cpp_write(cpp, cpp_id, cpp_buf, in_buf, in_size);
if (err < 0)
return err;
}
/* Zero out remaining part of the buffer */
if (out_buf && out_size && out_size > in_size) {
memset(out_buf, 0, out_size - in_size);
err = nfp_cpp_write(cpp, cpp_id, cpp_buf + in_size, out_buf,
out_size - in_size);
if (err < 0)
return err;
}
ret = nfp_nsp_command(nsp, code, option, cpp_id, cpp_buf);
if (ret < 0)
return ret;
if (out_buf && out_size) {
err = nfp_cpp_read(cpp, cpp_id, cpp_buf, out_buf, out_size);
if (err < 0)
return err;
}
return ret;
}
int
nfp_nsp_wait(struct nfp_nsp *state)
{
struct timespec wait;
int count;
int err;
wait.tv_sec = 0;
wait.tv_nsec = 25000000;
count = 0;
for (;;) {
err = nfp_nsp_command(state, SPCODE_NOOP, 0, 0, 0);
if (err != -EAGAIN)
break;
nanosleep(&wait, 0);
if (count++ > 1000) {
err = -ETIMEDOUT;
break;
}
}
if (err)
printf("NSP failed to respond %d\n", err);
return err;
}
int
nfp_nsp_device_soft_reset(struct nfp_nsp *state)
{
return nfp_nsp_command(state, SPCODE_SOFT_RESET, 0, 0, 0);
}
int
nfp_nsp_mac_reinit(struct nfp_nsp *state)
{
return nfp_nsp_command(state, SPCODE_MAC_INIT, 0, 0, 0);
}
int
nfp_nsp_load_fw(struct nfp_nsp *state, void *buf, unsigned int size)
{
return nfp_nsp_command_buf(state, SPCODE_FW_LOAD, size, buf, size,
NULL, 0);
}
int
nfp_nsp_read_eth_table(struct nfp_nsp *state, void *buf, unsigned int size)
{
return nfp_nsp_command_buf(state, SPCODE_ETH_RESCAN, size, NULL, 0,
buf, size);
}
int
nfp_nsp_write_eth_table(struct nfp_nsp *state, const void *buf,
unsigned int size)
{
return nfp_nsp_command_buf(state, SPCODE_ETH_CONTROL, size, buf, size,
NULL, 0);
}
int
nfp_nsp_read_identify(struct nfp_nsp *state, void *buf, unsigned int size)
{
return nfp_nsp_command_buf(state, SPCODE_NSP_IDENTIFY, size, NULL, 0,
buf, size);
}
int
nfp_nsp_read_sensors(struct nfp_nsp *state, unsigned int sensor_mask, void *buf,
unsigned int size)
{
return nfp_nsp_command_buf(state, SPCODE_NSP_SENSORS, sensor_mask, NULL,
0, buf, size);
}

View File

@ -0,0 +1,304 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#ifndef NSP_NSP_H
#define NSP_NSP_H 1
#include "nfp_cpp.h"
#include "nfp_nsp.h"
#define GENMASK_ULL(h, l) \
(((~0ULL) - (1ULL << (l)) + 1) & \
(~0ULL >> (64 - 1 - (h))))
#define __bf_shf(x) (__builtin_ffsll(x) - 1)
#define FIELD_GET(_mask, _reg) \
(__extension__ ({ \
typeof(_mask) _x = (_mask); \
(typeof(_x))(((_reg) & (_x)) >> __bf_shf(_x)); \
}))
#define FIELD_FIT(_mask, _val) \
(__extension__ ({ \
typeof(_mask) _x = (_mask); \
!((((typeof(_x))_val) << __bf_shf(_x)) & ~(_x)); \
}))
#define FIELD_PREP(_mask, _val) \
(__extension__ ({ \
typeof(_mask) _x = (_mask); \
((typeof(_x))(_val) << __bf_shf(_x)) & (_x); \
}))
/* Offsets relative to the CSR base */
#define NSP_STATUS 0x00
#define NSP_STATUS_MAGIC GENMASK_ULL(63, 48)
#define NSP_STATUS_MAJOR GENMASK_ULL(47, 44)
#define NSP_STATUS_MINOR GENMASK_ULL(43, 32)
#define NSP_STATUS_CODE GENMASK_ULL(31, 16)
#define NSP_STATUS_RESULT GENMASK_ULL(15, 8)
#define NSP_STATUS_BUSY BIT_ULL(0)
#define NSP_COMMAND 0x08
#define NSP_COMMAND_OPTION GENMASK_ULL(63, 32)
#define NSP_COMMAND_CODE GENMASK_ULL(31, 16)
#define NSP_COMMAND_START BIT_ULL(0)
/* CPP address to retrieve the data from */
#define NSP_BUFFER 0x10
#define NSP_BUFFER_CPP GENMASK_ULL(63, 40)
#define NSP_BUFFER_PCIE GENMASK_ULL(39, 38)
#define NSP_BUFFER_ADDRESS GENMASK_ULL(37, 0)
#define NSP_DFLT_BUFFER 0x18
#define NSP_DFLT_BUFFER_CONFIG 0x20
#define NSP_DFLT_BUFFER_SIZE_MB GENMASK_ULL(7, 0)
#define NSP_MAGIC 0xab10
#define NSP_MAJOR 0
#define NSP_MINOR 8
#define NSP_CODE_MAJOR GENMASK(15, 12)
#define NSP_CODE_MINOR GENMASK(11, 0)
enum nfp_nsp_cmd {
SPCODE_NOOP = 0, /* No operation */
SPCODE_SOFT_RESET = 1, /* Soft reset the NFP */
SPCODE_FW_DEFAULT = 2, /* Load default (UNDI) FW */
SPCODE_PHY_INIT = 3, /* Initialize the PHY */
SPCODE_MAC_INIT = 4, /* Initialize the MAC */
SPCODE_PHY_RXADAPT = 5, /* Re-run PHY RX Adaptation */
SPCODE_FW_LOAD = 6, /* Load fw from buffer, len in option */
SPCODE_ETH_RESCAN = 7, /* Rescan ETHs, write ETH_TABLE to buf */
SPCODE_ETH_CONTROL = 8, /* Update media config from buffer */
SPCODE_NSP_SENSORS = 12, /* Read NSP sensor(s) */
SPCODE_NSP_IDENTIFY = 13, /* Read NSP version */
};
static const struct {
int code;
const char *msg;
} nsp_errors[] = {
{ 6010, "could not map to phy for port" },
{ 6011, "not an allowed rate/lanes for port" },
{ 6012, "not an allowed rate/lanes for port" },
{ 6013, "high/low error, change other port first" },
{ 6014, "config not found in flash" },
};
struct nfp_nsp {
struct nfp_cpp *cpp;
struct nfp_resource *res;
struct {
uint16_t major;
uint16_t minor;
} ver;
/* Eth table config state */
int modified;
unsigned int idx;
void *entries;
};
struct nfp_nsp *nfp_nsp_open(struct nfp_cpp *cpp);
void nfp_nsp_close(struct nfp_nsp *state);
uint16_t nfp_nsp_get_abi_ver_major(struct nfp_nsp *state);
uint16_t nfp_nsp_get_abi_ver_minor(struct nfp_nsp *state);
int nfp_nsp_wait(struct nfp_nsp *state);
int nfp_nsp_device_soft_reset(struct nfp_nsp *state);
int nfp_nsp_load_fw(struct nfp_nsp *state, void *buf, unsigned int size);
int nfp_nsp_mac_reinit(struct nfp_nsp *state);
int nfp_nsp_read_identify(struct nfp_nsp *state, void *buf, unsigned int size);
int nfp_nsp_read_sensors(struct nfp_nsp *state, unsigned int sensor_mask,
void *buf, unsigned int size);
static inline int nfp_nsp_has_mac_reinit(struct nfp_nsp *state)
{
return nfp_nsp_get_abi_ver_minor(state) > 20;
}
enum nfp_eth_interface {
NFP_INTERFACE_NONE = 0,
NFP_INTERFACE_SFP = 1,
NFP_INTERFACE_SFPP = 10,
NFP_INTERFACE_SFP28 = 28,
NFP_INTERFACE_QSFP = 40,
NFP_INTERFACE_CXP = 100,
NFP_INTERFACE_QSFP28 = 112,
};
enum nfp_eth_media {
NFP_MEDIA_DAC_PASSIVE = 0,
NFP_MEDIA_DAC_ACTIVE,
NFP_MEDIA_FIBRE,
};
enum nfp_eth_aneg {
NFP_ANEG_AUTO = 0,
NFP_ANEG_SEARCH,
NFP_ANEG_25G_CONSORTIUM,
NFP_ANEG_25G_IEEE,
NFP_ANEG_DISABLED,
};
enum nfp_eth_fec {
NFP_FEC_AUTO_BIT = 0,
NFP_FEC_BASER_BIT,
NFP_FEC_REED_SOLOMON_BIT,
NFP_FEC_DISABLED_BIT,
};
#define NFP_FEC_AUTO BIT(NFP_FEC_AUTO_BIT)
#define NFP_FEC_BASER BIT(NFP_FEC_BASER_BIT)
#define NFP_FEC_REED_SOLOMON BIT(NFP_FEC_REED_SOLOMON_BIT)
#define NFP_FEC_DISABLED BIT(NFP_FEC_DISABLED_BIT)
#define ETH_ALEN 6
/**
* struct nfp_eth_table - ETH table information
* @count: number of table entries
* @max_index: max of @index fields of all @ports
* @ports: table of ports
*
* @eth_index: port index according to legacy ethX numbering
* @index: chip-wide first channel index
* @nbi: NBI index
* @base: first channel index (within NBI)
* @lanes: number of channels
* @speed: interface speed (in Mbps)
* @interface: interface (module) plugged in
* @media: media type of the @interface
* @fec: forward error correction mode
* @aneg: auto negotiation mode
* @mac_addr: interface MAC address
* @label_port: port id
* @label_subport: id of interface within port (for split ports)
* @enabled: is enabled?
* @tx_enabled: is TX enabled?
* @rx_enabled: is RX enabled?
* @override_changed: is media reconfig pending?
*
* @port_type: one of %PORT_* defines for ethtool
* @port_lanes: total number of lanes on the port (sum of lanes of all subports)
* @is_split: is interface part of a split port
* @fec_modes_supported: bitmap of FEC modes supported
*/
struct nfp_eth_table {
unsigned int count;
unsigned int max_index;
struct nfp_eth_table_port {
unsigned int eth_index;
unsigned int index;
unsigned int nbi;
unsigned int base;
unsigned int lanes;
unsigned int speed;
unsigned int interface;
enum nfp_eth_media media;
enum nfp_eth_fec fec;
enum nfp_eth_aneg aneg;
uint8_t mac_addr[ETH_ALEN];
uint8_t label_port;
uint8_t label_subport;
int enabled;
int tx_enabled;
int rx_enabled;
int override_changed;
/* Computed fields */
uint8_t port_type;
unsigned int port_lanes;
int is_split;
unsigned int fec_modes_supported;
} ports[0];
};
struct nfp_eth_table *nfp_eth_read_ports(struct nfp_cpp *cpp);
int nfp_eth_set_mod_enable(struct nfp_cpp *cpp, unsigned int idx, int enable);
int nfp_eth_set_configured(struct nfp_cpp *cpp, unsigned int idx,
int configed);
int
nfp_eth_set_fec(struct nfp_cpp *cpp, unsigned int idx, enum nfp_eth_fec mode);
int nfp_nsp_read_eth_table(struct nfp_nsp *state, void *buf, unsigned int size);
int nfp_nsp_write_eth_table(struct nfp_nsp *state, const void *buf,
unsigned int size);
void nfp_nsp_config_set_state(struct nfp_nsp *state, void *entries,
unsigned int idx);
void nfp_nsp_config_clear_state(struct nfp_nsp *state);
void nfp_nsp_config_set_modified(struct nfp_nsp *state, int modified);
void *nfp_nsp_config_entries(struct nfp_nsp *state);
int nfp_nsp_config_modified(struct nfp_nsp *state);
unsigned int nfp_nsp_config_idx(struct nfp_nsp *state);
static inline int nfp_eth_can_support_fec(struct nfp_eth_table_port *eth_port)
{
return !!eth_port->fec_modes_supported;
}
static inline unsigned int
nfp_eth_supported_fec_modes(struct nfp_eth_table_port *eth_port)
{
return eth_port->fec_modes_supported;
}
struct nfp_nsp *nfp_eth_config_start(struct nfp_cpp *cpp, unsigned int idx);
int nfp_eth_config_commit_end(struct nfp_nsp *nsp);
void nfp_eth_config_cleanup_end(struct nfp_nsp *nsp);
int __nfp_eth_set_aneg(struct nfp_nsp *nsp, enum nfp_eth_aneg mode);
int __nfp_eth_set_speed(struct nfp_nsp *nsp, unsigned int speed);
int __nfp_eth_set_split(struct nfp_nsp *nsp, unsigned int lanes);
/**
* struct nfp_nsp_identify - NSP static information
* @version: opaque version string
* @flags: version flags
* @br_primary: branch id of primary bootloader
* @br_secondary: branch id of secondary bootloader
* @br_nsp: branch id of NSP
* @primary: version of primarary bootloader
* @secondary: version id of secondary bootloader
* @nsp: version id of NSP
* @sensor_mask: mask of present sensors available on NIC
*/
struct nfp_nsp_identify {
char version[40];
uint8_t flags;
uint8_t br_primary;
uint8_t br_secondary;
uint8_t br_nsp;
uint16_t primary;
uint16_t secondary;
uint16_t nsp;
uint64_t sensor_mask;
};
struct nfp_nsp_identify *__nfp_nsp_identify(struct nfp_nsp *nsp);
enum nfp_nsp_sensor_id {
NFP_SENSOR_CHIP_TEMPERATURE,
NFP_SENSOR_ASSEMBLY_POWER,
NFP_SENSOR_ASSEMBLY_12V_POWER,
NFP_SENSOR_ASSEMBLY_3V3_POWER,
};
int nfp_hwmon_read_sensor(struct nfp_cpp *cpp, enum nfp_nsp_sensor_id id,
long *val);
#endif

