crypto/ccp: support device init

CCP PMD is a virtual crypto PMD which schedules a number of available
actual CCP hardware engines underneath. The PMD
manages all devices by its own. The PMD supports CCP_5a and
CCP_5b versions of crypto engines and this patch adds support
to initialize and use such devices.

Signed-off-by: Ravi Kumar <ravi1.kumar@amd.com>
This commit is contained in:
Ravi Kumar 2018-03-19 08:23:36 -04:00 committed by Pablo de Lara
parent 0054d84f6e
commit ef4b04f87f
8 changed files with 1538 additions and 2 deletions

View File

@ -26,5 +26,8 @@ EXPORT_MAP := rte_pmd_ccp_version.map
# library source files
SRCS-$(CONFIG_RTE_LIBRTE_PMD_CCP) += rte_ccp_pmd.c
SRCS-$(CONFIG_RTE_LIBRTE_PMD_CCP) += ccp_pmd_ops.c
SRCS-$(CONFIG_RTE_LIBRTE_PMD_CCP) += ccp_dev.c
SRCS-$(CONFIG_RTE_LIBRTE_PMD_CCP) += ccp_pci.c
include $(RTE_SDK)/mk/rte.lib.mk

View File

@ -0,0 +1,754 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Advanced Micro Devices, Inc. All rights reserved.
*/
#include <dirent.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/file.h>
#include <unistd.h>
#include <rte_hexdump.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_memory.h>
#include <rte_spinlock.h>
#include <rte_string_fns.h>
#include "ccp_dev.h"
#include "ccp_pci.h"
#include "ccp_pmd_private.h"
struct ccp_list ccp_list = TAILQ_HEAD_INITIALIZER(ccp_list);
static int ccp_dev_id;
static const struct rte_memzone *
ccp_queue_dma_zone_reserve(const char *queue_name,
uint32_t queue_size,
int socket_id)
{
const struct rte_memzone *mz;
mz = rte_memzone_lookup(queue_name);
if (mz != 0) {
if (((size_t)queue_size <= mz->len) &&
((socket_id == SOCKET_ID_ANY) ||
(socket_id == mz->socket_id))) {
CCP_LOG_INFO("re-use memzone already "
"allocated for %s", queue_name);
return mz;
}
CCP_LOG_ERR("Incompatible memzone already "
"allocated %s, size %u, socket %d. "
"Requested size %u, socket %u",
queue_name, (uint32_t)mz->len,
mz->socket_id, queue_size, socket_id);
return NULL;
}
CCP_LOG_INFO("Allocate memzone for %s, size %u on socket %u",
queue_name, queue_size, socket_id);
return rte_memzone_reserve_aligned(queue_name, queue_size,
socket_id, RTE_MEMZONE_IOVA_CONTIG, queue_size);
}
/* bitmap support apis */
static inline void
ccp_set_bit(unsigned long *bitmap, int n)
{
__sync_fetch_and_or(&bitmap[WORD_OFFSET(n)], (1UL << BIT_OFFSET(n)));
}
static inline void
ccp_clear_bit(unsigned long *bitmap, int n)
{
__sync_fetch_and_and(&bitmap[WORD_OFFSET(n)], ~(1UL << BIT_OFFSET(n)));
}
static inline uint32_t
ccp_get_bit(unsigned long *bitmap, int n)
{
return ((bitmap[WORD_OFFSET(n)] & (1 << BIT_OFFSET(n))) != 0);
}
static inline uint32_t
ccp_ffz(unsigned long word)
{
unsigned long first_zero;
first_zero = __builtin_ffsl(~word);
return first_zero ? (first_zero - 1) :
BITS_PER_WORD;
}
static inline uint32_t
ccp_find_first_zero_bit(unsigned long *addr, uint32_t limit)
{
uint32_t i;
uint32_t nwords = 0;
nwords = (limit - 1) / BITS_PER_WORD + 1;
for (i = 0; i < nwords; i++) {
if (addr[i] == 0UL)
return i * BITS_PER_WORD;
if (addr[i] < ~(0UL))
break;
}
return (i == nwords) ? limit : i * BITS_PER_WORD + ccp_ffz(addr[i]);
}
static void
ccp_bitmap_set(unsigned long *map, unsigned int start, int len)
{
unsigned long *p = map + WORD_OFFSET(start);
const unsigned int size = start + len;
int bits_to_set = BITS_PER_WORD - (start % BITS_PER_WORD);
unsigned long mask_to_set = CCP_BITMAP_FIRST_WORD_MASK(start);
while (len - bits_to_set >= 0) {
*p |= mask_to_set;
len -= bits_to_set;
bits_to_set = BITS_PER_WORD;
mask_to_set = ~0UL;
p++;
}
if (len) {
mask_to_set &= CCP_BITMAP_LAST_WORD_MASK(size);
*p |= mask_to_set;
}
}
static void
ccp_bitmap_clear(unsigned long *map, unsigned int start, int len)
{
unsigned long *p = map + WORD_OFFSET(start);
const unsigned int size = start + len;
int bits_to_clear = BITS_PER_WORD - (start % BITS_PER_WORD);
unsigned long mask_to_clear = CCP_BITMAP_FIRST_WORD_MASK(start);
while (len - bits_to_clear >= 0) {
*p &= ~mask_to_clear;
len -= bits_to_clear;
