app/crypto-perf: move verify as single test type

In order to simplify throughput and latency tests,
verify option has been removed from these and moved
as a separate test.

Signed-off-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
This commit is contained in:
Sergio Gonzalez Monroy 2017-03-27 12:26:01 +01:00 committed by Pablo de Lara
parent 8612836d6f
commit df52cb3b6e
10 changed files with 673 additions and 309 deletions

View File

@ -42,6 +42,7 @@ SRCS-y += cperf_options_parsing.c
SRCS-y += cperf_test_vectors.c
SRCS-y += cperf_test_throughput.c
SRCS-y += cperf_test_latency.c
SRCS-y += cperf_test_verify.c
SRCS-y += cperf_test_vector_parsing.c
include $(RTE_SDK)/mk/rte.app.mk

View File

@ -50,11 +50,6 @@ typedef int (*cperf_populate_ops_t)(struct rte_crypto_op **ops,
const struct cperf_options *options,
const struct cperf_test_vector *test_vector);
typedef int (*cperf_verify_crypto_op_t)(struct rte_mbuf *m,
const struct cperf_options *options,
const struct cperf_test_vector *test_vector);
struct cperf_op_fns {
cperf_sessions_create_t sess_create;
cperf_populate_ops_t populate_ops;

View File

@ -17,7 +17,6 @@
#define CPERF_OPTYPE ("optype")
#define CPERF_SESSIONLESS ("sessionless")
#define CPERF_OUT_OF_PLACE ("out-of-place")
#define CPERF_VERIFY ("verify")
#define CPERF_TEST_FILE ("test-file")
#define CPERF_TEST_NAME ("test-name")
@ -36,7 +35,8 @@
enum cperf_perf_test_type {
CPERF_TEST_TYPE_THROUGHPUT,
CPERF_TEST_TYPE_LATENCY
CPERF_TEST_TYPE_LATENCY,
CPERF_TEST_TYPE_VERIFY
};
@ -66,7 +66,6 @@ struct cperf_options {
uint32_t sessionless:1;
uint32_t out_of_place:1;
uint32_t verify:1;
uint32_t silent:1;
uint32_t csv:1;

View File

@ -66,6 +66,10 @@ parse_cperf_test_type(struct cperf_options *opts, const char *arg)
cperf_test_type_strs[CPERF_TEST_TYPE_THROUGHPUT],
CPERF_TEST_TYPE_THROUGHPUT
},
{
cperf_test_type_strs[CPERF_TEST_TYPE_VERIFY],
CPERF_TEST_TYPE_VERIFY
},
{
cperf_test_type_strs[CPERF_TEST_TYPE_LATENCY],
CPERF_TEST_TYPE_LATENCY
@ -261,15 +265,6 @@ parse_out_of_place(struct cperf_options *opts,
return 0;
}
static int
parse_verify(struct cperf_options *opts,
const char *arg __rte_unused)
{
opts->verify = 1;
return 0;
}
static int
parse_test_file(struct cperf_options *opts,
const char *arg)
@ -452,7 +447,6 @@ static struct option lgopts[] = {
{ CPERF_SILENT, no_argument, 0, 0 },
{ CPERF_SESSIONLESS, no_argument, 0, 0 },
{ CPERF_OUT_OF_PLACE, no_argument, 0, 0 },
{ CPERF_VERIFY, no_argument, 0, 0 },
{ CPERF_TEST_FILE, required_argument, 0, 0 },
{ CPERF_TEST_NAME, required_argument, 0, 0 },
@ -490,7 +484,6 @@ cperf_options_default(struct cperf_options *opts)
opts->op_type = CPERF_CIPHER_THEN_AUTH;
opts->silent = 0;
opts->verify = 0;
opts->test_file = NULL;
opts->test_name = NULL;
opts->sessionless = 0;
@ -525,7 +518,6 @@ cperf_opts_parse_long(int opt_idx, struct cperf_options *opts)
{ CPERF_OPTYPE, parse_op_type },
{ CPERF_SESSIONLESS, parse_sessionless },
{ CPERF_OUT_OF_PLACE, parse_out_of_place },
{ CPERF_VERIFY, parse_verify },
{ CPERF_TEST_FILE, parse_test_file },
{ CPERF_TEST_NAME, parse_test_name },
{ CPERF_CIPHER_ALGO, parse_cipher_algo },
@ -583,7 +575,8 @@ cperf_options_check(struct cperf_options *options)
return -EINVAL;
}
if (options->verify && options->test_file == NULL) {
if (options->test == CPERF_TEST_TYPE_VERIFY &&
options->test_file == NULL) {
RTE_LOG(ERR, USER1, "Define path to the file with test"
" vectors.\n");
return -EINVAL;
@ -602,7 +595,7 @@ cperf_options_check(struct cperf_options *options)
return -EINVAL;
}
if (options->verify &&
if (options->test == CPERF_TEST_TYPE_VERIFY &&
options->total_ops > options->pool_sz) {
RTE_LOG(ERR, USER1, "Total number of ops must be less than or"
" equal to the pool size.\n");
@ -669,7 +662,6 @@ cperf_options_dump(struct cperf_options *opts)
printf("# cryptodev type: %s\n", opts->device_type);
printf("#\n");
printf("# crypto operation: %s\n", cperf_op_type_strs[opts->op_type]);
printf("# verify operation: %s\n", opts->verify ? "yes" : "no");
printf("# sessionless: %s\n", opts->sessionless ? "yes" : "no");
printf("# out of place: %s\n", opts->out_of_place ? "yes" : "no");

