net/ice: switch to flexible descriptor in SSE path

With this path, the flexible descriptor is supported
in SSE path. And the legacy descriptor is not supported.

Signed-off-by: Wenzhuo Lu <wenzhuo.lu@intel.com>
Acked-by: Qi Zhang <qi.z.zhang@intel.com>
This commit is contained in:
Wenzhuo Lu 2019-09-24 10:38:07 +08:00 committed by Ferruh Yigit
parent 7e124ff12c
commit ece1f8a8f1

View File

@ -15,14 +15,14 @@ ice_rxq_rearm(struct ice_rx_queue *rxq)
{
int i;
uint16_t rx_id;
volatile union ice_rx_desc *rxdp;
volatile union ice_rx_flex_desc *rxdp;
struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
struct rte_mbuf *mb0, *mb1;
__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
RTE_PKTMBUF_HEADROOM);
__m128i dma_addr0, dma_addr1;
rxdp = rxq->rx_ring + rxq->rxrearm_start;
rxdp = (union ice_rx_flex_desc *)rxq->rx_ring + rxq->rxrearm_start;
/* Pull 'n' more MBUFs into the software ring */
if (rte_mempool_get_bulk(rxq->mp,
@ -88,93 +88,90 @@ ice_rx_desc_to_olflags_v(struct ice_rx_queue *rxq, __m128i descs[4],
const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
__m128i rearm0, rearm1, rearm2, rearm3;
__m128i vlan0, vlan1, rss, l3_l4e;
__m128i tmp_desc, flags, rss_vlan;
/* mask everything except RSS, flow director and VLAN flags
* bit2 is for VLAN tag, bit11 for flow director indication
* bit13:12 for RSS indication.
/* mask everything except checksum, RSS and VLAN flags.
* bit6:4 for checksum.
* bit12 for RSS indication.
* bit13 for VLAN indication.
*/
const __m128i rss_vlan_msk = _mm_set_epi32(0x1c03804, 0x1c03804,
0x1c03804, 0x1c03804);
const __m128i desc_mask = _mm_set_epi32(0x3070, 0x3070,
0x3070, 0x3070);
const __m128i cksum_mask = _mm_set_epi32(PKT_RX_IP_CKSUM_GOOD |
PKT_RX_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD |
PKT_RX_L4_CKSUM_BAD |
const __m128i cksum_mask = _mm_set_epi32(PKT_RX_IP_CKSUM_MASK |
PKT_RX_L4_CKSUM_MASK |
PKT_RX_EIP_CKSUM_BAD,
PKT_RX_IP_CKSUM_GOOD |
PKT_RX_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD |
PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_MASK |
PKT_RX_L4_CKSUM_MASK |
PKT_RX_EIP_CKSUM_BAD,
PKT_RX_IP_CKSUM_GOOD |
PKT_RX_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD |
PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_MASK |
PKT_RX_L4_CKSUM_MASK |
PKT_RX_EIP_CKSUM_BAD,
PKT_RX_IP_CKSUM_GOOD |
PKT_RX_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD |
PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_MASK |
PKT_RX_L4_CKSUM_MASK |
PKT_RX_EIP_CKSUM_BAD);
/* map rss and vlan type to rss hash and vlan flag */
const __m128i vlan_flags = _mm_set_epi8(0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
0, 0, 0, 0);
const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
0, 0, 0, 0,
PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
0, 0, PKT_RX_FDIR, 0);
const __m128i l3_l4e_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
/* map the checksum, rss and vlan fields to the checksum, rss
* and vlan flag
*/
const __m128i cksum_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
/* shift right 1 bit to make sure it not exceed 255 */
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD |
PKT_RX_L4_CKSUM_BAD) >> 1,
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD |
PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
PKT_RX_IP_CKSUM_BAD >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
(PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1);
vlan0 = _mm_unpackhi_epi32(descs[0], descs[1]);
vlan1 = _mm_unpackhi_epi32(descs[2], descs[3]);
vlan0 = _mm_unpacklo_epi64(vlan0, vlan1);
const __m128i rss_vlan_flags = _mm_set_epi8(0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
PKT_RX_RSS_HASH, 0);
vlan1 = _mm_and_si128(vlan0, rss_vlan_msk);
vlan0 = _mm_shuffle_epi8(vlan_flags, vlan1);
/* merge 4 descriptors */
flags = _mm_unpackhi_epi32(descs[0], descs[1]);
tmp_desc = _mm_unpackhi_epi32(descs[2], descs[3]);
tmp_desc = _mm_unpacklo_epi64(flags, tmp_desc);
tmp_desc = _mm_and_si128(flags, desc_mask);
rss = _mm_srli_epi32(vlan1, 11);
rss = _mm_shuffle_epi8(rss_flags, rss);
l3_l4e = _mm_srli_epi32(vlan1, 22);
l3_l4e = _mm_shuffle_epi8(l3_l4e_flags, l3_l4e);
/* checksum flags */
tmp_desc = _mm_srli_epi32(tmp_desc, 4);
flags = _mm_shuffle_epi8(cksum_flags, tmp_desc);
/* then we shift left 1 bit */
l3_l4e = _mm_slli_epi32(l3_l4e, 1);
/* we need to mask out the reduntant bits */
l3_l4e = _mm_and_si128(l3_l4e, cksum_mask);
flags = _mm_slli_epi32(flags, 1);
/* we need to mask out the reduntant bits introduced by RSS or
* VLAN fields.
