net/ice: handle Rx flex descriptor

Set the RXDID with flex descriptor type by default, change the Rx
function to support new descriptor handling.

Signed-off-by: Haiyue Wang <haiyue.wang@intel.com>
Reviewed-by: Xiaolong Ye <xiaolong.ye@intel.com>
Acked-by: Qi Zhang <qi.z.zhang@intel.com>
This commit is contained in:
Haiyue Wang 2019-09-24 10:38:05 +08:00 committed by Ferruh Yigit
parent ae2e9514ee
commit dbf3c0e77a

View File

@ -13,7 +13,6 @@
PKT_TX_TCP_SEG | \
PKT_TX_OUTER_IP_CKSUM)
#define ICE_RX_ERR_BITS 0x3f
static enum ice_status
ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
@ -25,18 +24,9 @@ ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
enum ice_status err;
uint16_t buf_size, len;
struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
uint32_t rxdid = ICE_RXDID_COMMS_GENERIC;
uint32_t regval;
/**
* The kernel driver uses flex descriptor. It sets the register
* to flex descriptor mode.
* DPDK uses legacy descriptor. It should set the register back
* to the default value, then uses legacy descriptor mode.
*/
regval = (0x01 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
QRXFLXP_CNTXT_RXDID_PRIO_M;
ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
/* Set buffer size as the head split is disabled. */
buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
RTE_PKTMBUF_HEADROOM);
@ -94,6 +84,21 @@ ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
rx_ctx.showiv = 0;
rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
/* Enable Flexible Descriptors in the queue context which
* allows this driver to select a specific receive descriptor format
*/
regval = (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
QRXFLXP_CNTXT_RXDID_IDX_M;
/* increasing context priority to pick up profile ID;
* default is 0x01; setting to 0x03 to ensure profile
* is programming if prev context is of same priority
*/
regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
QRXFLXP_CNTXT_RXDID_PRIO_M;
ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
if (err) {
PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
@ -961,16 +966,15 @@ uint32_t
ice_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
#define ICE_RXQ_SCAN_INTERVAL 4
volatile union ice_rx_desc *rxdp;
volatile union ice_rx_flex_desc *rxdp;
struct ice_rx_queue *rxq;
uint16_t desc = 0;
rxq = dev->data->rx_queues[rx_queue_id];
rxdp = &rxq->rx_ring[rxq->rx_tail];
rxdp = (volatile union ice_rx_flex_desc *)&rxq->rx_ring[rxq->rx_tail];
while ((desc < rxq->nb_rx_desc) &&
((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
ICE_RXD_QW1_STATUS_M) >> ICE_RXD_QW1_STATUS_S) &
(1 << ICE_RX_DESC_STATUS_DD_S)) {
rte_le_to_cpu_16(rxdp->wb.status_error0) &
(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)) {
/**
* Check the DD bit of a rx descriptor of each 4 in a group,
* to avoid checking too frequently and downgrading performance
@ -979,79 +983,77 @@ ice_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
desc += ICE_RXQ_SCAN_INTERVAL;
rxdp += ICE_RXQ_SCAN_INTERVAL;
if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
rxdp = &(rxq->rx_ring[rxq->rx_tail +
rxdp = (volatile union ice_rx_flex_desc *)
&(rxq->rx_ring[rxq->rx_tail +
desc - rxq->nb_rx_desc]);
}
return desc;
}
/* Translate the rx descriptor status to pkt flags */
static inline uint64_t
ice_rxd_status_to_pkt_flags(uint64_t qword)
{
uint64_t flags;
/* Check if RSS_HASH */
flags = (((qword >> ICE_RX_DESC_STATUS_FLTSTAT_S) &
ICE_RX_DESC_FLTSTAT_RSS_HASH) ==
ICE_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
return flags;
}
#define ICE_RX_FLEX_ERR0_BITS \
((1 << ICE_RX_FLEX_DESC_STATUS0_HBO_S) | \
(1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | \
(1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S) | \
(1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S) | \
(1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S) | \