View File

@ -80,7 +80,6 @@ struct cperf_latency_ctx {
struct rte_cryptodev_sym_session *sess;
cperf_populate_ops_t populate_ops;
cperf_verify_crypto_op_t verify_op_output;
const struct cperf_options *options;
const struct cperf_test_vector *test_vector;
@ -318,100 +317,6 @@ cperf_latency_test_constructor(uint8_t dev_id, uint16_t qp_id,
return NULL;
}
static int
cperf_latency_test_verifier(struct rte_mbuf *mbuf,
const struct cperf_options *options,
const struct cperf_test_vector *vector)
{
const struct rte_mbuf *m;
uint32_t len;
uint16_t nb_segs;
uint8_t *data;
uint32_t cipher_offset, auth_offset;
uint8_t cipher, auth;
int res = 0;
m = mbuf;
nb_segs = m->nb_segs;
len = 0;
while (m && nb_segs != 0) {
len += m->data_len;
m = m->next;
nb_segs--;
}
data = rte_malloc(NULL, len, 0);
if (data == NULL)
return 1;
m = mbuf;
nb_segs = m->nb_segs;
len = 0;
while (m && nb_segs != 0) {
memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *),
m->data_len);
len += m->data_len;
m = m->next;
nb_segs--;
}
switch (options->op_type) {
case CPERF_CIPHER_ONLY:
cipher = 1;
cipher_offset = 0;
auth = 0;
auth_offset = 0;
break;
case CPERF_CIPHER_THEN_AUTH:
cipher = 1;
cipher_offset = 0;
auth = 1;
auth_offset = vector->plaintext.length;
break;
case CPERF_AUTH_ONLY:
cipher = 0;
cipher_offset = 0;
auth = 1;
auth_offset = vector->plaintext.length;
break;
case CPERF_AUTH_THEN_CIPHER:
cipher = 1;
cipher_offset = 0;
auth = 1;
auth_offset = vector->plaintext.length;
break;
case CPERF_AEAD:
cipher = 1;
cipher_offset = vector->aad.length;
auth = 1;
auth_offset = vector->aad.length + vector->plaintext.length;
break;
}
if (cipher == 1) {
if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
res += memcmp(data + cipher_offset,
vector->ciphertext.data,
vector->ciphertext.length);
else
res += memcmp(data + cipher_offset,
vector->plaintext.data,
vector->plaintext.length);
}
if (auth == 1) {
if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE)
res += memcmp(data + auth_offset,
vector->digest.data,
vector->digest.length);
}
if (res != 0)
res = 1;
return res;
}
int
cperf_latency_test_runner(void *arg)
{
@ -571,26 +476,6 @@ cperf_latency_test_runner(void *arg)
tsc_tot += tsc_val;
}
if (ctx->options->verify) {
struct rte_mbuf **mbufs;
if (ctx->options->out_of_place == 1)
mbufs = ctx->mbufs_out;
else
mbufs = ctx->mbufs_in;
for (i = 0; i < ctx->options->total_ops; i++) {
if (ctx->res[i].status != RTE_CRYPTO_OP_STATUS_SUCCESS
|| cperf_latency_test_verifier(mbufs[i],
ctx->options,
ctx->test_vector)) {
ctx->results.ops_failed++;
}
}
}
ctx->results.enqd_tot = enqd_tot;
ctx->results.enqd_max = enqd_max;
ctx->results.enqd_min = enqd_min;
@ -665,8 +550,6 @@ cperf_latency_test_destructor(void *arg)
printf("\n# Device %d on lcore %u\n", ctx->dev_id,
ctx->lcore_id);
printf("\n# total operations: %u", ctx->options->total_ops);
printf("\n# verified failed: %"PRIu64,
ctx->results.ops_failed);
printf("\n# burst number: %"PRIu64,
ctx->results.burst_num);
printf("\n#");

