ipsec: support multi-segment packets
Add support for packets that consist of multiple segments. Take into account that trailer bytes (padding, ESP tail, ICV) can spawn across multiple segments. Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com> Acked-by: Akhil Goyal <akhil.goyal@nxp.com>
This commit is contained in:
parent
48903a7967
commit
e95291f019
@ -162,7 +162,6 @@ Limitations
|
||||
The following features are not properly supported in the current version:
|
||||
|
||||
* ESP transport mode for IPv6 packets with extension headers.
|
||||
* Multi-segment packets.
|
||||
* Updates of the fields in inner IP header for tunnel mode
|
||||
(as described in RFC 4301, section 5.1.2).
|
||||
* Hard/soft limit for SA lifetime (time interval/byte count).
|
||||
|
@ -9,7 +9,8 @@ LIB = librte_ipsec.a
|
||||
CFLAGS += -O3
|
||||
CFLAGS += $(WERROR_FLAGS) -I$(SRCDIR)
|
||||
CFLAGS += -DALLOW_EXPERIMENTAL_API
|
||||
LDLIBS += -lrte_eal -lrte_mbuf -lrte_net -lrte_cryptodev -lrte_security
|
||||
LDLIBS += -lrte_eal -lrte_mempool -lrte_mbuf -lrte_net
|
||||
LDLIBS += -lrte_cryptodev -lrte_security
|
||||
|
||||
EXPORT_MAP := rte_ipsec_version.map
|
||||
|
||||
|
@ -104,6 +104,34 @@ inb_cop_prepare(struct rte_crypto_op *cop,
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Helper function for prepare() to deal with situation when
|
||||
* ICV is spread by two segments. Tries to move ICV completely into the
|
||||
* last segment.
|
||||
*/
|
||||
static struct rte_mbuf *
|
||||
move_icv(struct rte_mbuf *ml, uint32_t ofs)
|
||||
{
|
||||
uint32_t n;
|
||||
struct rte_mbuf *ms;
|
||||
const void *prev;
|
||||
void *new;
|
||||
|
||||
ms = ml->next;
|
||||
n = ml->data_len - ofs;
|
||||
|
||||
prev = rte_pktmbuf_mtod_offset(ml, const void *, ofs);
|
||||
new = rte_pktmbuf_prepend(ms, n);
|
||||
if (new == NULL)
|
||||
return NULL;
|
||||
|
||||
/* move n ICV bytes from ml into ms */
|
||||
rte_memcpy(new, prev, n);
|
||||
ml->data_len -= n;
|
||||
|
||||
return ms;
|
||||
}
|
||||
|
||||
/*
|
||||
* for pure cryptodev (lookaside none) depending on SA settings,
|
||||
* we might have to write some extra data to the packet.
|
||||
@ -137,7 +165,7 @@ inb_pkt_prepare(const struct rte_ipsec_sa *sa, const struct replay_sqn *rsn,
|
||||
{
|
||||
int32_t rc;
|
||||
uint64_t sqn;
|
||||
uint32_t clen, icv_ofs, plen;
|
||||
uint32_t clen, icv_len, icv_ofs, plen;
|
||||
struct rte_mbuf *ml;
|
||||
struct rte_esp_hdr *esph;
|
||||
|
||||
@ -161,14 +189,33 @@ inb_pkt_prepare(const struct rte_ipsec_sa *sa, const struct replay_sqn *rsn,
|
||||
plen = mb->pkt_len;
|
||||
plen = plen - hlen;
|
||||
|
||||
ml = rte_pktmbuf_lastseg(mb);
|
||||
icv_ofs = ml->data_len - sa->icv_len + sa->sqh_len;
|
||||
|
||||
/* check that packet has a valid length */
|
||||
clen = plen - sa->ctp.cipher.length;
|
||||
if ((int32_t)clen < 0 || (clen & (sa->pad_align - 1)) != 0)
|
||||
return -EBADMSG;
|
||||
|
||||
/* find ICV location */
|
||||
icv_len = sa->icv_len;
|
||||
icv_ofs = mb->pkt_len - icv_len;
|
||||
|
||||
ml = mbuf_get_seg_ofs(mb, &icv_ofs);
|
||||
|
||||
/*
|
||||
* if ICV is spread by two segments, then try to
|
||||
* move ICV completely into the last segment.