*/
flags = _mm_and_si128(flags, cksum_mask);
vlan0 = _mm_or_si128(vlan0, rss);
vlan0 = _mm_or_si128(vlan0, l3_l4e);
/* RSS, VLAN flag */
tmp_desc = _mm_srli_epi32(tmp_desc, 8);
rss_vlan = _mm_shuffle_epi8(rss_vlan_flags, tmp_desc);
/* merge the flags */
flags = _mm_or_si128(flags, rss_vlan);
/**
* At this point, we have the 4 sets of flags in the low 16-bits
* of each 32-bit value in vlan0.
* of each 32-bit value in flags.
* We want to extract these, and merge them with the mbuf init data
* so we can do a single 16-byte write to the mbuf to set the flags
* and all the other initialization fields. Extracting the
* appropriate flags means that we have to do a shift and blend for
* each mbuf before we do the write.
*/
rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 8), 0x10);
rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(vlan0, 4), 0x10);
rearm2 = _mm_blend_epi16(mbuf_init, vlan0, 0x10);
rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(vlan0, 4), 0x10);
rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 8), 0x10);
rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 4), 0x10);
rearm2 = _mm_blend_epi16(mbuf_init, flags, 0x10);
rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(flags, 4), 0x10);
/* write the rearm data and the olflags in one write */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
@ -187,22 +184,24 @@ ice_rx_desc_to_olflags_v(struct ice_rx_queue *rxq, __m128i descs[4],
_mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
}
#define PKTLEN_SHIFT 10
static inline void
ice_rx_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
uint32_t *ptype_tbl)
{
__m128i ptype0 = _mm_unpackhi_epi64(descs[0], descs[1]);
__m128i ptype1 = _mm_unpackhi_epi64(descs[2], descs[3]);
const __m128i ptype_mask = _mm_set_epi16(0, ICE_RX_FLEX_DESC_PTYPE_M,
0, ICE_RX_FLEX_DESC_PTYPE_M,
0, ICE_RX_FLEX_DESC_PTYPE_M,
0, ICE_RX_FLEX_DESC_PTYPE_M);
__m128i ptype_01 = _mm_unpacklo_epi32(descs[0], descs[1]);
__m128i ptype_23 = _mm_unpacklo_epi32(descs[2], descs[3]);
__m128i ptype_all = _mm_unpacklo_epi64(ptype_01, ptype_23);
ptype0 = _mm_srli_epi64(ptype0, 30);
ptype1 = _mm_srli_epi64(ptype1, 30);
ptype_all = _mm_and_si128(ptype_all, ptype_mask);
rx_pkts[0]->packet_type = ptype_tbl[_mm_extract_epi8(ptype0, 0)];
rx_pkts[1]->packet_type = ptype_tbl[_mm_extract_epi8(ptype0, 8)];
rx_pkts[2]->packet_type = ptype_tbl[_mm_extract_epi8(ptype1, 0)];
rx_pkts[3]->packet_type = ptype_tbl[_mm_extract_epi8(ptype1, 8)];
rx_pkts[0]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 1)];
rx_pkts[1]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 3)];
rx_pkts[2]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 5)];
rx_pkts[3]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 7)];
}
/**
@ -215,21 +214,39 @@ static inline uint16_t
_ice_recv_raw_pkts_vec(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, uint8_t *split_packet)
{
volatile union ice_rx_desc *rxdp;
volatile union ice_rx_flex_desc *rxdp;
struct ice_rx_entry *sw_ring;
uint16_t nb_pkts_recd;
int pos;
uint64_t var;
__m128i shuf_msk;
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
__m128i crc_adjust = _mm_set_epi16
(0, 0, 0, /* ignore non-length fields */
(0, 0, 0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
0, /* ignore high-16bits of pkt_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, 0 /* ignore pkt_type field */
0, 0 /* ignore pkt_type field */
);
const __m128i zero = _mm_setzero_si128();
/* mask to shuffle from desc. to mbuf */
const __m128i shuf_msk = _mm_set_epi8
(0xFF, 0xFF, 0xFF, 0xFF, /* rss not supported */
11, 10, /* octet 10~11, 16 bits vlan_macip */
5, 4, /* octet 4~5, 16 bits data_len */
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
5, 4, /* octet 4~5, low 16 bits pkt_len */
0xFF, 0xFF, /* pkt_type set as unknown */
0xFF, 0xFF /* pkt_type set as unknown */
);
const __m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF,
0xFF, 0xFF,
0xFF, 0xFF,
0xFF, 0xFF,
0xFF, 0xFF,
0xFF, 0xFF,
0x04, 0x0C,
0x00, 0x08);
/**
* compile-time check the above crc_adjust layout is correct.