View File

@ -0,0 +1,109 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#include <stdio.h>
#include <rte_byteorder.h>
#include "nfp_cpp.h"
#include "nfp_nsp.h"
#include "nfp_nffw.h"
struct nsp_identify {
uint8_t version[40];
uint8_t flags;
uint8_t br_primary;
uint8_t br_secondary;
uint8_t br_nsp;
uint16_t primary;
uint16_t secondary;
uint16_t nsp;
uint8_t reserved[6];
uint64_t sensor_mask;
};
struct nfp_nsp_identify *
__nfp_nsp_identify(struct nfp_nsp *nsp)
{
struct nfp_nsp_identify *nspi = NULL;
struct nsp_identify *ni;
int ret;
if (nfp_nsp_get_abi_ver_minor(nsp) < 15)
return NULL;
ni = malloc(sizeof(*ni));
if (!ni)
return NULL;
memset(ni, 0, sizeof(*ni));
ret = nfp_nsp_read_identify(nsp, ni, sizeof(*ni));
if (ret < 0) {
printf("reading bsp version failed %d\n",
ret);
goto exit_free;
}
nspi = malloc(sizeof(*nspi));
if (!nspi)
goto exit_free;
memset(nspi, 0, sizeof(*nspi));
memcpy(nspi->version, ni->version, sizeof(nspi->version));
nspi->version[sizeof(nspi->version) - 1] = '\0';
nspi->flags = ni->flags;
nspi->br_primary = ni->br_primary;
nspi->br_secondary = ni->br_secondary;
nspi->br_nsp = ni->br_nsp;
nspi->primary = rte_le_to_cpu_16(ni->primary);
nspi->secondary = rte_le_to_cpu_16(ni->secondary);
nspi->nsp = rte_le_to_cpu_16(ni->nsp);
nspi->sensor_mask = rte_le_to_cpu_64(ni->sensor_mask);
exit_free:
free(ni);
return nspi;
}
struct nfp_sensors {
uint32_t chip_temp;
uint32_t assembly_power;
uint32_t assembly_12v_power;
uint32_t assembly_3v3_power;
};
int
nfp_hwmon_read_sensor(struct nfp_cpp *cpp, enum nfp_nsp_sensor_id id, long *val)
{
struct nfp_sensors s;
struct nfp_nsp *nsp;
int ret;
nsp = nfp_nsp_open(cpp);
if (!nsp)
return -EIO;
ret = nfp_nsp_read_sensors(nsp, BIT(id), &s, sizeof(s));
nfp_nsp_close(nsp);
if (ret < 0)
return ret;
switch (id) {
case NFP_SENSOR_CHIP_TEMPERATURE:
*val = rte_le_to_cpu_32(s.chip_temp);
break;
case NFP_SENSOR_ASSEMBLY_POWER:
*val = rte_le_to_cpu_32(s.assembly_power);
break;
case NFP_SENSOR_ASSEMBLY_12V_POWER:
*val = rte_le_to_cpu_32(s.assembly_12v_power);
break;
case NFP_SENSOR_ASSEMBLY_3V3_POWER:
*val = rte_le_to_cpu_32(s.assembly_3v3_power);
break;
default:
return -EINVAL;
}
return 0;
}