bits_to_clear = BITS_PER_WORD;
mask_to_clear = ~0UL;
p++;
}
if (len) {
mask_to_clear &= CCP_BITMAP_LAST_WORD_MASK(size);
*p &= ~mask_to_clear;
}
}
static unsigned long
_ccp_find_next_bit(const unsigned long *addr,
unsigned long nbits,
unsigned long start,
unsigned long invert)
{
unsigned long tmp;
if (!nbits || start >= nbits)
return nbits;
tmp = addr[start / BITS_PER_WORD] ^ invert;
/* Handle 1st word. */
tmp &= CCP_BITMAP_FIRST_WORD_MASK(start);
start = ccp_round_down(start, BITS_PER_WORD);
while (!tmp) {
start += BITS_PER_WORD;
if (start >= nbits)
return nbits;
tmp = addr[start / BITS_PER_WORD] ^ invert;
}
return RTE_MIN(start + (ffs(tmp) - 1), nbits);
}
static unsigned long
ccp_find_next_bit(const unsigned long *addr,
unsigned long size,
unsigned long offset)
{
return _ccp_find_next_bit(addr, size, offset, 0UL);
}
static unsigned long
ccp_find_next_zero_bit(const unsigned long *addr,
unsigned long size,
unsigned long offset)
{
return _ccp_find_next_bit(addr, size, offset, ~0UL);
}
/**
* bitmap_find_next_zero_area - find a contiguous aligned zero area
* @map: The address to base the search on
* @size: The bitmap size in bits
* @start: The bitnumber to start searching at
* @nr: The number of zeroed bits we're looking for
*/
static unsigned long
ccp_bitmap_find_next_zero_area(unsigned long *map,
unsigned long size,
unsigned long start,
unsigned int nr)
{
unsigned long index, end, i;
again:
index = ccp_find_next_zero_bit(map, size, start);
end = index + nr;
if (end > size)
return end;
i = ccp_find_next_bit(map, end, index);
if (i < end) {
start = i + 1;
goto again;
}
return index;
}
static uint32_t
ccp_lsb_alloc(struct ccp_queue *cmd_q, unsigned int count)
{
struct ccp_device *ccp;
int start;
/* First look at the map for the queue */
if (cmd_q->lsb >= 0) {
start = (uint32_t)ccp_bitmap_find_next_zero_area(cmd_q->lsbmap,
LSB_SIZE, 0,
count);
if (start < LSB_SIZE) {
ccp_bitmap_set(cmd_q->lsbmap, start, count);
return start + cmd_q->lsb * LSB_SIZE;
}
}
/* try to get an entry from the shared blocks */
ccp = cmd_q->dev;
rte_spinlock_lock(&ccp->lsb_lock);
start = (uint32_t)ccp_bitmap_find_next_zero_area(ccp->lsbmap,
MAX_LSB_CNT * LSB_SIZE,
0, count);
if (start <= MAX_LSB_CNT * LSB_SIZE) {
ccp_bitmap_set(ccp->lsbmap, start, count);
rte_spinlock_unlock(&ccp->lsb_lock);
return start * LSB_ITEM_SIZE;
}
CCP_LOG_ERR("NO LSBs available");
rte_spinlock_unlock(&ccp->lsb_lock);
return 0;
}
static void __rte_unused
ccp_lsb_free(struct ccp_queue *cmd_q,
unsigned int start,
unsigned int count)
{
int lsbno = start / LSB_SIZE;
if (!start)
return;
if (cmd_q->lsb == lsbno) {
/* An entry from the private LSB */
ccp_bitmap_clear(cmd_q->lsbmap, start % LSB_SIZE, count);
} else {
/* From the shared LSBs */
struct ccp_device *ccp = cmd_q->dev;
rte_spinlock_lock(&ccp->lsb_lock);
ccp_bitmap_clear(ccp->lsbmap, start, count);
rte_spinlock_unlock(&ccp->lsb_lock);
}
}
static int
ccp_find_lsb_regions(struct ccp_queue *cmd_q, uint64_t status)
{
int q_mask = 1 << cmd_q->id;
int weight = 0;
int j;
/* Build a bit mask to know which LSBs
* this queue has access to.
* Don't bother with segment 0
* as it has special
* privileges.
*/
cmd_q->lsbmask = 0;
status >>= LSB_REGION_WIDTH;
for (j = 1; j < MAX_LSB_CNT; j++) {
if (status & q_mask)
ccp_set_bit(&cmd_q->lsbmask, j);
status >>= LSB_REGION_WIDTH;
}
for (j = 0; j < MAX_LSB_CNT; j++)
if (ccp_get_bit(&cmd_q->lsbmask, j))
weight++;
printf("Queue %d can access %d LSB regions of mask %lu\n",
(int)cmd_q->id, weight, cmd_q->lsbmask);
return weight ? 0 : -EINVAL;
}
static int
ccp_find_and_assign_lsb_to_q(struct ccp_device *ccp,
int lsb_cnt, int n_lsbs,
unsigned long *lsb_pub)
{
unsigned long qlsb = 0;
int bitno = 0;
int qlsb_wgt = 0;
int i, j;
/* For each queue:
* If the count of potential LSBs available to a queue matches the
* ordinal given to us in lsb_cnt:
* Copy the mask of possible LSBs for this queue into "qlsb";
* For each bit in qlsb, see if the corresponding bit in the
* aggregation mask is set; if so, we have a match.