|
||||
*/
|
||||
if (ml->data_len < icv_ofs + icv_len) {
|
||||
|
||||
ml = move_icv(ml, icv_ofs);
|
||||
if (ml == NULL)
|
||||
return -ENOSPC;
|
||||
|
||||
/* new ICV location */
|
||||
icv_ofs = 0;
|
||||
}
|
||||
|
||||
icv_ofs += sa->sqh_len;
|
||||
|
||||
/* we have to allocate space for AAD somewhere,
|
||||
* right now - just use free trailing space at the last segment.
|
||||
* Would probably be more convenient to reserve space for AAD
|
||||
@ -239,36 +286,65 @@ esp_inb_pkt_prepare(const struct rte_ipsec_session *ss, struct rte_mbuf *mb[],
|
||||
*/
|
||||
static inline void
|
||||
process_step1(struct rte_mbuf *mb, uint32_t tlen, struct rte_mbuf **ml,
|
||||
struct esp_tail *espt, uint32_t *hlen)
|
||||
struct esp_tail *espt, uint32_t *hlen, uint32_t *tofs)
|
||||
{
|
||||
const struct esp_tail *pt;
|
||||
uint32_t ofs;
|
||||
|
||||
ml[0] = rte_pktmbuf_lastseg(mb);
|
||||
ofs = mb->pkt_len - tlen;
|
||||
hlen[0] = mb->l2_len + mb->l3_len;
|
||||
pt = rte_pktmbuf_mtod_offset(ml[0], const struct esp_tail *,
|
||||
ml[0]->data_len - tlen);
|
||||
ml[0] = mbuf_get_seg_ofs(mb, &ofs);
|
||||
pt = rte_pktmbuf_mtod_offset(ml[0], const struct esp_tail *, ofs);
|
||||
tofs[0] = ofs;
|
||||
espt[0] = pt[0];
|
||||
}
|
||||
|
||||
/*
|
||||
* Helper function to check pad bytes values.
|
||||
* Note that pad bytes can be spread across multiple segments.
|
||||
*/
|
||||
static inline int
|
||||
check_pad_bytes(struct rte_mbuf *mb, uint32_t ofs, uint32_t len)
|
||||
{
|
||||
const uint8_t *pd;
|
||||
uint32_t k, n;
|
||||
|
||||
for (n = 0; n != len; n += k, mb = mb->next) {
|
||||
k = mb->data_len - ofs;
|
||||
k = RTE_MIN(k, len - n);
|
||||
pd = rte_pktmbuf_mtod_offset(mb, const uint8_t *, ofs);
|
||||
if (memcmp(pd, esp_pad_bytes + n, k) != 0)
|
||||
break;
|
||||
ofs = 0;
|
||||
}
|
||||
|
||||
return len - n;
|
||||
}
|
||||
|
||||
/*
|
||||
* packet checks for transport mode:
|
||||
* - no reported IPsec related failures in ol_flags
|
||||
* - tail length is valid
|
||||
* - tail and header lengths are valid
|
||||
* - padding bytes are valid
|
||||
* apart from checks, function also updates tail offset (and segment)
|
||||
* by taking into account pad length.