View File

@ -0,0 +1,665 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#include <stdio.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include "nfp_cpp.h"
#include "nfp_nsp.h"
#include "nfp6000/nfp6000.h"
#define GENMASK_ULL(h, l) \
(((~0ULL) - (1ULL << (l)) + 1) & \
(~0ULL >> (64 - 1 - (h))))
#define __bf_shf(x) (__builtin_ffsll(x) - 1)
#define FIELD_GET(_mask, _reg) \
(__extension__ ({ \
typeof(_mask) _x = (_mask); \
(typeof(_x))(((_reg) & (_x)) >> __bf_shf(_x)); \
}))
#define FIELD_FIT(_mask, _val) \
(__extension__ ({ \
typeof(_mask) _x = (_mask); \
!((((typeof(_x))_val) << __bf_shf(_x)) & ~(_x)); \
}))
#define FIELD_PREP(_mask, _val) \
(__extension__ ({ \
typeof(_mask) _x = (_mask); \
((typeof(_x))(_val) << __bf_shf(_x)) & (_x); \
}))
#define NSP_ETH_NBI_PORT_COUNT 24
#define NSP_ETH_MAX_COUNT (2 * NSP_ETH_NBI_PORT_COUNT)
#define NSP_ETH_TABLE_SIZE (NSP_ETH_MAX_COUNT * \
sizeof(union eth_table_entry))
#define NSP_ETH_PORT_LANES GENMASK_ULL(3, 0)
#define NSP_ETH_PORT_INDEX GENMASK_ULL(15, 8)
#define NSP_ETH_PORT_LABEL GENMASK_ULL(53, 48)
#define NSP_ETH_PORT_PHYLABEL GENMASK_ULL(59, 54)
#define NSP_ETH_PORT_FEC_SUPP_BASER BIT_ULL(60)
#define NSP_ETH_PORT_FEC_SUPP_RS BIT_ULL(61)
#define NSP_ETH_PORT_LANES_MASK rte_cpu_to_le_64(NSP_ETH_PORT_LANES)
#define NSP_ETH_STATE_CONFIGURED BIT_ULL(0)
#define NSP_ETH_STATE_ENABLED BIT_ULL(1)
#define NSP_ETH_STATE_TX_ENABLED BIT_ULL(2)
#define NSP_ETH_STATE_RX_ENABLED BIT_ULL(3)
#define NSP_ETH_STATE_RATE GENMASK_ULL(11, 8)
#define NSP_ETH_STATE_INTERFACE GENMASK_ULL(19, 12)
#define NSP_ETH_STATE_MEDIA GENMASK_ULL(21, 20)
#define NSP_ETH_STATE_OVRD_CHNG BIT_ULL(22)
#define NSP_ETH_STATE_ANEG GENMASK_ULL(25, 23)
#define NSP_ETH_STATE_FEC GENMASK_ULL(27, 26)
#define NSP_ETH_CTRL_CONFIGURED BIT_ULL(0)
#define NSP_ETH_CTRL_ENABLED BIT_ULL(1)
#define NSP_ETH_CTRL_TX_ENABLED BIT_ULL(2)
#define NSP_ETH_CTRL_RX_ENABLED BIT_ULL(3)
#define NSP_ETH_CTRL_SET_RATE BIT_ULL(4)
#define NSP_ETH_CTRL_SET_LANES BIT_ULL(5)
#define NSP_ETH_CTRL_SET_ANEG BIT_ULL(6)
#define NSP_ETH_CTRL_SET_FEC BIT_ULL(7)
/* Which connector port. */
#define PORT_TP 0x00
#define PORT_AUI 0x01
#define PORT_MII 0x02
#define PORT_FIBRE 0x03
#define PORT_BNC 0x04
#define PORT_DA 0x05
#define PORT_NONE 0xef
#define PORT_OTHER 0xff
#define SPEED_10 10
#define SPEED_100 100
#define SPEED_1000 1000
#define SPEED_2500 2500
#define SPEED_5000 5000
#define SPEED_10000 10000
#define SPEED_14000 14000
#define SPEED_20000 20000
#define SPEED_25000 25000
#define SPEED_40000 40000
#define SPEED_50000 50000
#define SPEED_56000 56000
#define SPEED_100000 100000
enum nfp_eth_raw {
NSP_ETH_RAW_PORT = 0,
NSP_ETH_RAW_STATE,
NSP_ETH_RAW_MAC,
NSP_ETH_RAW_CONTROL,
NSP_ETH_NUM_RAW
};
enum nfp_eth_rate {
RATE_INVALID = 0,
RATE_10M,
RATE_100M,
RATE_1G,
RATE_10G,
RATE_25G,
};
union eth_table_entry {
struct {
uint64_t port;
uint64_t state;
uint8_t mac_addr[6];
uint8_t resv[2];
uint64_t control;
};
uint64_t raw[NSP_ETH_NUM_RAW];
};
static const struct {
enum nfp_eth_rate rate;
unsigned int speed;
} nsp_eth_rate_tbl[] = {
{ RATE_INVALID, 0, },
{ RATE_10M, SPEED_10, },
{ RATE_100M, SPEED_100, },
{ RATE_1G, SPEED_1000, },
{ RATE_10G, SPEED_10000, },
{ RATE_25G, SPEED_25000, },
};
static unsigned int
nfp_eth_rate2speed(enum nfp_eth_rate rate)
{
int i;
for (i = 0; i < (int)ARRAY_SIZE(nsp_eth_rate_tbl); i++)
if (nsp_eth_rate_tbl[i].rate == rate)
return nsp_eth_rate_tbl[i].speed;
return 0;
}
static unsigned int
nfp_eth_speed2rate(unsigned int speed)
{
int i;
for (i = 0; i < (int)ARRAY_SIZE(nsp_eth_rate_tbl); i++)
if (nsp_eth_rate_tbl[i].speed == speed)
return nsp_eth_rate_tbl[i].rate;
return RATE_INVALID;
}
static void
nfp_eth_copy_mac_reverse(uint8_t *dst, const uint8_t *src)
{
int i;
for (i = 0; i < (int)ETH_ALEN; i++)
dst[ETH_ALEN - i - 1] = src[i];
}
static void
nfp_eth_port_translate(struct nfp_nsp *nsp, const union eth_table_entry *src,
unsigned int index, struct nfp_eth_table_port *dst)
{
unsigned int rate;
unsigned int fec;
uint64_t port, state;
port = rte_le_to_cpu_64(src->port);
state = rte_le_to_cpu_64(src->state);
dst->eth_index = FIELD_GET(NSP_ETH_PORT_INDEX, port);
dst->index = index;
dst->nbi = index / NSP_ETH_NBI_PORT_COUNT;
dst->base = index % NSP_ETH_NBI_PORT_COUNT;
dst->lanes = FIELD_GET(NSP_ETH_PORT_LANES, port);
dst->enabled = FIELD_GET(NSP_ETH_STATE_ENABLED, state);
dst->tx_enabled = FIELD_GET(NSP_ETH_STATE_TX_ENABLED, state);
dst->rx_enabled = FIELD_GET(NSP_ETH_STATE_RX_ENABLED, state);
rate = nfp_eth_rate2speed(FIELD_GET(NSP_ETH_STATE_RATE, state));
dst->speed = dst->lanes * rate;
dst->interface = FIELD_GET(NSP_ETH_STATE_INTERFACE, state);
dst->media = FIELD_GET(NSP_ETH_STATE_MEDIA, state);
nfp_eth_copy_mac_reverse(dst->mac_addr, src->mac_addr);
dst->label_port = FIELD_GET(NSP_ETH_PORT_PHYLABEL, port);
dst->label_subport = FIELD_GET(NSP_ETH_PORT_LABEL, port);
if (nfp_nsp_get_abi_ver_minor(nsp) < 17)
return;
dst->override_changed = FIELD_GET(NSP_ETH_STATE_OVRD_CHNG, state);
dst->aneg = FIELD_GET(NSP_ETH_STATE_ANEG, state);
if (nfp_nsp_get_abi_ver_minor(nsp) < 22)
return;
fec = FIELD_GET(NSP_ETH_PORT_FEC_SUPP_BASER, port);
dst->fec_modes_supported |= fec << NFP_FEC_BASER_BIT;
fec = FIELD_GET(NSP_ETH_PORT_FEC_SUPP_RS, port);
dst->fec_modes_supported |= fec << NFP_FEC_REED_SOLOMON_BIT;
if (dst->fec_modes_supported)
dst->fec_modes_supported |= NFP_FEC_AUTO | NFP_FEC_DISABLED;
dst->fec = 1 << FIELD_GET(NSP_ETH_STATE_FEC, state);
}
static void
nfp_eth_calc_port_geometry(struct nfp_eth_table *table)
{
unsigned int i, j;
for (i = 0; i < table->count; i++) {
table->max_index = RTE_MAX(table->max_index,
table->ports[i].index);
for (j = 0; j < table->count; j++) {
if (table->ports[i].label_port !=
table->ports[j].label_port)
continue;
table->ports[i].port_lanes += table->ports[j].lanes;
if (i == j)
continue;
if (table->ports[i].label_subport ==
table->ports[j].label_subport)
printf("Port %d subport %d is a duplicate\n",
table->ports[i].label_port,
table->ports[i].label_subport);
table->ports[i].is_split = 1;
}
}
}
static void
nfp_eth_calc_port_type(struct nfp_eth_table_port *entry)
{
if (entry->interface == NFP_INTERFACE_NONE) {
entry->port_type = PORT_NONE;
return;
}
if (entry->media == NFP_MEDIA_FIBRE)
entry->port_type = PORT_FIBRE;
else
entry->port_type = PORT_DA;
}
static struct nfp_eth_table *
__nfp_eth_read_ports(struct nfp_nsp *nsp)
{
union eth_table_entry *entries;
struct nfp_eth_table *table;
uint32_t table_sz;
int i, j, ret, cnt = 0;
entries = malloc(NSP_ETH_TABLE_SIZE);
if (!entries)
return NULL;
memset(entries, 0, NSP_ETH_TABLE_SIZE);
ret = nfp_nsp_read_eth_table(nsp, entries, NSP_ETH_TABLE_SIZE);
if (ret < 0) {
printf("reading port table failed %d\n", ret);
goto err;
}
for (i = 0; i < NSP_ETH_MAX_COUNT; i++)
if (entries[i].port & NSP_ETH_PORT_LANES_MASK)
cnt++;
/* Some versions of flash will give us 0 instead of port count. For
* those that give a port count, verify it against the value calculated
* above.
*/
if (ret && ret != cnt) {
printf("table entry count (%d) unmatch entries present (%d)\n",
ret, cnt);
goto err;
}
table_sz = sizeof(*table) + sizeof(struct nfp_eth_table_port) * cnt;
table = malloc(table_sz);
if (!table)
goto err;
memset(table, 0, table_sz);
table->count = cnt;
for (i = 0, j = 0; i < NSP_ETH_MAX_COUNT; i++)
if (entries[i].port & NSP_ETH_PORT_LANES_MASK)
nfp_eth_port_translate(nsp, &entries[i], i,
&table->ports[j++]);
nfp_eth_calc_port_geometry(table);
for (i = 0; i < (int)table->count; i++)
nfp_eth_calc_port_type(&table->ports[i]);
free(entries);
return table;
err:
free(entries);
return NULL;
}
/*
* nfp_eth_read_ports() - retrieve port information
* @cpp: NFP CPP handle
*
* Read the port information from the device. Returned structure should
* be freed with kfree() once no longer needed.
*
* Return: populated ETH table or NULL on error.
*/
struct nfp_eth_table *
nfp_eth_read_ports(struct nfp_cpp *cpp)