* If we have a match, clear the bit in the aggregation to
* mark it as no longer available.
* If there is no match, clear the bit in qlsb and keep looking.
*/
for (i = 0; i < ccp->cmd_q_count; i++) {
struct ccp_queue *cmd_q = &ccp->cmd_q[i];
qlsb_wgt = 0;
for (j = 0; j < MAX_LSB_CNT; j++)
if (ccp_get_bit(&cmd_q->lsbmask, j))
qlsb_wgt++;
if (qlsb_wgt == lsb_cnt) {
qlsb = cmd_q->lsbmask;
bitno = ffs(qlsb) - 1;
while (bitno < MAX_LSB_CNT) {
if (ccp_get_bit(lsb_pub, bitno)) {
/* We found an available LSB
* that this queue can access
*/
cmd_q->lsb = bitno;
ccp_clear_bit(lsb_pub, bitno);
break;
}
ccp_clear_bit(&qlsb, bitno);
bitno = ffs(qlsb) - 1;
}
if (bitno >= MAX_LSB_CNT)
return -EINVAL;
n_lsbs--;
}
}
return n_lsbs;
}
/* For each queue, from the most- to least-constrained:
* find an LSB that can be assigned to the queue. If there are N queues that
* can only use M LSBs, where N > M, fail; otherwise, every queue will get a
* dedicated LSB. Remaining LSB regions become a shared resource.
* If we have fewer LSBs than queues, all LSB regions become shared
* resources.
*/
static int
ccp_assign_lsbs(struct ccp_device *ccp)
{
unsigned long lsb_pub = 0, qlsb = 0;
int n_lsbs = 0;
int bitno;
int i, lsb_cnt;
int rc = 0;
rte_spinlock_init(&ccp->lsb_lock);
/* Create an aggregate bitmap to get a total count of available LSBs */
for (i = 0; i < ccp->cmd_q_count; i++)
lsb_pub |= ccp->cmd_q[i].lsbmask;
for (i = 0; i < MAX_LSB_CNT; i++)
if (ccp_get_bit(&lsb_pub, i))
n_lsbs++;
if (n_lsbs >= ccp->cmd_q_count) {
/* We have enough LSBS to give every queue a private LSB.
* Brute force search to start with the queues that are more
* constrained in LSB choice. When an LSB is privately
* assigned, it is removed from the public mask.
* This is an ugly N squared algorithm with some optimization.
*/
for (lsb_cnt = 1; n_lsbs && (lsb_cnt <= MAX_LSB_CNT);
lsb_cnt++) {
rc = ccp_find_and_assign_lsb_to_q(ccp, lsb_cnt, n_lsbs,
&lsb_pub);
if (rc < 0)
return -EINVAL;
n_lsbs = rc;
}
}
rc = 0;
/* What's left of the LSBs, according to the public mask, now become
* shared. Any zero bits in the lsb_pub mask represent an LSB region
* that can't be used as a shared resource, so mark the LSB slots for
* them as "in use".
*/
qlsb = lsb_pub;
bitno = ccp_find_first_zero_bit(&qlsb, MAX_LSB_CNT);
while (bitno < MAX_LSB_CNT) {
ccp_bitmap_set(ccp->lsbmap, bitno * LSB_SIZE, LSB_SIZE);
ccp_set_bit(&qlsb, bitno);
bitno = ccp_find_first_zero_bit(&qlsb, MAX_LSB_CNT);
}
return rc;
}
static int
ccp_add_device(struct ccp_device *dev, int type)
{
int i;
uint32_t qmr, status_lo, status_hi, dma_addr_lo, dma_addr_hi;
uint64_t status;
struct ccp_queue *cmd_q;
const struct rte_memzone *q_mz;
void *vaddr;
if (dev == NULL)
return -1;
dev->id = ccp_dev_id++;
dev->qidx = 0;
vaddr = (void *)(dev->pci.mem_resource[2].addr);
if (type == CCP_VERSION_5B) {
CCP_WRITE_REG(vaddr, CMD_TRNG_CTL_OFFSET, 0x00012D57);
CCP_WRITE_REG(vaddr, CMD_CONFIG_0_OFFSET, 0x00000003);
for (i = 0; i < 12; i++) {
CCP_WRITE_REG(vaddr, CMD_AES_MASK_OFFSET,
CCP_READ_REG(vaddr, TRNG_OUT_REG));
}
CCP_WRITE_REG(vaddr, CMD_QUEUE_MASK_OFFSET, 0x0000001F);
CCP_WRITE_REG(vaddr, CMD_QUEUE_PRIO_OFFSET, 0x00005B6D);
CCP_WRITE_REG(vaddr, CMD_CMD_TIMEOUT_OFFSET, 0x00000000);
CCP_WRITE_REG(vaddr, LSB_PRIVATE_MASK_LO_OFFSET, 0x3FFFFFFF);
CCP_WRITE_REG(vaddr, LSB_PRIVATE_MASK_HI_OFFSET, 0x000003FF);
CCP_WRITE_REG(vaddr, CMD_CLK_GATE_CTL_OFFSET, 0x00108823);
}
CCP_WRITE_REG(vaddr, CMD_REQID_CONFIG_OFFSET, 0x00001249);