(1 << ICE_RX_FLEX_DESC_STATUS0_RXE_S))
/* Rx L3/L4 checksum */
static inline uint64_t
ice_rxd_error_to_pkt_flags(uint64_t qword)
ice_rxd_error_to_pkt_flags(uint16_t stat_err0)
{
uint64_t flags = 0;
uint64_t error_bits = (qword >> ICE_RXD_QW1_ERROR_S);
if (likely((error_bits & ICE_RX_ERR_BITS) == 0)) {
/* check if HW has decoded the packet and checksum */
if (unlikely(!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))))
return 0;
if (likely(!(stat_err0 & ICE_RX_FLEX_ERR0_BITS))) {
flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
return flags;
}
if (unlikely(error_bits & (1 << ICE_RX_DESC_ERROR_IPE_S)))
if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S)))
flags |= PKT_RX_IP_CKSUM_BAD;
else
flags |= PKT_RX_IP_CKSUM_GOOD;
if (unlikely(error_bits & (1 << ICE_RX_DESC_ERROR_L4E_S)))
if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)))
flags |= PKT_RX_L4_CKSUM_BAD;
else
flags |= PKT_RX_L4_CKSUM_GOOD;
if (unlikely(error_bits & (1 << ICE_RX_DESC_ERROR_EIPE_S)))
if (unlikely(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))
flags |= PKT_RX_EIP_CKSUM_BAD;
return flags;
}
static inline void
ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_desc *rxdp)
ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_flex_desc *rxdp)
{
if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
(1 << ICE_RX_DESC_STATUS_L2TAG1P_S)) {
if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
(1 << ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S)) {
mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
mb->vlan_tci =
rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
rte_le_to_cpu_16(rxdp->wb.l2tag1);
PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
rte_le_to_cpu_16(rxdp->wb.l2tag1));
} else {
mb->vlan_tci = 0;
}
#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
(1 << ICE_RX_DESC_EXT_STATUS_L2TAG2P_S)) {
if (rte_le_to_cpu_16(rxdp->wb.status_error1) &
(1 << ICE_RX_FLEX_DESC_STATUS1_L2TAG2P_S)) {
mb->ol_flags |= PKT_RX_QINQ_STRIPPED | PKT_RX_QINQ |
PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN;
mb->vlan_tci_outer = mb->vlan_tci;
mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd);
PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
rte_le_to_cpu_16(rxdp->wb.l2tag2_1st),
rte_le_to_cpu_16(rxdp->wb.l2tag2_2nd));
} else {
mb->vlan_tci_outer = 0;
}
@ -1060,6 +1062,21 @@ ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_desc *rxdp)
mb->vlan_tci, mb->vlan_tci_outer);
}
static inline void
ice_rxd_to_pkt_fields(struct rte_mbuf *mb,
volatile union ice_rx_flex_desc *rxdp)
{
volatile struct ice_32b_rx_flex_desc_comms *desc =
(volatile struct ice_32b_rx_flex_desc_comms *)rxdp;
uint16_t stat_err;
stat_err = rte_le_to_cpu_16(desc->status_error0);
if (likely(stat_err & (1 << ICE_RX_FLEX_DESC_STATUS0_RSS_VALID_S))) {
mb->ol_flags |= PKT_RX_RSS_HASH;
mb->hash.rss = rte_le_to_cpu_32(desc->rss_hash);
}
}
#ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
#define ICE_LOOK_AHEAD 8
#if (ICE_LOOK_AHEAD != 8)
@ -1068,25 +1085,23 @@ ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_desc *rxdp)
static inline int
ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
{
volatile union ice_rx_desc *rxdp;
volatile union ice_rx_flex_desc *rxdp;
struct ice_rx_entry *rxep;
struct rte_mbuf *mb;
uint16_t stat_err0;
uint16_t pkt_len;
uint64_t qword1;
uint32_t rx_status;
int32_t s[ICE_LOOK_AHEAD], nb_dd;
int32_t i, j, nb_rx = 0;
uint64_t pkt_flags = 0;
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
rxdp = &rxq->rx_ring[rxq->rx_tail];
rxdp = (volatile union ice_rx_flex_desc *)&rxq->rx_ring[rxq->rx_tail];
rxep = &rxq->sw_ring[rxq->rx_tail];
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
rx_status = (qword1 & ICE_RXD_QW1_STATUS_M) >> ICE_RXD_QW1_STATUS_S;
stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
/* Make sure there is at least 1 packet to receive */