View File

@ -45,8 +45,6 @@ struct cperf_throughput_results {
uint64_t ops_enqueued_failed;
uint64_t ops_dequeued_failed;
uint64_t ops_failed;
double ops_per_second;
double throughput_gbps;
double cycles_per_byte;
@ -67,7 +65,6 @@ struct cperf_throughput_ctx {
struct rte_cryptodev_sym_session *sess;
cperf_populate_ops_t populate_ops;
cperf_verify_crypto_op_t verify_op_output;
const struct cperf_options *options;
const struct cperf_test_vector *test_vector;
@ -75,10 +72,6 @@ struct cperf_throughput_ctx {
};
struct cperf_op_result {
enum rte_crypto_op_status status;
};
static void
cperf_throughput_test_free(struct cperf_throughput_ctx *ctx, uint32_t mbuf_nb)
{
@ -297,112 +290,10 @@ cperf_throughput_test_constructor(uint8_t dev_id, uint16_t qp_id,
return NULL;
}
static int
cperf_throughput_test_verifier(struct rte_mbuf *mbuf,
const struct cperf_options *options,
const struct cperf_test_vector *vector)
{
const struct rte_mbuf *m;
uint32_t len;
uint16_t nb_segs;
uint8_t *data;
uint32_t cipher_offset, auth_offset;
uint8_t cipher, auth;
int res = 0;
m = mbuf;
nb_segs = m->nb_segs;
len = 0;
while (m && nb_segs != 0) {
len += m->data_len;
m = m->next;
nb_segs--;
}
data = rte_malloc(NULL, len, 0);
if (data == NULL)
return 1;
m = mbuf;
nb_segs = m->nb_segs;
len = 0;
while (m && nb_segs != 0) {
memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *),
m->data_len);
len += m->data_len;
m = m->next;
nb_segs--;
}
switch (options->op_type) {
case CPERF_CIPHER_ONLY:
cipher = 1;
cipher_offset = 0;
auth = 0;
auth_offset = 0;
break;
case CPERF_CIPHER_THEN_AUTH:
cipher = 1;
cipher_offset = 0;
auth = 1;
auth_offset = vector->plaintext.length;
break;
case CPERF_AUTH_ONLY:
cipher = 0;
cipher_offset = 0;
auth = 1;
auth_offset = vector->plaintext.length;
break;
case CPERF_AUTH_THEN_CIPHER:
cipher = 1;
cipher_offset = 0;
auth = 1;
auth_offset = vector->plaintext.length;
break;
case CPERF_AEAD:
cipher = 1;
cipher_offset = vector->aad.length;
auth = 1;
auth_offset = vector->aad.length + vector->plaintext.length;
break;
}
if (cipher == 1) {
if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
res += memcmp(data + cipher_offset,
vector->ciphertext.data,
vector->ciphertext.length);
else
res += memcmp(data + cipher_offset,
vector->plaintext.data,
vector->plaintext.length);
}
if (auth == 1) {
if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE)
res += memcmp(data + auth_offset,
vector->digest.data,
vector->digest.length);
}
if (res != 0)
res = 1;
return res;
}
int
cperf_throughput_test_runner(void *test_ctx)
{
struct cperf_throughput_ctx *ctx = test_ctx;
struct cperf_op_result *res, *pres;
if (ctx->options->verify) {
res = rte_malloc(NULL, sizeof(struct cperf_op_result) *