{
struct nfp_eth_table *ret;
struct nfp_nsp *nsp;
nsp = nfp_nsp_open(cpp);
if (!nsp)
return NULL;
ret = __nfp_eth_read_ports(nsp);
nfp_nsp_close(nsp);
return ret;
}
struct nfp_nsp *
nfp_eth_config_start(struct nfp_cpp *cpp, unsigned int idx)
{
union eth_table_entry *entries;
struct nfp_nsp *nsp;
int ret;
entries = malloc(NSP_ETH_TABLE_SIZE);
if (!entries)
return NULL;
memset(entries, 0, NSP_ETH_TABLE_SIZE);
nsp = nfp_nsp_open(cpp);
if (!nsp) {
free(entries);
return nsp;
}
ret = nfp_nsp_read_eth_table(nsp, entries, NSP_ETH_TABLE_SIZE);
if (ret < 0) {
printf("reading port table failed %d\n", ret);
goto err;
}
if (!(entries[idx].port & NSP_ETH_PORT_LANES_MASK)) {
printf("trying to set port state on disabled port %d\n", idx);
goto err;
}
nfp_nsp_config_set_state(nsp, entries, idx);
return nsp;
err:
nfp_nsp_close(nsp);
free(entries);
return NULL;
}
void
nfp_eth_config_cleanup_end(struct nfp_nsp *nsp)
{
union eth_table_entry *entries = nfp_nsp_config_entries(nsp);
nfp_nsp_config_set_modified(nsp, 0);
nfp_nsp_config_clear_state(nsp);
nfp_nsp_close(nsp);
free(entries);
}
/*
* nfp_eth_config_commit_end() - perform recorded configuration changes
* @nsp: NFP NSP handle returned from nfp_eth_config_start()
*
* Perform the configuration which was requested with __nfp_eth_set_*()
* helpers and recorded in @nsp state. If device was already configured
* as requested or no __nfp_eth_set_*() operations were made no NSP command
* will be performed.
*
* Return:
* 0 - configuration successful;
* 1 - no changes were needed;
* -ERRNO - configuration failed.
*/
int
nfp_eth_config_commit_end(struct nfp_nsp *nsp)
{
union eth_table_entry *entries = nfp_nsp_config_entries(nsp);
int ret = 1;
if (nfp_nsp_config_modified(nsp)) {
ret = nfp_nsp_write_eth_table(nsp, entries, NSP_ETH_TABLE_SIZE);
ret = ret < 0 ? ret : 0;
}
nfp_eth_config_cleanup_end(nsp);
return ret;
}
/*
* nfp_eth_set_mod_enable() - set PHY module enable control bit
* @cpp: NFP CPP handle
* @idx: NFP chip-wide port index
* @enable: Desired state
*
* Enable or disable PHY module (this usually means setting the TX lanes
* disable bits).
*
* Return:
* 0 - configuration successful;
* 1 - no changes were needed;
* -ERRNO - configuration failed.
*/
int
nfp_eth_set_mod_enable(struct nfp_cpp *cpp, unsigned int idx, int enable)
{
union eth_table_entry *entries;
struct nfp_nsp *nsp;
uint64_t reg;
nsp = nfp_eth_config_start(cpp, idx);
if (!nsp)
return -1;
entries = nfp_nsp_config_entries(nsp);
/* Check if we are already in requested state */
reg = rte_le_to_cpu_64(entries[idx].state);
if (enable != (int)FIELD_GET(NSP_ETH_CTRL_ENABLED, reg)) {
reg = rte_le_to_cpu_64(entries[idx].control);
reg &= ~NSP_ETH_CTRL_ENABLED;
reg |= FIELD_PREP(NSP_ETH_CTRL_ENABLED, enable);
entries[idx].control = rte_cpu_to_le_64(reg);
nfp_nsp_config_set_modified(nsp, 1);
}
return nfp_eth_config_commit_end(nsp);
}
/*
* nfp_eth_set_configured() - set PHY module configured control bit
* @cpp: NFP CPP handle
* @idx: NFP chip-wide port index
* @configed: Desired state
*
* Set the ifup/ifdown state on the PHY.
*
* Return:
* 0 - configuration successful;
* 1 - no changes were needed;
* -ERRNO - configuration failed.
*/
int
nfp_eth_set_configured(struct nfp_cpp *cpp, unsigned int idx, int configed)
{
union eth_table_entry *entries;
struct nfp_nsp *nsp;
uint64_t reg;
nsp = nfp_eth_config_start(cpp, idx);
if (!nsp)
return -EIO;
/*
* Older ABI versions did support this feature, however this has only
* been reliable since ABI 20.
*/
if (nfp_nsp_get_abi_ver_minor(nsp) < 20) {
nfp_eth_config_cleanup_end(nsp);
return -EOPNOTSUPP;
}
entries = nfp_nsp_config_entries(nsp);
/* Check if we are already in requested state */
reg = rte_le_to_cpu_64(entries[idx].state);
if (configed != (int)FIELD_GET(NSP_ETH_STATE_CONFIGURED, reg)) {
reg = rte_le_to_cpu_64(entries[idx].control);
reg &= ~NSP_ETH_CTRL_CONFIGURED;
reg |= FIELD_PREP(NSP_ETH_CTRL_CONFIGURED, configed);
entries[idx].control = rte_cpu_to_le_64(reg);
nfp_nsp_config_set_modified(nsp, 1);
}
return nfp_eth_config_commit_end(nsp);
}
static int
nfp_eth_set_bit_config(struct nfp_nsp *nsp, unsigned int raw_idx,
const uint64_t mask, const unsigned int shift,
unsigned int val, const uint64_t ctrl_bit)
{
union eth_table_entry *entries = nfp_nsp_config_entries(nsp);
unsigned int idx = nfp_nsp_config_idx(nsp);
uint64_t reg;
/*
* Note: set features were added in ABI 0.14 but the error
* codes were initially not populated correctly.
*/
if (nfp_nsp_get_abi_ver_minor(nsp) < 17) {
printf("set operations not supported, please update flash\n");
return -EOPNOTSUPP;
}
/* Check if we are already in requested state */
reg = rte_le_to_cpu_64(entries[idx].raw[raw_idx]);
if (val == (reg & mask) >> shift)
return 0;
reg &= ~mask;
reg |= (val << shift) & mask;
entries[idx].raw[raw_idx] = rte_cpu_to_le_64(reg);
entries[idx].control |= rte_cpu_to_le_64(ctrl_bit);
nfp_nsp_config_set_modified(nsp, 1);
return 0;
}
#define NFP_ETH_SET_BIT_CONFIG(nsp, raw_idx, mask, val, ctrl_bit) \
(__extension__ ({ \
typeof(mask) _x = (mask); \
nfp_eth_set_bit_config(nsp, raw_idx, _x, __bf_shf(_x), \
val, ctrl_bit); \
}))
/*
* __nfp_eth_set_aneg() - set PHY autonegotiation control bit
* @nsp: NFP NSP handle returned from nfp_eth_config_start()
* @mode: Desired autonegotiation mode
*
* Allow/disallow PHY module to advertise/perform autonegotiation.
* Will write to hwinfo overrides in the flash (persistent config).
*
* Return: 0 or -ERRNO.
*/
int
__nfp_eth_set_aneg(struct nfp_nsp *nsp, enum nfp_eth_aneg mode)
{
return NFP_ETH_SET_BIT_CONFIG(nsp, NSP_ETH_RAW_STATE,
NSP_ETH_STATE_ANEG, mode,
NSP_ETH_CTRL_SET_ANEG);
}
/*
* __nfp_eth_set_fec() - set PHY forward error correction control bit
* @nsp: NFP NSP handle returned from nfp_eth_config_start()
* @mode: Desired fec mode
*
* Set the PHY module forward error correction mode.
* Will write to hwinfo overrides in the flash (persistent config).
*
* Return: 0 or -ERRNO.
*/
static int
__nfp_eth_set_fec(struct nfp_nsp *nsp, enum nfp_eth_fec mode)
{
return NFP_ETH_SET_BIT_CONFIG(nsp, NSP_ETH_RAW_STATE,
NSP_ETH_STATE_FEC, mode,
NSP_ETH_CTRL_SET_FEC);
}
/*
* nfp_eth_set_fec() - set PHY forward error correction control mode
* @cpp: NFP CPP handle
* @idx: NFP chip-wide port index
* @mode: Desired fec mode
*
* Return:
* 0 - configuration successful;
* 1 - no changes were needed;
* -ERRNO - configuration failed.
*/
int
nfp_eth_set_fec(struct nfp_cpp *cpp, unsigned int idx, enum nfp_eth_fec mode)
{
struct nfp_nsp *nsp;
int err;
nsp = nfp_eth_config_start(cpp, idx);
if (!nsp)
return -EIO;
err = __nfp_eth_set_fec(nsp, mode);
if (err) {
nfp_eth_config_cleanup_end(nsp);
return err;
}
return nfp_eth_config_commit_end(nsp);
}
/*
* __nfp_eth_set_speed() - set interface speed/rate
* @nsp: NFP NSP handle returned from nfp_eth_config_start()
* @speed: Desired speed (per lane)
*
* Set lane speed. Provided @speed value should be subport speed divided
* by number of lanes this subport is spanning (i.e. 10000 for 40G, 25000 for
* 50G, etc.)
* Will write to hwinfo overrides in the flash (persistent config).
*
* Return: 0 or -ERRNO.
*/
int
__nfp_eth_set_speed(struct nfp_nsp *nsp, unsigned int speed)
{
enum nfp_eth_rate rate;
rate = nfp_eth_speed2rate(speed);
if (rate == RATE_INVALID) {
printf("could not find matching lane rate for speed %u\n",
speed);
return -EINVAL;
}
return NFP_ETH_SET_BIT_CONFIG(nsp, NSP_ETH_RAW_STATE,
NSP_ETH_STATE_RATE, rate,
NSP_ETH_CTRL_SET_RATE);
}
/*
* __nfp_eth_set_split() - set interface lane split
* @nsp: NFP NSP handle returned from nfp_eth_config_start()
* @lanes: Desired lanes per port
*
* Set number of lanes in the port.
* Will write to hwinfo overrides in the flash (persistent config).
*
* Return: 0 or -ERRNO.
*/
int
__nfp_eth_set_split(struct nfp_nsp *nsp, unsigned int lanes)
{
return NFP_ETH_SET_BIT_CONFIG(nsp, NSP_ETH_RAW_PORT, NSP_ETH_PORT_LANES,
lanes, NSP_ETH_CTRL_SET_LANES);
}