/* Copy the private LSB mask to the public registers */
status_lo = CCP_READ_REG(vaddr, LSB_PRIVATE_MASK_LO_OFFSET);
status_hi = CCP_READ_REG(vaddr, LSB_PRIVATE_MASK_HI_OFFSET);
CCP_WRITE_REG(vaddr, LSB_PUBLIC_MASK_LO_OFFSET, status_lo);
CCP_WRITE_REG(vaddr, LSB_PUBLIC_MASK_HI_OFFSET, status_hi);
status = ((uint64_t)status_hi<<30) | ((uint64_t)status_lo);
dev->cmd_q_count = 0;
/* Find available queues */
qmr = CCP_READ_REG(vaddr, Q_MASK_REG);
for (i = 0; i < MAX_HW_QUEUES; i++) {
if (!(qmr & (1 << i)))
continue;
cmd_q = &dev->cmd_q[dev->cmd_q_count++];
cmd_q->dev = dev;
cmd_q->id = i;
cmd_q->qidx = 0;
cmd_q->qsize = Q_SIZE(Q_DESC_SIZE);
cmd_q->reg_base = (uint8_t *)vaddr +
CMD_Q_STATUS_INCR * (i + 1);
/* CCP queue memory */
snprintf(cmd_q->memz_name, sizeof(cmd_q->memz_name),
"%s_%d_%s_%d_%s",
"ccp_dev",
(int)dev->id, "queue",
(int)cmd_q->id, "mem");
q_mz = ccp_queue_dma_zone_reserve(cmd_q->memz_name,
cmd_q->qsize, SOCKET_ID_ANY);
cmd_q->qbase_addr = (void *)q_mz->addr;
cmd_q->qbase_desc = (void *)q_mz->addr;
cmd_q->qbase_phys_addr = q_mz->phys_addr;
cmd_q->qcontrol = 0;
/* init control reg to zero */
CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_CONTROL_BASE,
cmd_q->qcontrol);
/* Disable the interrupts */
CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_INT_ENABLE_BASE, 0x00);
CCP_READ_REG(cmd_q->reg_base, CMD_Q_INT_STATUS_BASE);
CCP_READ_REG(cmd_q->reg_base, CMD_Q_STATUS_BASE);
/* Clear the interrupts */
CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_INTERRUPT_STATUS_BASE,
ALL_INTERRUPTS);
/* Configure size of each virtual queue accessible to host */
cmd_q->qcontrol &= ~(CMD_Q_SIZE << CMD_Q_SHIFT);
cmd_q->qcontrol |= QUEUE_SIZE_VAL << CMD_Q_SHIFT;
dma_addr_lo = low32_value(cmd_q->qbase_phys_addr);
CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_TAIL_LO_BASE,
(uint32_t)dma_addr_lo);
CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_HEAD_LO_BASE,
(uint32_t)dma_addr_lo);
dma_addr_hi = high32_value(cmd_q->qbase_phys_addr);
cmd_q->qcontrol |= (dma_addr_hi << 16);
CCP_WRITE_REG(cmd_q->reg_base, CMD_Q_CONTROL_BASE,
cmd_q->qcontrol);
/* create LSB Mask map */
if (ccp_find_lsb_regions(cmd_q, status))
CCP_LOG_ERR("queue doesn't have lsb regions");
cmd_q->lsb = -1;
rte_atomic64_init(&cmd_q->free_slots);
rte_atomic64_set(&cmd_q->free_slots, (COMMANDS_PER_QUEUE - 1));
/* unused slot barrier b/w H&T */
}
if (ccp_assign_lsbs(dev))
CCP_LOG_ERR("Unable to assign lsb region");
/* pre-allocate LSB slots */
for (i = 0; i < dev->cmd_q_count; i++) {
dev->cmd_q[i].sb_key =
ccp_lsb_alloc(&dev->cmd_q[i], 1);
dev->cmd_q[i].sb_iv =
ccp_lsb_alloc(&dev->cmd_q[i], 1);
dev->cmd_q[i].sb_sha =
ccp_lsb_alloc(&dev->cmd_q[i], 2);
dev->cmd_q[i].sb_hmac =
ccp_lsb_alloc(&dev->cmd_q[i], 2);
}
TAILQ_INSERT_TAIL(&ccp_list, dev, next);
return 0;
}
static void
ccp_remove_device(struct ccp_device *dev)
{
if (dev == NULL)
return;
TAILQ_REMOVE(&ccp_list, dev, next);
}
static int
is_ccp_device(const char *dirname,
const struct rte_pci_id *ccp_id,
int *type)
{
char filename[PATH_MAX];
const struct rte_pci_id *id;
uint16_t vendor, device_id;
int i;
unsigned long tmp;
/* get vendor id */
snprintf(filename, sizeof(filename), "%s/vendor", dirname);
if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
return 0;
vendor = (uint16_t)tmp;
/* get device id */
snprintf(filename, sizeof(filename), "%s/device", dirname);
if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
return 0;
device_id = (uint16_t)tmp;