ctx->options->total_ops, 0);
if (res == NULL)
return 0;
}
uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
@ -410,7 +301,6 @@ cperf_throughput_test_runner(void *test_ctx)
uint64_t i, m_idx = 0, tsc_start, tsc_end, tsc_duration;
uint16_t ops_unused = 0;
uint64_t idx = 0;
struct rte_crypto_op *ops[ctx->options->burst_sz];
struct rte_crypto_op *ops_processed[ctx->options->burst_sz];
@ -465,13 +355,6 @@ cperf_throughput_test_runner(void *test_ctx)
ops_needed, ctx->sess, ctx->options,
ctx->test_vector);
if (ctx->options->verify) {
for (i = 0; i < ops_needed; i++) {
ops[i]->opaque_data = (void *)&res[idx];
idx++;
}
}
#ifdef CPERF_LINEARIZATION_ENABLE
if (linearize) {
/* PMD doesn't support scatter-gather and source buffer
@ -502,16 +385,6 @@ cperf_throughput_test_runner(void *test_ctx)
ops_processed, ctx->options->burst_sz);
if (likely(ops_deqd)) {
if (ctx->options->verify) {
void *opq;
for (i = 0; i < ops_deqd; i++) {
opq = (ops_processed[i]->opaque_data);
pres = (struct cperf_op_result *)opq;
pres->status = ops_processed[i]->status;
}
}
/* free crypto ops so they can be reused. We don't free
* the mbufs here as we don't want to reuse them as
* the crypto operation will change the data and cause
@ -547,15 +420,6 @@ cperf_throughput_test_runner(void *test_ctx)
if (ops_deqd == 0)
ops_deqd_failed++;
else {
if (ctx->options->verify) {
void *opq;
for (i = 0; i < ops_deqd; i++) {
opq = (ops_processed[i]->opaque_data);
pres = (struct cperf_op_result *)opq;
pres->status = ops_processed[i]->status;
}
}
for (i = 0; i < ops_deqd; i++)
rte_crypto_op_free(ops_processed[i]);
@ -566,28 +430,6 @@ cperf_throughput_test_runner(void *test_ctx)
tsc_end = rte_rdtsc_precise();
tsc_duration = (tsc_end - tsc_start);
if (ctx->options->verify) {
struct rte_mbuf **mbufs;
if (ctx->options->out_of_place == 1)
mbufs = ctx->mbufs_out;
else
mbufs = ctx->mbufs_in;
for (i = 0; i < ctx->options->total_ops; i++) {
if (res[i].status != RTE_CRYPTO_OP_STATUS_SUCCESS ||
cperf_throughput_test_verifier(
mbufs[i], ctx->options,
ctx->test_vector)) {
ctx->results.ops_failed++;
}
}
rte_free(res);
}
/* Calculate average operations processed per second */
ctx->results.ops_per_second = ((double)ctx->options->total_ops /
tsc_duration) * rte_get_tsc_hz();
@ -596,7 +438,6 @@ cperf_throughput_test_runner(void *test_ctx)
ctx->results.throughput_gbps = ((ctx->results.ops_per_second *
ctx->options->buffer_sz * 8) / 1000000000);
/* Calculate average cycles per byte */
ctx->results.cycles_per_byte = ((double)tsc_duration /
ctx->options->total_ops) / ctx->options->buffer_sz;
@ -611,7 +452,6 @@ cperf_throughput_test_runner(void *test_ctx)
}
void
cperf_throughput_test_destructor(void *arg)
{