if (!(rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)))
if (!(stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
return 0;
/**
@ -1096,42 +1111,31 @@ ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
/* Read desc statuses backwards to avoid race condition */
for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--) {
qword1 = rte_le_to_cpu_64(
rxdp[j].wb.qword1.status_error_len);
s[j] = (qword1 & ICE_RXD_QW1_STATUS_M) >>
ICE_RXD_QW1_STATUS_S;
}
for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--)
s[j] = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
rte_smp_rmb();
/* Compute how many status bits were set */
for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
nb_dd += s[j] & (1 << ICE_RX_DESC_STATUS_DD_S);
nb_dd += s[j] & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S);
nb_rx += nb_dd;
/* Translate descriptor info to mbuf parameters */
for (j = 0; j < nb_dd; j++) {
mb = rxep[j].mbuf;
qword1 = rte_le_to_cpu_64(
rxdp[j].wb.qword1.status_error_len);
pkt_len = ((qword1 & ICE_RXD_QW1_LEN_PBUF_M) >>
ICE_RXD_QW1_LEN_PBUF_S) - rxq->crc_len;
pkt_len = (rte_le_to_cpu_16(rxdp[j].wb.pkt_len) &
ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
mb->data_len = pkt_len;
mb->pkt_len = pkt_len;
mb->ol_flags = 0;
pkt_flags = ice_rxd_status_to_pkt_flags(qword1);
pkt_flags |= ice_rxd_error_to_pkt_flags(qword1);
if (pkt_flags & PKT_RX_RSS_HASH)
mb->hash.rss =
rte_le_to_cpu_32(
rxdp[j].wb.qword0.hi_dword.rss);
mb->packet_type = ptype_tbl[(uint8_t)(
(qword1 &
ICE_RXD_QW1_PTYPE_M) >>
ICE_RXD_QW1_PTYPE_S)];
stat_err0 = rte_le_to_cpu_16(rxdp[j].wb.status_error0);
pkt_flags = ice_rxd_error_to_pkt_flags(stat_err0);
mb->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
rte_le_to_cpu_16(rxdp[j].wb.ptype_flex_flags0)];
ice_rxd_to_vlan_tci(mb, &rxdp[j]);
ice_rxd_to_pkt_fields(mb, &rxdp[j]);
mb->ol_flags |= pkt_flags;
}
@ -1312,8 +1316,8 @@ ice_recv_scattered_pkts(void *rx_queue,
{
struct ice_rx_queue *rxq = rx_queue;
volatile union ice_rx_desc *rx_ring = rxq->rx_ring;
volatile union ice_rx_desc *rxdp;
union ice_rx_desc rxd;
volatile union ice_rx_flex_desc *rxdp;
union ice_rx_flex_desc rxd;
struct ice_rx_entry *sw_ring = rxq->sw_ring;
struct ice_rx_entry *rxe;
struct rte_mbuf *first_seg = rxq->pkt_first_seg;
@ -1324,21 +1328,18 @@ ice_recv_scattered_pkts(void *rx_queue,
uint16_t nb_rx = 0;
uint16_t nb_hold = 0;
uint16_t rx_packet_len;
uint32_t rx_status;
uint64_t qword1;
uint16_t rx_stat_err0;
uint64_t dma_addr;
uint64_t pkt_flags = 0;
uint64_t pkt_flags;
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
struct rte_eth_dev *dev;
while (nb_rx < nb_pkts) {
rxdp = &rx_ring[rx_id];
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
rx_status = (qword1 & ICE_RXD_QW1_STATUS_M) >>
ICE_RXD_QW1_STATUS_S;
rxdp = (volatile union ice_rx_flex_desc *)&rx_ring[rx_id];
rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
/* Check the DD bit first */
if (!(rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)))
if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
break;
/* allocate mbuf */
@ -1377,14 +1378,10 @@ ice_recv_scattered_pkts(void *rx_queue,
/* Set data buffer address and data length of the mbuf */
rxdp->read.hdr_addr = 0;
rxdp->read.pkt_addr = dma_addr;
rx_packet_len = (qword1 & ICE_RXD_QW1_LEN_PBUF_M) >>
ICE_RXD_QW1_LEN_PBUF_S;
rx_packet_len = rte_le_to_cpu_16(rxd.wb.pkt_len) &
ICE_RX_FLX_DESC_PKT_LEN_M;
rxm->data_len = rx_packet_len;
rxm->data_off = RTE_PKTMBUF_HEADROOM;
ice_rxd_to_vlan_tci(rxm, rxdp);
rxm->packet_type = ptype_tbl[(uint8_t)((qword1 &
ICE_RXD_QW1_PTYPE_M) >>
ICE_RXD_QW1_PTYPE_S)];
/**
* If this is the first buffer of the received packet, set the
@ -1410,7 +1407,7 @@ ice_recv_scattered_pkts(void *rx_queue,
* update the pointer to the last mbuf of the current scattered
* packet and continue to parse the RX ring.