|
||||
*/
|
||||
static inline int32_t
|
||||
trs_process_check(const struct rte_mbuf *mb, const struct rte_mbuf *ml,
|
||||
struct esp_tail espt, uint32_t hlen, uint32_t tlen)
|
||||
trs_process_check(struct rte_mbuf *mb, struct rte_mbuf **ml,
|
||||
uint32_t *tofs, struct esp_tail espt, uint32_t hlen, uint32_t tlen)
|
||||
{
|
||||
const uint8_t *pd;
|
||||
int32_t ofs;
|
||||
if ((mb->ol_flags & PKT_RX_SEC_OFFLOAD_FAILED) != 0 ||
|
||||
tlen + hlen > mb->pkt_len)
|
||||
return -EBADMSG;
|
||||
|
||||
ofs = ml->data_len - tlen;
|
||||
pd = rte_pktmbuf_mtod_offset(ml, const uint8_t *, ofs);
|
||||
/* padding bytes are spread over multiple segments */
|
||||
if (tofs[0] < espt.pad_len) {
|
||||
tofs[0] = mb->pkt_len - tlen;
|
||||
ml[0] = mbuf_get_seg_ofs(mb, tofs);
|
||||
} else
|
||||
tofs[0] -= espt.pad_len;
|
||||
|
||||
return ((mb->ol_flags & PKT_RX_SEC_OFFLOAD_FAILED) != 0 ||
|
||||
ofs < 0 || tlen + hlen > mb->pkt_len ||
|
||||
(espt.pad_len != 0 && memcmp(pd, esp_pad_bytes, espt.pad_len)));
|
||||
return check_pad_bytes(ml[0], tofs[0], espt.pad_len);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -277,10 +353,11 @@ trs_process_check(const struct rte_mbuf *mb, const struct rte_mbuf *ml,
|
||||
* - esp tail next proto contains expected for that SA value
|
||||
*/
|
||||
static inline int32_t
|
||||
tun_process_check(const struct rte_mbuf *mb, struct rte_mbuf *ml,
|
||||
struct esp_tail espt, uint32_t hlen, const uint32_t tlen, uint8_t proto)
|
||||
tun_process_check(struct rte_mbuf *mb, struct rte_mbuf **ml,
|
||||
uint32_t *tofs, struct esp_tail espt, uint32_t hlen, uint32_t tlen,
|
||||
uint8_t proto)
|
||||
{
|
||||
return (trs_process_check(mb, ml, espt, hlen, tlen) ||
|
||||
return (trs_process_check(mb, ml, tofs, espt, hlen, tlen) ||
|
||||
espt.next_proto != proto);
|
||||
}
|
||||
|
||||
@ -293,7 +370,7 @@ tun_process_check(const struct rte_mbuf *mb, struct rte_mbuf *ml,
|
||||
*/
|
||||
static inline void *
|
||||
tun_process_step2(struct rte_mbuf *mb, struct rte_mbuf *ml, uint32_t hlen,
|
||||
uint32_t adj, uint32_t tlen, uint32_t *sqn)
|
||||
uint32_t adj, uint32_t tofs, uint32_t tlen, uint32_t *sqn)
|
||||
{
|
||||
const struct rte_esp_hdr *ph;
|
||||
|
||||
@ -302,8 +379,7 @@ tun_process_step2(struct rte_mbuf *mb, struct rte_mbuf *ml, uint32_t hlen,
|
||||
sqn[0] = ph->seq;
|
||||
|
||||
/* cut of ICV, ESP tail and padding bytes */
|
||||
ml->data_len -= tlen;
|
||||
mb->pkt_len -= tlen;
|
||||
mbuf_cut_seg_ofs(mb, ml, tofs, tlen);
|
||||
|
||||
/* cut of L2/L3 headers, ESP header and IV */