View File

@ -0,0 +1,593 @@
/*-
* BSD LICENSE
*
* Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_malloc.h>
#include <rte_cycles.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>
#include "cperf_test_verify.h"
#include "cperf_ops.h"
struct cperf_verify_results {
uint64_t ops_enqueued;
uint64_t ops_dequeued;
uint64_t ops_enqueued_failed;
uint64_t ops_dequeued_failed;
uint64_t ops_failed;
};
struct cperf_verify_ctx {
uint8_t dev_id;
uint16_t qp_id;
uint8_t lcore_id;
struct rte_mempool *pkt_mbuf_pool_in;
struct rte_mempool *pkt_mbuf_pool_out;
struct rte_mbuf **mbufs_in;
struct rte_mbuf **mbufs_out;
struct rte_mempool *crypto_op_pool;
struct rte_cryptodev_sym_session *sess;
cperf_populate_ops_t populate_ops;
const struct cperf_options *options;
const struct cperf_test_vector *test_vector;
struct cperf_verify_results results;
};
struct cperf_op_result {
enum rte_crypto_op_status status;
};
static void
cperf_verify_test_free(struct cperf_verify_ctx *ctx, uint32_t mbuf_nb)
{
uint32_t i;
if (ctx) {
if (ctx->sess)
rte_cryptodev_sym_session_free(ctx->dev_id, ctx->sess);
if (ctx->mbufs_in) {
for (i = 0; i < mbuf_nb; i++)
rte_pktmbuf_free(ctx->mbufs_in[i]);
rte_free(ctx->mbufs_in);
}
if (ctx->mbufs_out) {
for (i = 0; i < mbuf_nb; i++) {
if (ctx->mbufs_out[i] != NULL)
rte_pktmbuf_free(ctx->mbufs_out[i]);
}
rte_free(ctx->mbufs_out);
}
if (ctx->pkt_mbuf_pool_in)
rte_mempool_free(ctx->pkt_mbuf_pool_in);
if (ctx->pkt_mbuf_pool_out)
rte_mempool_free(ctx->pkt_mbuf_pool_out);
if (ctx->crypto_op_pool)
rte_mempool_free(ctx->crypto_op_pool);
rte_free(ctx);
}
}
static struct rte_mbuf *
cperf_mbuf_create(struct rte_mempool *mempool,
uint32_t segments_nb,
const struct cperf_options *options,
const struct cperf_test_vector *test_vector)
{
struct rte_mbuf *mbuf;
uint32_t segment_sz = options->buffer_sz / segments_nb;
uint32_t last_sz = options->buffer_sz % segments_nb;
uint8_t *mbuf_data;
uint8_t *test_data =
(options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
test_vector->plaintext.data :
test_vector->ciphertext.data;
mbuf = rte_pktmbuf_alloc(mempool);
if (mbuf == NULL)
goto error;
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
if (mbuf_data == NULL)
goto error;
memcpy(mbuf_data, test_data, segment_sz);
test_data += segment_sz;
segments_nb--;
while (segments_nb) {
struct rte_mbuf *m;
m = rte_pktmbuf_alloc(mempool);
if (m == NULL)
goto error;
rte_pktmbuf_chain(mbuf, m);
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
if (mbuf_data == NULL)
goto error;
memcpy(mbuf_data, test_data, segment_sz);
test_data += segment_sz;
segments_nb--;
}
if (last_sz) {
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz);
if (mbuf_data == NULL)
goto error;
memcpy(mbuf_data, test_data, last_sz);
}
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf,
options->auth_digest_sz);
if (mbuf_data == NULL)
goto error;
if (options->op_type == CPERF_AEAD) {
uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf,
RTE_ALIGN_CEIL(options->auth_aad_sz, 16));
if (aead == NULL)
goto error;
memcpy(aead, test_vector->aad.data, test_vector->aad.length);
}
return mbuf;
error:
if (mbuf != NULL)
rte_pktmbuf_free(mbuf);
return NULL;
}
void *
cperf_verify_test_constructor(uint8_t dev_id, uint16_t qp_id,
const struct cperf_options *options,
const struct cperf_test_vector *test_vector,
const struct cperf_op_fns *op_fns)
{
struct cperf_verify_ctx *ctx = NULL;
unsigned int mbuf_idx = 0;
char pool_name[32] = "";
ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0);
if (ctx == NULL)
goto err;
ctx->dev_id = dev_id;
ctx->qp_id = qp_id;
ctx->populate_ops = op_fns->populate_ops;
ctx->options = options;
ctx->test_vector = test_vector;
ctx->sess = op_fns->sess_create(dev_id, options, test_vector);
if (ctx->sess == NULL)
goto err;
snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d",
dev_id);
ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name,
options->pool_sz * options->segments_nb, 0, 0,
RTE_PKTMBUF_HEADROOM +
RTE_CACHE_LINE_ROUNDUP(
(options->buffer_sz / options->segments_nb) +
(options->buffer_sz % options->segments_nb) +
options->auth_digest_sz),
rte_socket_id());
if (ctx->pkt_mbuf_pool_in == NULL)