View File

@ -0,0 +1,264 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#include <stdio.h>
#include <time.h>
#include <endian.h>
#include "nfp_cpp.h"
#include "nfp6000/nfp6000.h"
#include "nfp_resource.h"
#include "nfp_crc.h"
#define NFP_RESOURCE_TBL_TARGET NFP_CPP_TARGET_MU
#define NFP_RESOURCE_TBL_BASE 0x8100000000ULL
/* NFP Resource Table self-identifier */
#define NFP_RESOURCE_TBL_NAME "nfp.res"
#define NFP_RESOURCE_TBL_KEY 0x00000000 /* Special key for entry 0 */
#define NFP_RESOURCE_ENTRY_NAME_SZ 8
/*
* struct nfp_resource_entry - Resource table entry
* @owner: NFP CPP Lock, interface owner
* @key: NFP CPP Lock, posix_crc32(name, 8)
* @region: Memory region descriptor
* @name: ASCII, zero padded name
* @reserved
* @cpp_action: CPP Action
* @cpp_token: CPP Token
* @cpp_target: CPP Target ID
* @page_offset: 256-byte page offset into target's CPP address
* @page_size: size, in 256-byte pages
*/
struct nfp_resource_entry {
struct nfp_resource_entry_mutex {
uint32_t owner;
uint32_t key;
} mutex;
struct nfp_resource_entry_region {
uint8_t name[NFP_RESOURCE_ENTRY_NAME_SZ];
uint8_t reserved[5];
uint8_t cpp_action;
uint8_t cpp_token;
uint8_t cpp_target;
uint32_t page_offset;
uint32_t page_size;
} region;
};
#define NFP_RESOURCE_TBL_SIZE 4096
#define NFP_RESOURCE_TBL_ENTRIES (int)(NFP_RESOURCE_TBL_SIZE / \
sizeof(struct nfp_resource_entry))
struct nfp_resource {
char name[NFP_RESOURCE_ENTRY_NAME_SZ + 1];
uint32_t cpp_id;
uint64_t addr;
uint64_t size;
struct nfp_cpp_mutex *mutex;
};
static int
nfp_cpp_resource_find(struct nfp_cpp *cpp, struct nfp_resource *res)
{
char name_pad[NFP_RESOURCE_ENTRY_NAME_SZ] = {};
struct nfp_resource_entry entry;
uint32_t cpp_id, key;
int ret, i;
cpp_id = NFP_CPP_ID(NFP_RESOURCE_TBL_TARGET, 3, 0); /* Atomic read */
memset(name_pad, 0, NFP_RESOURCE_ENTRY_NAME_SZ);
strncpy(name_pad, res->name, sizeof(name_pad));
/* Search for a matching entry */
if (!memcmp(name_pad, NFP_RESOURCE_TBL_NAME "\0\0\0\0\0\0\0\0", 8)) {
printf("Grabbing device lock not supported\n");
return -EOPNOTSUPP;
}
key = nfp_crc32_posix(name_pad, sizeof(name_pad));
for (i = 0; i < NFP_RESOURCE_TBL_ENTRIES; i++) {
uint64_t addr = NFP_RESOURCE_TBL_BASE +
sizeof(struct nfp_resource_entry) * i;
ret = nfp_cpp_read(cpp, cpp_id, addr, &entry, sizeof(entry));
if (ret != sizeof(entry))
return -EIO;
if (entry.mutex.key != key)
continue;
/* Found key! */
res->mutex =
nfp_cpp_mutex_alloc(cpp,
NFP_RESOURCE_TBL_TARGET, addr, key);
res->cpp_id = NFP_CPP_ID(entry.region.cpp_target,
entry.region.cpp_action,
entry.region.cpp_token);
res->addr = ((uint64_t)entry.region.page_offset) << 8;
res->size = (uint64_t)entry.region.page_size << 8;
return 0;
}
return -ENOENT;
}
static int
nfp_resource_try_acquire(struct nfp_cpp *cpp, struct nfp_resource *res,
struct nfp_cpp_mutex *dev_mutex)
{
int err;
if (nfp_cpp_mutex_lock(dev_mutex))
return -EINVAL;
err = nfp_cpp_resource_find(cpp, res);
if (err)
goto err_unlock_dev;
err = nfp_cpp_mutex_trylock(res->mutex);
if (err)
goto err_res_mutex_free;
nfp_cpp_mutex_unlock(dev_mutex);
return 0;
err_res_mutex_free:
nfp_cpp_mutex_free(res->mutex);
err_unlock_dev:
nfp_cpp_mutex_unlock(dev_mutex);
return err;
}
/*
* nfp_resource_acquire() - Acquire a resource handle
* @cpp: NFP CPP handle
* @name: Name of the resource
*
* NOTE: This function locks the acquired resource
*
* Return: NFP Resource handle, or ERR_PTR()
*/
struct nfp_resource *
nfp_resource_acquire(struct nfp_cpp *cpp, const char *name)
{
struct nfp_cpp_mutex *dev_mutex;
struct nfp_resource *res;
int err;
struct timespec wait;
int count;
res = malloc(sizeof(*res));
if (!res)
return NULL;
memset(res, 0, sizeof(*res));
strncpy(res->name, name, NFP_RESOURCE_ENTRY_NAME_SZ);
dev_mutex = nfp_cpp_mutex_alloc(cpp, NFP_RESOURCE_TBL_TARGET,
NFP_RESOURCE_TBL_BASE,
NFP_RESOURCE_TBL_KEY);
if (!dev_mutex) {
free(res);
return NULL;
}
wait.tv_sec = 0;
wait.tv_nsec = 1000000;
count = 0;
for (;;) {
err = nfp_resource_try_acquire(cpp, res, dev_mutex);
if (!err)
break;
if (err != -EBUSY)
goto err_free;
if (count++ > 1000) {
printf("Error: resource %s timed out\n", name);
err = -EBUSY;
goto err_free;
}
nanosleep(&wait, NULL);
}
nfp_cpp_mutex_free(dev_mutex);
return res;
err_free:
nfp_cpp_mutex_free(dev_mutex);
free(res);
return NULL;
}
/*
* nfp_resource_release() - Release a NFP Resource handle
* @res: NFP Resource handle
*
* NOTE: This function implictly unlocks the resource handle
*/
void
nfp_resource_release(struct nfp_resource *res)
{
nfp_cpp_mutex_unlock(res->mutex);
nfp_cpp_mutex_free(res->mutex);
free(res);
}
/*
* nfp_resource_cpp_id() - Return the cpp_id of a resource handle
* @res: NFP Resource handle
*
* Return: NFP CPP ID
*/
uint32_t
nfp_resource_cpp_id(const struct nfp_resource *res)
{
return res->cpp_id;
}
/*
* nfp_resource_name() - Return the name of a resource handle
* @res: NFP Resource handle
*
* Return: const char pointer to the name of the resource
*/
const char
*nfp_resource_name(const struct nfp_resource *res)
{
return res->name;
}
/*
* nfp_resource_address() - Return the address of a resource handle
* @res: NFP Resource handle
*
* Return: Address of the resource
*/
uint64_t
nfp_resource_address(const struct nfp_resource *res)
{
return res->addr;
}
/*
* nfp_resource_size() - Return the size in bytes of a resource handle
* @res: NFP Resource handle
*
* Return: Size of the resource in bytes
*/
uint64_t
nfp_resource_size(const struct nfp_resource *res)
{
return res->size;
}