* NOTE: the first field (lowest address) is given last in set_epi16
@ -239,7 +256,13 @@ _ice_recv_raw_pkts_vec(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
__m128i dd_check, eop_check;
/* 4 packets DD mask */
const __m128i dd_check = _mm_set_epi64x(0x0000000100000001LL,
0x0000000100000001LL);
/* 4 packets EOP mask */
const __m128i eop_check = _mm_set_epi64x(0x0000000200000002LL,
0x0000000200000002LL);
/* nb_pkts shall be less equal than ICE_MAX_RX_BURST */
nb_pkts = RTE_MIN(nb_pkts, ICE_MAX_RX_BURST);
@ -250,7 +273,7 @@ _ice_recv_raw_pkts_vec(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
/* Just the act of getting into the function from the application is
* going to cost about 7 cycles
*/
rxdp = rxq->rx_ring + rxq->rx_tail;
rxdp = (union ice_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail;
rte_prefetch0(rxdp);
@ -263,26 +286,10 @@ _ice_recv_raw_pkts_vec(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (!(rxdp->wb.qword1.status_error_len &
rte_cpu_to_le_32(1 << ICE_RX_DESC_STATUS_DD_S)))
if (!(rxdp->wb.status_error0 &
rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
return 0;
/* 4 packets DD mask */
dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
/* 4 packets EOP mask */
eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
/* mask to shuffle from desc. to mbuf */
shuf_msk = _mm_set_epi8
(7, 6, 5, 4, /* octet 4~7, 32bits rss */
3, 2, /* octet 2~3, low 16 bits vlan_macip */
15, 14, /* octet 15~14, 16 bits data_len */
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
15, 14, /* octet 15~14, low 16 bits pkt_len */
0xFF, 0xFF, /* pkt_type set as unknown */
0xFF, 0xFF /*pkt_type set as unknown */
);
/**
* Compile-time verify the shuffle mask
* NOTE: some field positions already verified above, but duplicated
@ -315,7 +322,7 @@ _ice_recv_raw_pkts_vec(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
rxdp += ICE_DESCS_PER_LOOP) {
__m128i descs[ICE_DESCS_PER_LOOP];
__m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
__m128i zero, staterr, sterr_tmp1, sterr_tmp2;
__m128i staterr, sterr_tmp1, sterr_tmp2;
/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
__m128i mbp1;
#if defined(RTE_ARCH_X86_64)
@ -359,14 +366,6 @@ _ice_recv_raw_pkts_vec(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
/* avoid compiler reorder optimization */
rte_compiler_barrier();
/* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
const __m128i len3 = _mm_slli_epi32(descs[3], PKTLEN_SHIFT);
const __m128i len2 = _mm_slli_epi32(descs[2], PKTLEN_SHIFT);
/* merge the now-aligned packet length fields back in */
descs[3] = _mm_blend_epi16(descs[3], len3, 0x80);
descs[2] = _mm_blend_epi16(descs[2], len2, 0x80);
/* D.1 pkt 3,4 convert format from desc to pktmbuf */
pkt_mb4 = _mm_shuffle_epi8(descs[3], shuf_msk);
pkt_mb3 = _mm_shuffle_epi8(descs[2], shuf_msk);
@ -382,20 +381,11 @@ _ice_recv_raw_pkts_vec(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
pkt_mb4 = _mm_add_epi16(pkt_mb4, crc_adjust);
pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
/* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
const __m128i len1 = _mm_slli_epi32(descs[1], PKTLEN_SHIFT);
const __m128i len0 = _mm_slli_epi32(descs[0], PKTLEN_SHIFT);
/* merge the now-aligned packet length fields back in */
descs[1] = _mm_blend_epi16(descs[1], len1, 0x80);
descs[0] = _mm_blend_epi16(descs[0], len0, 0x80);
/* D.1 pkt 1,2 convert format from desc to pktmbuf */
pkt_mb2 = _mm_shuffle_epi8(descs[1], shuf_msk);
pkt_mb1 = _mm_shuffle_epi8(descs[0], shuf_msk);
/* C.2 get 4 pkts staterr value */
zero = _mm_xor_si128(dd_check, dd_check);
staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
/* D.3 copy final 3,4 data to rx_pkts */
@ -412,15 +402,6 @@ _ice_recv_raw_pkts_vec(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
/* C* extract and record EOP bit */
if (split_packet) {
__m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF,
0xFF, 0xFF,
0xFF, 0xFF,
0xFF, 0xFF,
0xFF, 0xFF,
0xFF, 0xFF,
0x04, 0x0C,
0x00, 0x08);
/* and with mask to extract bits, flipping 1-0 */
__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
/* the staterr values are not in order, as the count