goto err;
/* Generate mbufs_in with plaintext populated for test */
if (ctx->options->pool_sz % ctx->options->burst_sz)
goto err;
ctx->mbufs_in = rte_malloc(NULL,
(sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0);
for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create(
ctx->pkt_mbuf_pool_in, options->segments_nb,
options, test_vector);
if (ctx->mbufs_in[mbuf_idx] == NULL)
goto err;
}
if (options->out_of_place == 1) {
snprintf(pool_name, sizeof(pool_name), "cperf_pool_out_cdev_%d",
dev_id);
ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create(
pool_name, options->pool_sz, 0, 0,
RTE_PKTMBUF_HEADROOM +
RTE_CACHE_LINE_ROUNDUP(
options->buffer_sz +
options->auth_digest_sz),
rte_socket_id());
if (ctx->pkt_mbuf_pool_out == NULL)
goto err;
}
ctx->mbufs_out = rte_malloc(NULL,
(sizeof(struct rte_mbuf *) *
ctx->options->pool_sz), 0);
for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
if (options->out_of_place == 1) {
ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create(
ctx->pkt_mbuf_pool_out, 1,
options, test_vector);
if (ctx->mbufs_out[mbuf_idx] == NULL)
goto err;
} else {
ctx->mbufs_out[mbuf_idx] = NULL;
}
}
snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d",
dev_id);
ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name,
RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz, 0, 0,
rte_socket_id());
if (ctx->crypto_op_pool == NULL)
goto err;
return ctx;
err:
cperf_verify_test_free(ctx, mbuf_idx);
return NULL;
}
static int
cperf_verify_op(struct rte_crypto_op *op,
const struct cperf_options *options,
const struct cperf_test_vector *vector)
{
const struct rte_mbuf *m;
uint32_t len;
uint16_t nb_segs;
uint8_t *data;
uint32_t cipher_offset, auth_offset;
uint8_t cipher, auth;
int res = 0;
if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
return 1;
if (op->sym->m_dst)
m = op->sym->m_dst;
else
m = op->sym->m_src;
nb_segs = m->nb_segs;
len = 0;
while (m && nb_segs != 0) {
len += m->data_len;
m = m->next;
nb_segs--;
}
data = rte_malloc(NULL, len, 0);
if (data == NULL)
return 1;
if (op->sym->m_dst)
m = op->sym->m_dst;
else
m = op->sym->m_src;
nb_segs = m->nb_segs;
len = 0;
while (m && nb_segs != 0) {
memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *),
m->data_len);
len += m->data_len;
m = m->next;
nb_segs--;
}
switch (options->op_type) {
case CPERF_CIPHER_ONLY:
cipher = 1;
cipher_offset = 0;
auth = 0;
auth_offset = 0;
break;
case CPERF_CIPHER_THEN_AUTH:
cipher = 1;
cipher_offset = 0;
auth = 1;
auth_offset = vector->plaintext.length;
break;
case CPERF_AUTH_ONLY:
cipher = 0;
cipher_offset = 0;
auth = 1;
auth_offset = vector->plaintext.length;
break;
case CPERF_AUTH_THEN_CIPHER:
cipher = 1;
cipher_offset = 0;
auth = 1;
auth_offset = vector->plaintext.length;
break;
case CPERF_AEAD:
cipher = 1;
cipher_offset = vector->aad.length;
auth = 1;
auth_offset = vector->aad.length + vector->plaintext.length;
break;
}
if (cipher == 1) {
if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
res += memcmp(data + cipher_offset,
vector->ciphertext.data,
vector->ciphertext.length);
else
res += memcmp(data + cipher_offset,
vector->plaintext.data,
vector->plaintext.length);
}
if (auth == 1) {
if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE)
res += memcmp(data + auth_offset,
vector->digest.data,
vector->digest.length);
}
return !!res;
}
int
cperf_verify_test_runner(void *test_ctx)
{
struct cperf_verify_ctx *ctx = test_ctx;
uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
uint64_t i, m_idx = 0;
uint16_t ops_unused = 0;
struct rte_crypto_op *ops[ctx->options->burst_sz];
struct rte_crypto_op *ops_processed[ctx->options->burst_sz];
uint32_t lcore = rte_lcore_id();
#ifdef CPERF_LINEARIZATION_ENABLE
struct rte_cryptodev_info dev_info;
int linearize = 0;
/* Check if source mbufs require coalescing */
if (ctx->options->segments_nb > 1) {
rte_cryptodev_info_get(ctx->dev_id, &dev_info);
if ((dev_info.feature_flags &
RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
linearize = 1;
}
#endif /* CPERF_LINEARIZATION_ENABLE */
ctx->lcore_id = lcore;
if (!ctx->options->csv)
printf("\n# Running verify test on device: %u, lcore: %u\n",