for (id = ccp_id, i = 0; id->vendor_id != 0; id++, i++) {
if (vendor == id->vendor_id &&
device_id == id->device_id) {
*type = i;
return 1; /* Matched device */
}
}
return 0;
}
static int
ccp_probe_device(const char *dirname, uint16_t domain,
uint8_t bus, uint8_t devid,
uint8_t function, int ccp_type)
{
struct ccp_device *ccp_dev = NULL;
struct rte_pci_device *pci;
char filename[PATH_MAX];
unsigned long tmp;
int uio_fd = -1, i, uio_num;
char uio_devname[PATH_MAX];
void *map_addr;
ccp_dev = rte_zmalloc("ccp_device", sizeof(*ccp_dev),
RTE_CACHE_LINE_SIZE);
if (ccp_dev == NULL)
goto fail;
pci = &(ccp_dev->pci);
pci->addr.domain = domain;
pci->addr.bus = bus;
pci->addr.devid = devid;
pci->addr.function = function;
/* get vendor id */
snprintf(filename, sizeof(filename), "%s/vendor", dirname);
if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
goto fail;
pci->id.vendor_id = (uint16_t)tmp;
/* get device id */
snprintf(filename, sizeof(filename), "%s/device", dirname);
if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
goto fail;
pci->id.device_id = (uint16_t)tmp;
/* get subsystem_vendor id */
snprintf(filename, sizeof(filename), "%s/subsystem_vendor",
dirname);
if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
goto fail;
pci->id.subsystem_vendor_id = (uint16_t)tmp;
/* get subsystem_device id */
snprintf(filename, sizeof(filename), "%s/subsystem_device",
dirname);
if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
goto fail;
pci->id.subsystem_device_id = (uint16_t)tmp;
/* get class_id */
snprintf(filename, sizeof(filename), "%s/class",
dirname);
if (ccp_pci_parse_sysfs_value(filename, &tmp) < 0)
goto fail;
/* the least 24 bits are valid: class, subclass, program interface */
pci->id.class_id = (uint32_t)tmp & RTE_CLASS_ANY_ID;
/* parse resources */
snprintf(filename, sizeof(filename), "%s/resource", dirname);
if (ccp_pci_parse_sysfs_resource(filename, pci) < 0)
goto fail;
uio_num = ccp_find_uio_devname(dirname);
if (uio_num < 0) {
/*
* It may take time for uio device to appear,
* wait here and try again
*/
usleep(100000);
uio_num = ccp_find_uio_devname(dirname);
if (uio_num < 0)
goto fail;
}
snprintf(uio_devname, sizeof(uio_devname), "/dev/uio%u", uio_num);
uio_fd = open(uio_devname, O_RDWR | O_NONBLOCK);
if (uio_fd < 0)
goto fail;
if (flock(uio_fd, LOCK_EX | LOCK_NB))
goto fail;
/* Map the PCI memory resource of device */
for (i = 0; i < PCI_MAX_RESOURCE; i++) {
char devname[PATH_MAX];
int res_fd;
if (pci->mem_resource[i].phys_addr == 0)
continue;
snprintf(devname, sizeof(devname), "%s/resource%d", dirname, i);
res_fd = open(devname, O_RDWR);
if (res_fd < 0)
goto fail;
map_addr = mmap(NULL, pci->mem_resource[i].len,
PROT_READ | PROT_WRITE,
MAP_SHARED, res_fd, 0);
if (map_addr == MAP_FAILED)
goto fail;
pci->mem_resource[i].addr = map_addr;
}
/* device is valid, add in list */
if (ccp_add_device(ccp_dev, ccp_type)) {
ccp_remove_device(ccp_dev);
goto fail;
}
return 0;
fail:
CCP_LOG_ERR("CCP Device probe failed");
if (uio_fd > 0)
close(uio_fd);
if (ccp_dev)
rte_free(ccp_dev);
return -1;
}
int
ccp_probe_devices(const struct rte_pci_id *ccp_id)
{
int dev_cnt = 0;
int ccp_type = 0;
struct dirent *d;
DIR *dir;
int ret = 0;
int module_idx = 0;
uint16_t domain;
uint8_t bus, devid, function;
char dirname[PATH_MAX];
module_idx = ccp_check_pci_uio_module();
if (module_idx < 0)
return -1;
TAILQ_INIT(&ccp_list);
dir = opendir(SYSFS_PCI_DEVICES);
if (dir == NULL)
return -1;
while ((d = readdir(dir)) != NULL) {
if (d->d_name[0] == '.')