|
||||
return rte_pktmbuf_adj(mb, adj);
|
||||
@ -318,7 +394,7 @@ tun_process_step2(struct rte_mbuf *mb, struct rte_mbuf *ml, uint32_t hlen,
|
||||
*/
|
||||
static inline void *
|
||||
trs_process_step2(struct rte_mbuf *mb, struct rte_mbuf *ml, uint32_t hlen,
|
||||
uint32_t adj, uint32_t tlen, uint32_t *sqn)
|
||||
uint32_t adj, uint32_t tofs, uint32_t tlen, uint32_t *sqn)
|
||||
{
|
||||
char *np, *op;
|
||||
|
||||
@ -326,7 +402,7 @@ trs_process_step2(struct rte_mbuf *mb, struct rte_mbuf *ml, uint32_t hlen,
|
||||
op = rte_pktmbuf_mtod(mb, char *);
|
||||
|
||||
/* cut off ESP header and IV */
|
||||
np = tun_process_step2(mb, ml, hlen, adj, tlen, sqn);
|
||||
np = tun_process_step2(mb, ml, hlen, adj, tofs, tlen, sqn);
|
||||
|
||||
/* move header bytes to fill the gap after ESP header removal */
|
||||
remove_esph(np, op, hlen);
|
||||
@ -376,7 +452,7 @@ tun_process(const struct rte_ipsec_sa *sa, struct rte_mbuf *mb[],
|
||||
uint32_t sqn[], uint32_t dr[], uint16_t num)
|
||||
{
|
||||
uint32_t adj, i, k, tl;
|
||||
uint32_t hl[num];
|
||||
uint32_t hl[num], to[num];
|
||||
struct esp_tail espt[num];
|
||||
struct rte_mbuf *ml[num];
|
||||
|
||||
@ -388,7 +464,7 @@ tun_process(const struct rte_ipsec_sa *sa, struct rte_mbuf *mb[],
|
||||
* read mbufs metadata and esp tail first.
|
||||
*/
|
||||
for (i = 0; i != num; i++)
|
||||
process_step1(mb[i], tlen, &ml[i], &espt[i], &hl[i]);
|
||||
process_step1(mb[i], tlen, &ml[i], &espt[i], &hl[i], &to[i]);
|
||||
|
||||
k = 0;
|
||||
for (i = 0; i != num; i++) {
|
||||
@ -397,11 +473,11 @@ tun_process(const struct rte_ipsec_sa *sa, struct rte_mbuf *mb[],
|
||||
tl = tlen + espt[i].pad_len;
|
||||
|
||||
/* check that packet is valid */
|
||||
if (tun_process_check(mb[i], ml[i], espt[i], adj, tl,
|
||||
if (tun_process_check(mb[i], &ml[i], &to[i], espt[i], adj, tl,
|
||||
sa->proto) == 0) {
|
||||
|
||||
/* modify packet's layout */
|
||||
tun_process_step2(mb[i], ml[i], hl[i], adj,
|
||||
tun_process_step2(mb[i], ml[i], hl[i], adj, to[i],
|
||||
tl, sqn + k);
|
||||
/* update mbuf's metadata */
|
||||
tun_process_step3(mb[i], sa->tx_offload.msk,
|
||||
@ -424,7 +500,7 @@ trs_process(const struct rte_ipsec_sa *sa, struct rte_mbuf *mb[],
|
||||
{
|
||||
char *np;
|
||||
uint32_t i, k, l2, tl;
|
||||
uint32_t hl[num];
|
||||
uint32_t hl[num], to[num];
|
||||
struct esp_tail espt[num];
|
||||
struct rte_mbuf *ml[num];
|
||||
|
||||
@ -436,7 +512,7 @@ trs_process(const struct rte_ipsec_sa *sa, struct rte_mbuf *mb[],
|
||||
* read mbufs metadata and esp tail first.