ctx->dev_id, lcore);
while (ops_enqd_total < ctx->options->total_ops) {
uint16_t burst_size = ((ops_enqd_total + ctx->options->burst_sz)
<= ctx->options->total_ops) ?
ctx->options->burst_sz :
ctx->options->total_ops -
ops_enqd_total;
uint16_t ops_needed = burst_size - ops_unused;
/* Allocate crypto ops from pool */
if (ops_needed != rte_crypto_op_bulk_alloc(
ctx->crypto_op_pool,
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
ops, ops_needed))
return -1;
/* Setup crypto op, attach mbuf etc */
(ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx],
&ctx->mbufs_out[m_idx],
ops_needed, ctx->sess, ctx->options,
ctx->test_vector);
#ifdef CPERF_LINEARIZATION_ENABLE
if (linearize) {
/* PMD doesn't support scatter-gather and source buffer
* is segmented.
* We need to linearize it before enqueuing.
*/
for (i = 0; i < burst_size; i++)
rte_pktmbuf_linearize(ops[i]->sym->m_src);
}
#endif /* CPERF_LINEARIZATION_ENABLE */
/* Enqueue burst of ops on crypto device */
ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
ops, burst_size);
if (ops_enqd < burst_size)
ops_enqd_failed++;
/**
* Calculate number of ops not enqueued (mainly for hw
* accelerators whose ingress queue can fill up).
*/
ops_unused = burst_size - ops_enqd;
ops_enqd_total += ops_enqd;
/* Dequeue processed burst of ops from crypto device */
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
ops_processed, ctx->options->burst_sz);
m_idx += ops_needed;
if (m_idx + ctx->options->burst_sz > ctx->options->pool_sz)
m_idx = 0;
if (ops_deqd == 0) {
/**
* Count dequeue polls which didn't return any
* processed operations. This statistic is mainly
* relevant to hw accelerators.
*/
ops_deqd_failed++;
continue;
}
for (i = 0; i < ops_deqd; i++) {
if (cperf_verify_op(ops_processed[i], ctx->options,
ctx->test_vector))
ctx->results.ops_failed++;
/* free crypto ops so they can be reused. We don't free
* the mbufs here as we don't want to reuse them as
* the crypto operation will change the data and cause
* failures.
*/
rte_crypto_op_free(ops_processed[i]);
ops_deqd_total += ops_deqd;
}
}
/* Dequeue any operations still in the crypto device */
while (ops_deqd_total < ctx->options->total_ops) {
/* Sending 0 length burst to flush sw crypto device */
rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
/* dequeue burst */
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
ops_processed, ctx->options->burst_sz);
if (ops_deqd == 0) {
ops_deqd_failed++;
continue;
}
for (i = 0; i < ops_deqd; i++) {
if (cperf_verify_op(ops_processed[i], ctx->options,
ctx->test_vector))
ctx->results.ops_failed++;
/* free crypto ops so they can be reused. We don't free
* the mbufs here as we don't want to reuse them as
* the crypto operation will change the data and cause
* failures.
*/
rte_crypto_op_free(ops_processed[i]);
ops_deqd_total += ops_deqd;
}
}
ctx->results.ops_enqueued = ops_enqd_total;
ctx->results.ops_dequeued = ops_deqd_total;
ctx->results.ops_enqueued_failed = ops_enqd_failed;
ctx->results.ops_dequeued_failed = ops_deqd_failed;
return 0;
}
void
cperf_verify_test_destructor(void *arg)
{
struct cperf_verify_ctx *ctx = arg;
struct cperf_verify_results *results = &ctx->results;
static int only_once;
if (ctx == NULL)
return;
if (!ctx->options->csv) {
printf("\n# Device %d on lcore %u\n",
ctx->dev_id, ctx->lcore_id);
printf("# Buffer Size(B)\t Enqueued\t Dequeued\tFailed Enq"
"\tFailed Deq\tEmpty Polls\n");
printf("\n%16u\t%10"PRIu64"\t%10"PRIu64"\t%10"PRIu64"\t"
"%10"PRIu64"\t%10"PRIu64"\n",
ctx->options->buffer_sz,
results->ops_enqueued,
results->ops_dequeued,
results->ops_enqueued_failed,
results->ops_dequeued_failed,
results->ops_failed);
} else {
if (!only_once)
printf("\n# CPU lcore id, Burst Size(B), "
"Buffer Size(B),Enqueued,Dequeued,Failed Enq,"
"Failed Deq,Empty Polls\n");
only_once = 1;
printf("%u;%u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
"%"PRIu64"\n",
ctx->lcore_id,
ctx->options->burst_sz,
ctx->options->buffer_sz,
results->ops_enqueued,
results->ops_dequeued,
results->ops_enqueued_failed,
results->ops_dequeued_failed,
results->ops_failed);
}
cperf_verify_test_free(ctx, ctx->options->pool_sz);
}