continue;
if (ccp_parse_pci_addr_format(d->d_name, sizeof(d->d_name),
&domain, &bus, &devid, &function) != 0)
continue;
snprintf(dirname, sizeof(dirname), "%s/%s",
SYSFS_PCI_DEVICES, d->d_name);
if (is_ccp_device(dirname, ccp_id, &ccp_type)) {
printf("CCP : Detected CCP device with ID = 0x%x\n",
ccp_id[ccp_type].device_id);
ret = ccp_probe_device(dirname, domain, bus, devid,
function, ccp_type);
if (ret == 0)
dev_cnt++;
}
}
closedir(dir);
return dev_cnt;
}

View File

@ -0,0 +1,284 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Advanced Micro Devices, Inc. All rights reserved.
*/
#ifndef _CCP_DEV_H_
#define _CCP_DEV_H_
#include <limits.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include <rte_bus_pci.h>
#include <rte_atomic.h>
#include <rte_byteorder.h>
#include <rte_io.h>
#include <rte_pci.h>
#include <rte_spinlock.h>
#include <rte_crypto_sym.h>
#include <rte_cryptodev.h>
/**< CCP sspecific */
#define MAX_HW_QUEUES 5
/**< CCP Register Mappings */
#define Q_MASK_REG 0x000
#define TRNG_OUT_REG 0x00c
/* CCP Version 5 Specifics */
#define CMD_QUEUE_MASK_OFFSET 0x00
#define CMD_QUEUE_PRIO_OFFSET 0x04
#define CMD_REQID_CONFIG_OFFSET 0x08
#define CMD_CMD_TIMEOUT_OFFSET 0x10
#define LSB_PUBLIC_MASK_LO_OFFSET 0x18
#define LSB_PUBLIC_MASK_HI_OFFSET 0x1C
#define LSB_PRIVATE_MASK_LO_OFFSET 0x20
#define LSB_PRIVATE_MASK_HI_OFFSET 0x24
#define CMD_Q_CONTROL_BASE 0x0000
#define CMD_Q_TAIL_LO_BASE 0x0004
#define CMD_Q_HEAD_LO_BASE 0x0008
#define CMD_Q_INT_ENABLE_BASE 0x000C
#define CMD_Q_INTERRUPT_STATUS_BASE 0x0010
#define CMD_Q_STATUS_BASE 0x0100
#define CMD_Q_INT_STATUS_BASE 0x0104
#define CMD_CONFIG_0_OFFSET 0x6000
#define CMD_TRNG_CTL_OFFSET 0x6008
#define CMD_AES_MASK_OFFSET 0x6010
#define CMD_CLK_GATE_CTL_OFFSET 0x603C
/* Address offset between two virtual queue registers */
#define CMD_Q_STATUS_INCR 0x1000
/* Bit masks */
#define CMD_Q_RUN 0x1
#define CMD_Q_SIZE 0x1F
#define CMD_Q_SHIFT 3
#define COMMANDS_PER_QUEUE 2048
#define QUEUE_SIZE_VAL ((ffs(COMMANDS_PER_QUEUE) - 2) & \
CMD_Q_SIZE)
#define Q_DESC_SIZE sizeof(struct ccp_desc)
#define Q_SIZE(n) (COMMANDS_PER_QUEUE*(n))
#define INT_COMPLETION 0x1
#define INT_ERROR 0x2
#define INT_QUEUE_STOPPED 0x4
#define ALL_INTERRUPTS (INT_COMPLETION| \
INT_ERROR| \
INT_QUEUE_STOPPED)
#define LSB_REGION_WIDTH 5
#define MAX_LSB_CNT 8
#define LSB_SIZE 16
#define LSB_ITEM_SIZE 32
#define SLSB_MAP_SIZE (MAX_LSB_CNT * LSB_SIZE)
/* bitmap */
enum {
BITS_PER_WORD = sizeof(unsigned long) * CHAR_BIT
};
#define WORD_OFFSET(b) ((b) / BITS_PER_WORD)
#define BIT_OFFSET(b) ((b) % BITS_PER_WORD)
#define CCP_DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
#define CCP_BITMAP_SIZE(nr) \
CCP_DIV_ROUND_UP(nr, CHAR_BIT * sizeof(unsigned long))
#define CCP_BITMAP_FIRST_WORD_MASK(start) \
(~0UL << ((start) & (BITS_PER_WORD - 1)))
#define CCP_BITMAP_LAST_WORD_MASK(nbits) \
(~0UL >> (-(nbits) & (BITS_PER_WORD - 1)))
#define __ccp_round_mask(x, y) ((typeof(x))((y)-1))
#define ccp_round_down(x, y) ((x) & ~__ccp_round_mask(x, y))
/** CCP registers Write/Read */
static inline void ccp_pci_reg_write(void *base, int offset,
uint32_t value)
{
volatile void *reg_addr = ((uint8_t *)base + offset);
rte_write32((rte_cpu_to_le_32(value)), reg_addr);
}
static inline uint32_t ccp_pci_reg_read(void *base, int offset)
{
volatile void *reg_addr = ((uint8_t *)base + offset);
return rte_le_to_cpu_32(rte_read32(reg_addr));
}
#define CCP_READ_REG(hw_addr, reg_offset) \
ccp_pci_reg_read(hw_addr, reg_offset)
#define CCP_WRITE_REG(hw_addr, reg_offset, value) \
ccp_pci_reg_write(hw_addr, reg_offset, value)
TAILQ_HEAD(ccp_list, ccp_device);
extern struct ccp_list ccp_list;
/**
* CCP device version
*/
enum ccp_device_version {
CCP_VERSION_5A = 0,
CCP_VERSION_5B,
};
/**
* A structure describing a CCP command queue.