|
||||
*/
|
||||
for (i = 0; i != num; i++)
|
||||
process_step1(mb[i], tlen, &ml[i], &espt[i], &hl[i]);
|
||||
process_step1(mb[i], tlen, &ml[i], &espt[i], &hl[i], &to[i]);
|
||||
|
||||
k = 0;
|
||||
for (i = 0; i != num; i++) {
|
||||
@ -445,12 +521,12 @@ trs_process(const struct rte_ipsec_sa *sa, struct rte_mbuf *mb[],
|
||||
l2 = mb[i]->l2_len;
|
||||
|
||||
/* check that packet is valid */
|
||||
if (trs_process_check(mb[i], ml[i], espt[i], hl[i] + cofs,
|
||||
tl) == 0) {
|
||||
if (trs_process_check(mb[i], &ml[i], &to[i], espt[i],
|
||||
hl[i] + cofs, tl) == 0) {
|
||||
|
||||
/* modify packet's layout */
|
||||
np = trs_process_step2(mb[i], ml[i], hl[i], cofs, tl,
|
||||
sqn + k);
|
||||
np = trs_process_step2(mb[i], ml[i], hl[i], cofs,
|
||||
to[i], tl, sqn + k);
|
||||
update_trs_l3hdr(sa, np + l2, mb[i]->pkt_len,
|
||||
l2, hl[i] - l2, espt[i].next_proto);
|
||||
|
||||
|
@ -38,4 +38,71 @@ move_bad_mbufs(struct rte_mbuf *mb[], const uint32_t bad_idx[], uint32_t nb_mb,
|
||||
mb[k + i] = drb[i];
|
||||
}
|
||||
|
||||
/*
|
||||
* Find packet's segment for the specified offset.
|
||||
* ofs - at input should contain required offset, at output would contain
|
||||
* offset value within the segment.
|
||||
*/
|
||||
static inline struct rte_mbuf *
|
||||
mbuf_get_seg_ofs(struct rte_mbuf *mb, uint32_t *ofs)
|
||||
{
|
||||
uint32_t k, n, plen;
|
||||
struct rte_mbuf *ms;
|
||||
|
||||
plen = mb->pkt_len;
|
||||
n = *ofs;
|
||||
|
||||
if (n == plen) {
|
||||
ms = rte_pktmbuf_lastseg(mb);
|
||||
n = n + rte_pktmbuf_data_len(ms) - plen;
|
||||
} else {
|
||||
ms = mb;
|
||||
for (k = rte_pktmbuf_data_len(ms); n >= k;
|
||||
k = rte_pktmbuf_data_len(ms)) {
|
||||
ms = ms->next;
|
||||
n -= k;
|
||||
}
|
||||
}
|
||||
|
||||
*ofs = n;
|
||||
return ms;
|
||||
}
|
||||
|
||||
/*
|
||||
* Trim multi-segment packet at the specified offset, and free
|
||||
* all unused segments.
|
||||
* mb - input packet
|
||||
* ms - segment where to cut
|
||||
* ofs - offset within the *ms*
|
||||
* len - length to cut (from given offset to the end of the packet)
|
||||
* Can be used in conjunction with mbuf_get_seg_ofs():
|
||||
* ofs = new_len;
|
||||
* ms = mbuf_get_seg_ofs(mb, &ofs);
|
||||
* mbuf_cut_seg_ofs(mb, ms, ofs, mb->pkt_len - new_len);
|
||||
*/
|
||||
static inline void
|
||||
mbuf_cut_seg_ofs(struct rte_mbuf *mb, struct rte_mbuf *ms, uint32_t ofs,
|
||||
uint32_t len)
|
||||
{
|
||||
uint32_t n, slen;
|
||||
struct rte_mbuf *mn;
|
||||
|
||||
slen = ms->data_len;
|
||||
ms->data_len = ofs;
|
||||
|
||||
/* tail spawns through multiple segments */
|
||||
if (slen < ofs + len) {
|
||||
mn = ms->next;
|
||||
ms->next = NULL;
|
||||
for (n = 0; mn != NULL; n++) {
|
||||
ms = mn->next;
|
||||
rte_pktmbuf_free_seg(mn);
|
||||
mn = ms;
|
||||
}
|
||||
mb->nb_segs -= n;
|
||||
}
|
||||
|
||||
mb->pkt_len -= len;
|
||||
}
|
||||
|
||||
#endif /* _MISC_H_ */
|
||||
|
Loading…
Reference in New Issue
Block a user