*/
if (!(rx_status & (1 << ICE_RX_DESC_STATUS_EOF_S))) {
if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_EOF_S))) {
last_seg = rxm;
continue;
}
@ -1442,13 +1439,11 @@ ice_recv_scattered_pkts(void *rx_queue,
first_seg->port = rxq->port_id;
first_seg->ol_flags = 0;
pkt_flags = ice_rxd_status_to_pkt_flags(qword1);
pkt_flags |= ice_rxd_error_to_pkt_flags(qword1);
if (pkt_flags & PKT_RX_RSS_HASH)
first_seg->hash.rss =
rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
first_seg->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
ice_rxd_to_vlan_tci(first_seg, &rxd);
ice_rxd_to_pkt_fields(first_seg, &rxd);
pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
first_seg->ol_flags |= pkt_flags;
/* Prefetch data of first segment, if configured to do so. */
rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
@ -1538,9 +1533,8 @@ ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
int
ice_rx_descriptor_status(void *rx_queue, uint16_t offset)
{
volatile union ice_rx_flex_desc *rxdp;
struct ice_rx_queue *rxq = rx_queue;
volatile uint64_t *status;
uint64_t mask;
uint32_t desc;
if (unlikely(offset >= rxq->nb_rx_desc))
@ -1553,10 +1547,9 @@ ice_rx_descriptor_status(void *rx_queue, uint16_t offset)
if (desc >= rxq->nb_rx_desc)
desc -= rxq->nb_rx_desc;
status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
mask = rte_cpu_to_le_64((1ULL << ICE_RX_DESC_STATUS_DD_S) <<
ICE_RXD_QW1_STATUS_S);
if (*status & mask)
rxdp = (volatile union ice_rx_flex_desc *)&rxq->rx_ring[desc];
if (rte_le_to_cpu_16(rxdp->wb.status_error0) &
(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S))
return RTE_ETH_RX_DESC_DONE;
return RTE_ETH_RX_DESC_AVAIL;
@ -1642,8 +1635,8 @@ ice_recv_pkts(void *rx_queue,
{
struct ice_rx_queue *rxq = rx_queue;
volatile union ice_rx_desc *rx_ring = rxq->rx_ring;
volatile union ice_rx_desc *rxdp;
union ice_rx_desc rxd;
volatile union ice_rx_flex_desc *rxdp;
union ice_rx_flex_desc rxd;
struct ice_rx_entry *sw_ring = rxq->sw_ring;
struct ice_rx_entry *rxe;
struct rte_mbuf *nmb; /* new allocated mbuf */
@ -1652,21 +1645,18 @@ ice_recv_pkts(void *rx_queue,
uint16_t nb_rx = 0;
uint16_t nb_hold = 0;
uint16_t rx_packet_len;
uint32_t rx_status;
uint64_t qword1;
uint16_t rx_stat_err0;
uint64_t dma_addr;
uint64_t pkt_flags = 0;
uint64_t pkt_flags;
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
struct rte_eth_dev *dev;
while (nb_rx < nb_pkts) {
rxdp = &rx_ring[rx_id];
qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
rx_status = (qword1 & ICE_RXD_QW1_STATUS_M) >>
ICE_RXD_QW1_STATUS_S;
rxdp = (volatile union ice_rx_flex_desc *)&rx_ring[rx_id];
rx_stat_err0 = rte_le_to_cpu_16(rxdp->wb.status_error0);
/* Check the DD bit first */
if (!(rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)))
if (!(rx_stat_err0 & (1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
break;
/* allocate mbuf */
@ -1696,8 +1686,8 @@ ice_recv_pkts(void *rx_queue,
rxdp->read.pkt_addr = dma_addr;
/* calculate rx_packet_len of the received pkt */
rx_packet_len = ((qword1 & ICE_RXD_QW1_LEN_PBUF_M) >>
ICE_RXD_QW1_LEN_PBUF_S) - rxq->crc_len;
rx_packet_len = (rte_le_to_cpu_16(rxd.wb.pkt_len) &
ICE_RX_FLX_DESC_PKT_LEN_M) - rxq->crc_len;
/* fill old mbuf with received descriptor: rxd */
rxm->data_off = RTE_PKTMBUF_HEADROOM;
@ -1707,15 +1697,11 @@ ice_recv_pkts(void *rx_queue,
rxm->pkt_len = rx_packet_len;
rxm->data_len = rx_packet_len;
rxm->port = rxq->port_id;
ice_rxd_to_vlan_tci(rxm, rxdp);
rxm->packet_type = ptype_tbl[(uint8_t)((qword1 &
ICE_RXD_QW1_PTYPE_M) >>
ICE_RXD_QW1_PTYPE_S)];
pkt_flags = ice_rxd_status_to_pkt_flags(qword1);
pkt_flags |= ice_rxd_error_to_pkt_flags(qword1);
if (pkt_flags & PKT_RX_RSS_HASH)
rxm->hash.rss =
rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
rxm->packet_type = ptype_tbl[ICE_RX_FLEX_DESC_PTYPE_M &
rte_le_to_cpu_16(rxd.wb.ptype_flex_flags0)];
ice_rxd_to_vlan_tci(rxm, &rxd);
ice_rxd_to_pkt_fields(rxm, &rxd);
pkt_flags = ice_rxd_error_to_pkt_flags(rx_stat_err0);
rxm->ol_flags |= pkt_flags;
/* copy old mbuf to rx_pkts */
rx_pkts[nb_rx++] = rxm;