*/
struct ccp_queue {
struct ccp_device *dev;
char memz_name[RTE_MEMZONE_NAMESIZE];
rte_atomic64_t free_slots;
/**< available free slots updated from enq/deq calls */
/* Queue identifier */
uint64_t id; /**< queue id */
uint64_t qidx; /**< queue index */
uint64_t qsize; /**< queue size */
/* Queue address */
struct ccp_desc *qbase_desc;
void *qbase_addr;
phys_addr_t qbase_phys_addr;
/**< queue-page registers addr */
void *reg_base;
uint32_t qcontrol;
/**< queue ctrl reg */
int lsb;
/**< lsb region assigned to queue */
unsigned long lsbmask;
/**< lsb regions queue can access */
unsigned long lsbmap[CCP_BITMAP_SIZE(LSB_SIZE)];
/**< all lsb resources which queue is using */
uint32_t sb_key;
/**< lsb assigned for queue */
uint32_t sb_iv;
/**< lsb assigned for iv */
uint32_t sb_sha;
/**< lsb assigned for sha ctx */
uint32_t sb_hmac;
/**< lsb assigned for hmac ctx */
} ____cacheline_aligned;
/**
* A structure describing a CCP device.
*/
struct ccp_device {
TAILQ_ENTRY(ccp_device) next;
int id;
/**< ccp dev id on platform */
struct ccp_queue cmd_q[MAX_HW_QUEUES];
/**< ccp queue */
int cmd_q_count;
/**< no. of ccp Queues */
struct rte_pci_device pci;
/**< ccp pci identifier */
unsigned long lsbmap[CCP_BITMAP_SIZE(SLSB_MAP_SIZE)];
/**< shared lsb mask of ccp */
rte_spinlock_t lsb_lock;
/**< protection for shared lsb region allocation */
int qidx;
/**< current queue index */
} __rte_cache_aligned;
/**
* descriptor for version 5 CPP commands
* 8 32-bit words:
* word 0: function; engine; control bits
* word 1: length of source data
* word 2: low 32 bits of source pointer
* word 3: upper 16 bits of source pointer; source memory type
* word 4: low 32 bits of destination pointer
* word 5: upper 16 bits of destination pointer; destination memory
* type
* word 6: low 32 bits of key pointer
* word 7: upper 16 bits of key pointer; key memory type
*/
struct dword0 {
uint32_t soc:1;
uint32_t ioc:1;
uint32_t rsvd1:1;
uint32_t init:1;
uint32_t eom:1;
uint32_t function:15;
uint32_t engine:4;
uint32_t prot:1;
uint32_t rsvd2:7;
};
struct dword3 {
uint32_t src_hi:16;
uint32_t src_mem:2;
uint32_t lsb_cxt_id:8;
uint32_t rsvd1:5;
uint32_t fixed:1;
};
union dword4 {
uint32_t dst_lo; /* NON-SHA */
uint32_t sha_len_lo; /* SHA */
};
union dword5 {
struct {
uint32_t dst_hi:16;
uint32_t dst_mem:2;
uint32_t rsvd1:13;
uint32_t fixed:1;
}
fields;
uint32_t sha_len_hi;
};
struct dword7 {
uint32_t key_hi:16;
uint32_t key_mem:2;
uint32_t rsvd1:14;
};
struct ccp_desc {
struct dword0 dw0;
uint32_t length;
uint32_t src_lo;
struct dword3 dw3;
union dword4 dw4;
union dword5 dw5;
uint32_t key_lo;
struct dword7 dw7;
};
static inline uint32_t
low32_value(unsigned long addr)
{
return ((uint64_t)addr) & 0x0ffffffff;
}
static inline uint32_t
high32_value(unsigned long addr)
{
return ((uint64_t)addr >> 32) & 0x00000ffff;
}
/**
* Detect ccp platform and initialize all ccp devices
*
* @param ccp_id rte_pci_id list for supported CCP devices
* @return no. of successfully initialized CCP devices
*/
int ccp_probe_devices(const struct rte_pci_id *ccp_id);
#endif /* _CCP_DEV_H_ */

View File

@ -0,0 +1,236 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Advanced Micro Devices, Inc. All rights reserved.