View File

@ -0,0 +1,52 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#ifndef NFP_RESOURCE_H
#define NFP_RESOURCE_H
#include "nfp_cpp.h"
#define NFP_RESOURCE_NFP_NFFW "nfp.nffw"
#define NFP_RESOURCE_NFP_HWINFO "nfp.info"
#define NFP_RESOURCE_NSP "nfp.sp"
/**
* Opaque handle to a NFP Resource
*/
struct nfp_resource;
struct nfp_resource *nfp_resource_acquire(struct nfp_cpp *cpp,
const char *name);
/**
* Release a NFP Resource, and free the handle
* @param[in] res NFP Resource handle
*/
void nfp_resource_release(struct nfp_resource *res);
/**
* Return the CPP ID of a NFP Resource
* @param[in] res NFP Resource handle
* @return CPP ID of the NFP Resource
*/
uint32_t nfp_resource_cpp_id(const struct nfp_resource *res);
/**
* Return the name of a NFP Resource
* @param[in] res NFP Resource handle
* @return Name of the NFP Resource
*/
const char *nfp_resource_name(const struct nfp_resource *res);
/**
* Return the target address of a NFP Resource
* @param[in] res NFP Resource handle
* @return Address of the NFP Resource
*/
uint64_t nfp_resource_address(const struct nfp_resource *res);
uint64_t nfp_resource_size(const struct nfp_resource *res);
#endif /* NFP_RESOURCE_H */

View File

@ -0,0 +1,327 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
/*
* nfp_rtsym.c
* Interface for accessing run-time symbol table
*/
#include <stdio.h>
#include <rte_byteorder.h>
#include "nfp_cpp.h"
#include "nfp_mip.h"
#include "nfp_rtsym.h"
#include "nfp6000/nfp6000.h"
/* These need to match the linker */
#define SYM_TGT_LMEM 0
#define SYM_TGT_EMU_CACHE 0x17
struct nfp_rtsym_entry {
uint8_t type;
uint8_t target;
uint8_t island;
uint8_t addr_hi;
uint32_t addr_lo;
uint16_t name;
uint8_t menum;
uint8_t size_hi;
uint32_t size_lo;
};
struct nfp_rtsym_table {
struct nfp_cpp *cpp;
int num;
char *strtab;
struct nfp_rtsym symtab[];
};
static int
nfp_meid(uint8_t island_id, uint8_t menum)
{
return (island_id & 0x3F) == island_id && menum < 12 ?
(island_id << 4) | (menum + 4) : -1;
}
static void
nfp_rtsym_sw_entry_init(struct nfp_rtsym_table *cache, uint32_t strtab_size,
struct nfp_rtsym *sw, struct nfp_rtsym_entry *fw)
{
sw->type = fw->type;
sw->name = cache->strtab + rte_le_to_cpu_16(fw->name) % strtab_size;
sw->addr = ((uint64_t)fw->addr_hi << 32) |
rte_le_to_cpu_32(fw->addr_lo);
sw->size = ((uint64_t)fw->size_hi << 32) |
rte_le_to_cpu_32(fw->size_lo);
#ifdef DEBUG
printf("rtsym_entry_init\n");
printf("\tname=%s, addr=%" PRIx64 ", size=%" PRIu64 ",target=%d\n",
sw->name, sw->addr, sw->size, sw->target);
#endif
switch (fw->target) {
case SYM_TGT_LMEM:
sw->target = NFP_RTSYM_TARGET_LMEM;
break;
case SYM_TGT_EMU_CACHE:
sw->target = NFP_RTSYM_TARGET_EMU_CACHE;
break;
default:
sw->target = fw->target;
break;
}
if (fw->menum != 0xff)
sw->domain = nfp_meid(fw->island, fw->menum);
else if (fw->island != 0xff)
sw->domain = fw->island;
else
sw->domain = -1;
}
struct nfp_rtsym_table *
nfp_rtsym_table_read(struct nfp_cpp *cpp)
{
struct nfp_rtsym_table *rtbl;
struct nfp_mip *mip;
mip = nfp_mip_open(cpp);
rtbl = __nfp_rtsym_table_read(cpp, mip);
nfp_mip_close(mip);
return rtbl;
}
/*
* This looks more complex than it should be. But we need to get the type for
* the ~ right in round_down (it needs to be as wide as the result!), and we
* want to evaluate the macro arguments just once each.
*/
#define __round_mask(x, y) ((__typeof__(x))((y) - 1))
#define round_up(x, y) \
(__extension__ ({ \
typeof(x) _x = (x); \
((((_x) - 1) | __round_mask(_x, y)) + 1); \
}))
#define round_down(x, y) \
(__extension__ ({ \
typeof(x) _x = (x); \
((_x) & ~__round_mask(_x, y)); \
}))
struct nfp_rtsym_table *
__nfp_rtsym_table_read(struct nfp_cpp *cpp, const struct nfp_mip *mip)
{
uint32_t strtab_addr, symtab_addr, strtab_size, symtab_size;
struct nfp_rtsym_entry *rtsymtab;
struct nfp_rtsym_table *cache;
const uint32_t dram =
NFP_CPP_ID(NFP_CPP_TARGET_MU, NFP_CPP_ACTION_RW, 0) |
NFP_ISL_EMEM0;
int err, n, size;
if (!mip)
return NULL;
nfp_mip_strtab(mip, &strtab_addr, &strtab_size);
nfp_mip_symtab(mip, &symtab_addr, &symtab_size);
if (!symtab_size || !strtab_size || symtab_size % sizeof(*rtsymtab))
return NULL;
/* Align to 64 bits */
symtab_size = round_up(symtab_size, 8);
strtab_size = round_up(strtab_size, 8);
rtsymtab = malloc(symtab_size);
if (!rtsymtab)
return NULL;
size = sizeof(*cache);
size += symtab_size / sizeof(*rtsymtab) * sizeof(struct nfp_rtsym);
size += strtab_size + 1;
cache = malloc(size);
if (!cache)
goto exit_free_rtsym_raw;
cache->cpp = cpp;
cache->num = symtab_size / sizeof(*rtsymtab);
cache->strtab = (void *)&cache->symtab[cache->num];
err = nfp_cpp_read(cpp, dram, symtab_addr, rtsymtab, symtab_size);
if (err != (int)symtab_size)
goto exit_free_cache;
err = nfp_cpp_read(cpp, dram, strtab_addr, cache->strtab, strtab_size);
if (err != (int)strtab_size)
goto exit_free_cache;
cache->strtab[strtab_size] = '\0';
for (n = 0; n < cache->num; n++)
nfp_rtsym_sw_entry_init(cache, strtab_size,
&cache->symtab[n], &rtsymtab[n]);
free(rtsymtab);
return cache;
exit_free_cache:
free(cache);
exit_free_rtsym_raw:
free(rtsymtab);
return NULL;
}
/*
* nfp_rtsym_count() - Get the number of RTSYM descriptors
* @rtbl: NFP RTsym table
*
* Return: Number of RTSYM descriptors
*/
int
nfp_rtsym_count(struct nfp_rtsym_table *rtbl)
{
if (!rtbl)
return -EINVAL;
return rtbl->num;
}
/*
* nfp_rtsym_get() - Get the Nth RTSYM descriptor
* @rtbl: NFP RTsym table
* @idx: Index (0-based) of the RTSYM descriptor
*
* Return: const pointer to a struct nfp_rtsym descriptor, or NULL
*/
const struct nfp_rtsym *
nfp_rtsym_get(struct nfp_rtsym_table *rtbl, int idx)
{
if (!rtbl)
return NULL;
if (idx >= rtbl->num)
return NULL;
return &rtbl->symtab[idx];
}
/*
* nfp_rtsym_lookup() - Return the RTSYM descriptor for a symbol name
* @rtbl: NFP RTsym table
* @name: Symbol name
*
* Return: const pointer to a struct nfp_rtsym descriptor, or NULL
*/
const struct nfp_rtsym *
nfp_rtsym_lookup(struct nfp_rtsym_table *rtbl, const char *name)
{
int n;
if (!rtbl)
return NULL;
for (n = 0; n < rtbl->num; n++)
if (strcmp(name, rtbl->symtab[n].name) == 0)
return &rtbl->symtab[n];
return NULL;
}
/*
* nfp_rtsym_read_le() - Read a simple unsigned scalar value from symbol
* @rtbl: NFP RTsym table
* @name: Symbol name
* @error: Poniter to error code (optional)
*
* Lookup a symbol, map, read it and return it's value. Value of the symbol
* will be interpreted as a simple little-endian unsigned value. Symbol can
* be 4 or 8 bytes in size.
*
* Return: value read, on error sets the error and returns ~0ULL.
*/
uint64_t
nfp_rtsym_read_le(struct nfp_rtsym_table *rtbl, const char *name, int *error)
{
const struct nfp_rtsym *sym;
uint32_t val32, id;
uint64_t val;
int err;
sym = nfp_rtsym_lookup(rtbl, name);
if (!sym) {
err = -ENOENT;
goto exit;
}
id = NFP_CPP_ISLAND_ID(sym->target, NFP_CPP_ACTION_RW, 0, sym->domain);
#ifdef DEBUG
printf("Reading symbol %s with size %" PRIu64 " at %" PRIx64 "\n",
name, sym->size, sym->addr);
#endif
switch (sym->size) {
case 4:
err = nfp_cpp_readl(rtbl->cpp, id, sym->addr, &val32);
val = val32;
break;
case 8:
err = nfp_cpp_readq(rtbl->cpp, id, sym->addr, &val);
break;
default:
printf("rtsym '%s' unsupported size: %" PRId64 "\n",
name, sym->size);
err = -EINVAL;
break;
}
if (err)
err = -EIO;
exit:
if (error)
*error = err;
if (err)
return ~0ULL;
return val;
}
uint8_t *
nfp_rtsym_map(struct nfp_rtsym_table *rtbl, const char *name,
unsigned int min_size, struct nfp_cpp_area **area)
{
const struct nfp_rtsym *sym;
uint8_t *mem;
#ifdef DEBUG
printf("mapping symbol %s\n", name);
#endif
sym = nfp_rtsym_lookup(rtbl, name);
if (!sym) {
printf("symbol lookup fails for %s\n", name);
return NULL;
}
if (sym->size < min_size) {
printf("Symbol %s too small (%" PRIu64 " < %u)\n", name,
sym->size, min_size);
return NULL;
}
mem = nfp_cpp_map_area(rtbl->cpp, sym->domain, sym->target, sym->addr,
sym->size, area);
if (!mem) {
printf("Failed to map symbol %s\n", name);
return NULL;
}
#ifdef DEBUG
printf("symbol %s with address %p\n", name, mem);
#endif
return mem;
}