View File

@ -0,0 +1,58 @@
/*-
* BSD LICENSE
*
* Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _CPERF_VERIFY_
#define _CPERF_VERIFY_
#include <stdint.h>
#include <rte_mbuf.h>
#include "cperf.h"
#include "cperf_ops.h"
#include "cperf_options.h"
#include "cperf_test_vectors.h"
void *
cperf_verify_test_constructor(uint8_t dev_id, uint16_t qp_id,
const struct cperf_options *options,
const struct cperf_test_vector *test_vector,
const struct cperf_op_fns *ops_fn);
int
cperf_verify_test_runner(void *test_ctx);
void
cperf_verify_test_destructor(void *test_ctx);
#endif /* _CPERF_VERIFY_ */

View File

@ -9,10 +9,12 @@
#include "cperf_test_vector_parsing.h"
#include "cperf_test_throughput.h"
#include "cperf_test_latency.h"
#include "cperf_test_verify.h"
const char *cperf_test_type_strs[] = {
[CPERF_TEST_TYPE_THROUGHPUT] = "throughput",
[CPERF_TEST_TYPE_LATENCY] = "latency"
[CPERF_TEST_TYPE_LATENCY] = "latency",
[CPERF_TEST_TYPE_VERIFY] = "verify"
};
const char *cperf_op_type_strs[] = {
@ -33,6 +35,11 @@ const struct cperf_test cperf_testmap[] = {
cperf_latency_test_constructor,
cperf_latency_test_runner,
cperf_latency_test_destructor
},
[CPERF_TEST_TYPE_VERIFY] = {
cperf_verify_test_constructor,
cperf_verify_test_runner,
cperf_verify_test_destructor
}
};

View File

@ -133,6 +133,7 @@ The following are the appication command-line options:
throughput
latency
verify
* ``--silent``
@ -191,11 +192,6 @@ The following are the appication command-line options:
Enable out-of-place crypto operations mode.
* ``--verify``
Enable verify that all crypto operations were successful.
The verification is done after the performance test.
* ``--test-file <name>``
Set test vector file path. See the Test Vector File chapter.
@ -368,7 +364,7 @@ on two cores for cipher encryption aes-cbc, ten operations in silent mode::
--cipher-op encrypt --optype cipher-only --silent
--ptest latency --total-ops 10
Call application for performance latency test of single open ssl PMD
Call application for verification test of single open ssl PMD
for cipher encryption aes-gcm and auth generation aes-gcm,ten operations
in silent mode, test vector provide in file "test_aes_gcm.data"
with packet verification::
@ -377,8 +373,8 @@ with packet verification::
--devtype crypto_openssl --cipher-algo aes-gcm --cipher-key-sz 16
--cipher-iv-sz 16 --cipher-op encrypt --auth-algo aes-gcm --auth-key-sz 16
--auth-digest-sz 16 --auth-aad-sz 16 --auth-op generate --optype aead
--silent --ptest latency --total-ops 10
--test-file test_aes_gcm.data --verify
--silent --ptest verify --total-ops 10
--test-file test_aes_gcm.data
Test vector file for cipher algorithm aes cbc 256 with authorization sha::