View File

@ -0,0 +1,61 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#ifndef __NFP_RTSYM_H__
#define __NFP_RTSYM_H__
#define NFP_RTSYM_TYPE_NONE 0
#define NFP_RTSYM_TYPE_OBJECT 1
#define NFP_RTSYM_TYPE_FUNCTION 2
#define NFP_RTSYM_TYPE_ABS 3
#define NFP_RTSYM_TARGET_NONE 0
#define NFP_RTSYM_TARGET_LMEM -1
#define NFP_RTSYM_TARGET_EMU_CACHE -7
/*
* Structure describing a run-time NFP symbol.
*
* The memory target of the symbol is generally the CPP target number and can be
* used directly by the nfp_cpp API calls. However, in some cases (i.e., for
* local memory or control store) the target is encoded using a negative number.
*
* When the target type can not be used to fully describe the location of a
* symbol the domain field is used to further specify the location (i.e., the
* specific ME or island number).
*
* For ME target resources, 'domain' is an MEID.
* For Island target resources, 'domain' is an island ID, with the one exception
* of "sram" symbols for backward compatibility, which are viewed as global.
*/
struct nfp_rtsym {
const char *name;
uint64_t addr;
uint64_t size;
int type;
int target;
int domain;
};
struct nfp_rtsym_table;
struct nfp_rtsym_table *nfp_rtsym_table_read(struct nfp_cpp *cpp);
struct nfp_rtsym_table *
__nfp_rtsym_table_read(struct nfp_cpp *cpp, const struct nfp_mip *mip);
int nfp_rtsym_count(struct nfp_rtsym_table *rtbl);
const struct nfp_rtsym *nfp_rtsym_get(struct nfp_rtsym_table *rtbl, int idx);
const struct nfp_rtsym *
nfp_rtsym_lookup(struct nfp_rtsym_table *rtbl, const char *name);
uint64_t nfp_rtsym_read_le(struct nfp_rtsym_table *rtbl, const char *name,
int *error);
uint8_t *
nfp_rtsym_map(struct nfp_rtsym_table *rtbl, const char *name,
unsigned int min_size, struct nfp_cpp_area **area);
#endif

View File

@ -0,0 +1,579 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Netronome Systems, Inc.
* All rights reserved.
*/
#ifndef NFP_TARGET_H
#define NFP_TARGET_H
#include "nfp-common/nfp_resid.h"
#include "nfp-common/nfp_cppat.h"
#include "nfp-common/nfp_platform.h"
#include "nfp_cpp.h"
#define P32 1
#define P64 2
#define PUSHPULL(_pull, _push) (((_pull) << 4) | ((_push) << 0))
#ifndef NFP_ERRNO
#include <errno.h>
#define NFP_ERRNO(x) (errno = (x), -1)
#endif
static inline int
pushpull_width(int pp)
{
pp &= 0xf;
if (pp == 0)
return NFP_ERRNO(EINVAL);
return (2 << pp);
}
#define PUSH_WIDTH(_pushpull) pushpull_width((_pushpull) >> 0)
#define PULL_WIDTH(_pushpull) pushpull_width((_pushpull) >> 4)
static inline int
target_rw(uint32_t cpp_id, int pp, int start, int len)
{
int island = NFP_CPP_ID_ISLAND_of(cpp_id);
if (island && (island < start || island > (start + len)))
return NFP_ERRNO(EINVAL);
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
case NFP_CPP_ID(0, 0, 0):
return PUSHPULL(0, pp);
case NFP_CPP_ID(0, 1, 0):
return PUSHPULL(pp, 0);
case NFP_CPP_ID(0, NFP_CPP_ACTION_RW, 0):
return PUSHPULL(pp, pp);
default:
return NFP_ERRNO(EINVAL);
}
}
static inline int
nfp6000_nbi_dma(uint32_t cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
case NFP_CPP_ID(0, 0, 0): /* ReadNbiDma */
return PUSHPULL(0, P64);
case NFP_CPP_ID(0, 1, 0): /* WriteNbiDma */
return PUSHPULL(P64, 0);
case NFP_CPP_ID(0, NFP_CPP_ACTION_RW, 0):
return PUSHPULL(P64, P64);
default:
return NFP_ERRNO(EINVAL);
}
}
static inline int
nfp6000_nbi_stats(uint32_t cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
case NFP_CPP_ID(0, 0, 0): /* ReadNbiStats */
return PUSHPULL(0, P64);
case NFP_CPP_ID(0, 1, 0): /* WriteNbiStats */
return PUSHPULL(P64, 0);
case NFP_CPP_ID(0, NFP_CPP_ACTION_RW, 0):
return PUSHPULL(P64, P64);
default:
return NFP_ERRNO(EINVAL);
}
}
static inline int
nfp6000_nbi_tm(uint32_t cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
case NFP_CPP_ID(0, 0, 0): /* ReadNbiTM */
return PUSHPULL(0, P64);
case NFP_CPP_ID(0, 1, 0): /* WriteNbiTM */
return PUSHPULL(P64, 0);
case NFP_CPP_ID(0, NFP_CPP_ACTION_RW, 0):
return PUSHPULL(P64, P64);
default:
return NFP_ERRNO(EINVAL);
}
}
static inline int
nfp6000_nbi_ppc(uint32_t cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
case NFP_CPP_ID(0, 0, 0): /* ReadNbiPreclassifier */
return PUSHPULL(0, P64);
case NFP_CPP_ID(0, 1, 0): /* WriteNbiPreclassifier */
return PUSHPULL(P64, 0);
case NFP_CPP_ID(0, NFP_CPP_ACTION_RW, 0):
return PUSHPULL(P64, P64);
default:
return NFP_ERRNO(EINVAL);
}
}
static inline int
nfp6000_nbi(uint32_t cpp_id, uint64_t address)
{
int island = NFP_CPP_ID_ISLAND_of(cpp_id);
uint64_t rel_addr = address & 0x3fFFFF;
if (island && (island < 8 || island > 9))
return NFP_ERRNO(EINVAL);
if (rel_addr < (1 << 20))
return nfp6000_nbi_dma(cpp_id);
if (rel_addr < (2 << 20))
return nfp6000_nbi_stats(cpp_id);
if (rel_addr < (3 << 20))
return nfp6000_nbi_tm(cpp_id);
return nfp6000_nbi_ppc(cpp_id);
}
/*
* This structure ONLY includes items that can be done with a read or write of
* 32-bit or 64-bit words. All others are not listed.
*/
static inline int
nfp6000_mu_common(uint32_t cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
case NFP_CPP_ID(0, NFP_CPP_ACTION_RW, 0): /* read_be/write_be */
return PUSHPULL(P64, P64);
case NFP_CPP_ID(0, NFP_CPP_ACTION_RW, 1): /* read_le/write_le */
return PUSHPULL(P64, P64);
case NFP_CPP_ID(0, NFP_CPP_ACTION_RW, 2): /* {read/write}_swap_be */
return PUSHPULL(P64, P64);
case NFP_CPP_ID(0, NFP_CPP_ACTION_RW, 3): /* {read/write}_swap_le */
return PUSHPULL(P64, P64);
case NFP_CPP_ID(0, 0, 0): /* read_be */
return PUSHPULL(0, P64);
case NFP_CPP_ID(0, 0, 1): /* read_le */
return PUSHPULL(0, P64);
case NFP_CPP_ID(0, 0, 2): /* read_swap_be */
return PUSHPULL(0, P64);
case NFP_CPP_ID(0, 0, 3): /* read_swap_le */
return PUSHPULL(0, P64);
case NFP_CPP_ID(0, 1, 0): /* write_be */
return PUSHPULL(P64, 0);
case NFP_CPP_ID(0, 1, 1): /* write_le */
return PUSHPULL(P64, 0);
case NFP_CPP_ID(0, 1, 2): /* write_swap_be */
return PUSHPULL(P64, 0);
case NFP_CPP_ID(0, 1, 3): /* write_swap_le */
return PUSHPULL(P64, 0);
case NFP_CPP_ID(0, 3, 0): /* atomic_read */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 3, 2): /* mask_compare_write */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 4, 0): /* atomic_write */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 4, 2): /* atomic_write_imm */
return PUSHPULL(0, 0);
case NFP_CPP_ID(0, 4, 3): /* swap_imm */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 5, 0): /* set */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 5, 3): /* test_set_imm */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 6, 0): /* clr */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 6, 3): /* test_clr_imm */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 7, 0): /* add */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 7, 3): /* test_add_imm */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 8, 0): /* addsat */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 8, 3): /* test_subsat_imm */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 9, 0): /* sub */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 9, 3): /* test_sub_imm */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 10, 0): /* subsat */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 10, 3): /* test_subsat_imm */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 13, 0): /* microq128_get */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 13, 1): /* microq128_pop */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 13, 2): /* microq128_put */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 15, 0): /* xor */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 15, 3): /* test_xor_imm */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 28, 0): /* read32_be */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 28, 1): /* read32_le */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 28, 2): /* read32_swap_be */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 28, 3): /* read32_swap_le */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 31, 0): /* write32_be */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 31, 1): /* write32_le */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 31, 2): /* write32_swap_be */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 31, 3): /* write32_swap_le */
return PUSHPULL(P32, 0);
default:
return NFP_ERRNO(EINVAL);
}
}
static inline int
nfp6000_mu_ctm(uint32_t cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
case NFP_CPP_ID(0, 16, 1): /* packet_read_packet_status */
return PUSHPULL(0, P32);
default:
return nfp6000_mu_common(cpp_id);
}
}
static inline int
nfp6000_mu_emu(uint32_t cpp_id)
{
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
case NFP_CPP_ID(0, 18, 0): /* read_queue */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 18, 1): /* read_queue_ring */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 18, 2): /* write_queue */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 18, 3): /* write_queue_ring */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 20, 2): /* journal */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 21, 0): /* get */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 21, 1): /* get_eop */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 21, 2): /* get_freely */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 22, 0): /* pop */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 22, 1): /* pop_eop */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 22, 2): /* pop_freely */
return PUSHPULL(0, P32);
default:
return nfp6000_mu_common(cpp_id);
}
}
static inline int
nfp6000_mu_imu(uint32_t cpp_id)
{
return nfp6000_mu_common(cpp_id);
}
static inline int
nfp6000_mu(uint32_t cpp_id, uint64_t address)
{
int pp;
int island = NFP_CPP_ID_ISLAND_of(cpp_id);
if (island == 0) {
if (address < 0x2000000000ULL)
pp = nfp6000_mu_ctm(cpp_id);
else if (address < 0x8000000000ULL)
pp = nfp6000_mu_emu(cpp_id);
else if (address < 0x9800000000ULL)
pp = nfp6000_mu_ctm(cpp_id);
else if (address < 0x9C00000000ULL)
pp = nfp6000_mu_emu(cpp_id);
else if (address < 0xA000000000ULL)
pp = nfp6000_mu_imu(cpp_id);
else
pp = nfp6000_mu_ctm(cpp_id);
} else if (island >= 24 && island <= 27) {
pp = nfp6000_mu_emu(cpp_id);
} else if (island >= 28 && island <= 31) {
pp = nfp6000_mu_imu(cpp_id);
} else if (island == 1 ||
(island >= 4 && island <= 7) ||
(island >= 12 && island <= 13) ||
(island >= 32 && island <= 47) ||
(island >= 48 && island <= 51)) {
pp = nfp6000_mu_ctm(cpp_id);
} else {
pp = NFP_ERRNO(EINVAL);
}
return pp;
}
static inline int
nfp6000_ila(uint32_t cpp_id)
{
int island = NFP_CPP_ID_ISLAND_of(cpp_id);
if (island && (island < 48 || island > 51))
return NFP_ERRNO(EINVAL);
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
case NFP_CPP_ID(0, 0, 1): /* read_check_error */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 2, 0): /* read_int */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 3, 0): /* write_int */
return PUSHPULL(P32, 0);
default:
return target_rw(cpp_id, P32, 48, 4);
}
}
static inline int
nfp6000_pci(uint32_t cpp_id)
{
int island = NFP_CPP_ID_ISLAND_of(cpp_id);
if (island && (island < 4 || island > 7))
return NFP_ERRNO(EINVAL);
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
case NFP_CPP_ID(0, 2, 0):
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 3, 0):
return PUSHPULL(P32, 0);
default:
return target_rw(cpp_id, P32, 4, 4);
}
}
static inline int
nfp6000_crypto(uint32_t cpp_id)
{
int island = NFP_CPP_ID_ISLAND_of(cpp_id);
if (island && (island < 12 || island > 15))
return NFP_ERRNO(EINVAL);
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
case NFP_CPP_ID(0, 2, 0):
return PUSHPULL(P64, 0);
default:
return target_rw(cpp_id, P64, 12, 4);
}
}
static inline int
nfp6000_cap_xpb(uint32_t cpp_id)
{
int island = NFP_CPP_ID_ISLAND_of(cpp_id);
if (island && (island < 1 || island > 63))
return NFP_ERRNO(EINVAL);
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
case NFP_CPP_ID(0, 0, 1): /* RingGet */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 0, 2): /* Interthread Signal */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 1, 1): /* RingPut */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 1, 2): /* CTNNWr */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 2, 0): /* ReflectRd, signal none */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 2, 1): /* ReflectRd, signal self */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 2, 2): /* ReflectRd, signal remote */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 2, 3): /* ReflectRd, signal both */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 3, 0): /* ReflectWr, signal none */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 3, 1): /* ReflectWr, signal self */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 3, 2): /* ReflectWr, signal remote */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 3, 3): /* ReflectWr, signal both */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, NFP_CPP_ACTION_RW, 1):
return PUSHPULL(P32, P32);
default:
return target_rw(cpp_id, P32, 1, 63);
}
}
static inline int
nfp6000_cls(uint32_t cpp_id)
{
int island = NFP_CPP_ID_ISLAND_of(cpp_id);
if (island && (island < 1 || island > 63))
return NFP_ERRNO(EINVAL);
switch (cpp_id & NFP_CPP_ID(0, ~0, ~0)) {
case NFP_CPP_ID(0, 0, 3): /* xor */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 2, 0): /* set */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 2, 1): /* clr */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 4, 0): /* add */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 4, 1): /* add64 */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 6, 0): /* sub */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 6, 1): /* sub64 */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 6, 2): /* subsat */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 8, 2): /* hash_mask */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 8, 3): /* hash_clear */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 9, 0): /* ring_get */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 9, 1): /* ring_pop */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 9, 2): /* ring_get_freely */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 9, 3): /* ring_pop_freely */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 10, 0): /* ring_put */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 10, 2): /* ring_journal */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 14, 0): /* reflect_write_sig_local */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 15, 1): /* reflect_read_sig_local */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 17, 2): /* statistic */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 24, 0): /* ring_read */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 24, 1): /* ring_write */
return PUSHPULL(P32, 0);
case NFP_CPP_ID(0, 25, 0): /* ring_workq_add_thread */
return PUSHPULL(0, P32);
case NFP_CPP_ID(0, 25, 1): /* ring_workq_add_work */
return PUSHPULL(P32, 0);
default:
return target_rw(cpp_id, P32, 0, 64);
}
}
static inline int
nfp6000_target_pushpull(uint32_t cpp_id, uint64_t address)
{
switch (NFP_CPP_ID_TARGET_of(cpp_id)) {
case NFP6000_CPPTGT_NBI:
return nfp6000_nbi(cpp_id, address);
case NFP6000_CPPTGT_VQDR:
return target_rw(cpp_id, P32, 24, 4);
case NFP6000_CPPTGT_ILA:
return nfp6000_ila(cpp_id);
case NFP6000_CPPTGT_MU:
return nfp6000_mu(cpp_id, address);
case NFP6000_CPPTGT_PCIE:
return nfp6000_pci(cpp_id);
case NFP6000_CPPTGT_ARM:
if (address < 0x10000)
return target_rw(cpp_id, P64, 1, 1);
else
return target_rw(cpp_id, P32, 1, 1);
case NFP6000_CPPTGT_CRYPTO:
return nfp6000_crypto(cpp_id);
case NFP6000_CPPTGT_CTXPB:
return nfp6000_cap_xpb(cpp_id);
case NFP6000_CPPTGT_CLS:
return nfp6000_cls(cpp_id);
case 0:
return target_rw(cpp_id, P32, 4, 4);
default:
return NFP_ERRNO(EINVAL);
}
}
static inline int
nfp_target_pushpull_width(int pp, int write_not_read)
{
if (pp < 0)
return pp;
if (write_not_read)
return PULL_WIDTH(pp);
else
return PUSH_WIDTH(pp);
}
static inline int
nfp6000_target_action_width(uint32_t cpp_id, uint64_t address,
int write_not_read)
{
int pp;
pp = nfp6000_target_pushpull(cpp_id, address);
return nfp_target_pushpull_width(pp, write_not_read);
}
static inline int
nfp_target_action_width(uint32_t model, uint32_t cpp_id, uint64_t address,
int write_not_read)
{
if (NFP_CPP_MODEL_IS_6000(model)) {
return nfp6000_target_action_width(cpp_id, address,
write_not_read);
} else {
return NFP_ERRNO(EINVAL);
}
}
static inline int
nfp_target_cpp(uint32_t cpp_island_id, uint64_t cpp_island_address,
uint32_t *cpp_target_id, uint64_t *cpp_target_address,
const uint32_t *imb_table)
{
int err;
int island = NFP_CPP_ID_ISLAND_of(cpp_island_id);
int target = NFP_CPP_ID_TARGET_of(cpp_island_id);
uint32_t imb;
if (target < 0 || target >= 16)
return NFP_ERRNO(EINVAL);
if (island == 0) {
/* Already translated */
*cpp_target_id = cpp_island_id;
*cpp_target_address = cpp_island_address;
return 0;
}
if (!imb_table) {
/* CPP + Island only allowed on systems with IMB tables */
return NFP_ERRNO(EINVAL);
}
imb = imb_table[target];
*cpp_target_address = cpp_island_address;
err = _nfp6000_cppat_addr_encode(cpp_target_address, island, target,
((imb >> 13) & 7),
((imb >> 12) & 1),
((imb >> 6) & 0x3f),
((imb >> 0) & 0x3f));
if (err == 0) {
*cpp_target_id =
NFP_CPP_ID(target, NFP_CPP_ID_ACTION_of(cpp_island_id),
NFP_CPP_ID_TOKEN_of(cpp_island_id));
}
return err;
}
#endif /* NFP_TARGET_H */