*/
#include <dirent.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <rte_string_fns.h>
#include "ccp_pci.h"
static const char * const uio_module_names[] = {
"igb_uio",
"uio_pci_generic",
};
int
ccp_check_pci_uio_module(void)
{
FILE *fp;
int i;
char buf[BUFSIZ];
fp = fopen(PROC_MODULES, "r");
if (fp == NULL)
return -1;
i = 0;
while (uio_module_names[i] != NULL) {
while (fgets(buf, sizeof(buf), fp) != NULL) {
if (!strncmp(buf, uio_module_names[i],
strlen(uio_module_names[i])))
return i;
}
i++;
rewind(fp);
}
printf("Insert igb_uio or uio_pci_generic kernel module(s)");
return -1;/* uio not inserted */
}
/*
* split up a pci address into its constituent parts.
*/
int
ccp_parse_pci_addr_format(const char *buf, int bufsize, uint16_t *domain,
uint8_t *bus, uint8_t *devid, uint8_t *function)
{
/* first split on ':' */
union splitaddr {
struct {
char *domain;
char *bus;
char *devid;
char *function;
};
char *str[PCI_FMT_NVAL];
/* last element-separator is "." not ":" */
} splitaddr;
char *buf_copy = strndup(buf, bufsize);
if (buf_copy == NULL)
return -1;
if (rte_strsplit(buf_copy, bufsize, splitaddr.str, PCI_FMT_NVAL, ':')
!= PCI_FMT_NVAL - 1)
goto error;
/* final split is on '.' between devid and function */
splitaddr.function = strchr(splitaddr.devid, '.');
if (splitaddr.function == NULL)
goto error;
*splitaddr.function++ = '\0';
/* now convert to int values */
errno = 0;
*domain = (uint8_t)strtoul(splitaddr.domain, NULL, 16);
*bus = (uint8_t)strtoul(splitaddr.bus, NULL, 16);
*devid = (uint8_t)strtoul(splitaddr.devid, NULL, 16);
*function = (uint8_t)strtoul(splitaddr.function, NULL, 10);
if (errno != 0)
goto error;
free(buf_copy); /* free the copy made with strdup */
return 0;
error:
free(buf_copy);
return -1;
}
int
ccp_pci_parse_sysfs_value(const char *filename, unsigned long *val)
{
FILE *f;
char buf[BUFSIZ];
char *end = NULL;
f = fopen(filename, "r");
if (f == NULL)
return -1;
if (fgets(buf, sizeof(buf), f) == NULL) {
fclose(f);
return -1;
}
*val = strtoul(buf, &end, 0);
if ((buf[0] == '\0') || (end == NULL) || (*end != '\n')) {
fclose(f);
return -1;
}
fclose(f);
return 0;
}
/** IO resource type: */
#define IORESOURCE_IO 0x00000100
#define IORESOURCE_MEM 0x00000200
/* parse one line of the "resource" sysfs file (note that the 'line'
* string is modified)
*/
static int
ccp_pci_parse_one_sysfs_resource(char *line, size_t len, uint64_t *phys_addr,
uint64_t *end_addr, uint64_t *flags)
{
union pci_resource_info {
struct {
char *phys_addr;
char *end_addr;
char *flags;
};
char *ptrs[PCI_RESOURCE_FMT_NVAL];
} res_info;
if (rte_strsplit(line, len, res_info.ptrs, 3, ' ') != 3)
return -1;
errno = 0;
*phys_addr = strtoull(res_info.phys_addr, NULL, 16);
*end_addr = strtoull(res_info.end_addr, NULL, 16);
*flags = strtoull(res_info.flags, NULL, 16);
if (errno != 0)
return -1;
return 0;
}
/* parse the "resource" sysfs file */
int
ccp_pci_parse_sysfs_resource(const char *filename, struct rte_pci_device *dev)
{
FILE *fp;
char buf[BUFSIZ];
int i;
uint64_t phys_addr, end_addr, flags;
fp = fopen(filename, "r");
if (fp == NULL)
return -1;
for (i = 0; i < PCI_MAX_RESOURCE; i++) {
if (fgets(buf, sizeof(buf), fp) == NULL)
goto error;
if (ccp_pci_parse_one_sysfs_resource(buf, sizeof(buf),
&phys_addr, &end_addr, &flags) < 0)
goto error;
if (flags & IORESOURCE_MEM) {
dev->mem_resource[i].phys_addr = phys_addr;
dev->mem_resource[i].len = end_addr - phys_addr + 1;
/* not mapped for now */
dev->mem_resource[i].addr = NULL;
}
}
fclose(fp);
return 0;
error:
fclose(fp);
return -1;
}
int
ccp_find_uio_devname(const char *dirname)
{
DIR *dir;
struct dirent *e;
char dirname_uio[PATH_MAX];
unsigned int uio_num;
int ret = -1;
/* depending on kernel version, uio can be located in uio/uioX
* or uio:uioX
*/
snprintf(dirname_uio, sizeof(dirname_uio), "%s/uio", dirname);
dir = opendir(dirname_uio);
if (dir == NULL) {
/* retry with the parent directory might be different kernel version*/
dir = opendir(dirname);
if (dir == NULL)
return -1;
}
/* take the first file starting with "uio" */
while ((e = readdir(dir)) != NULL) {
/* format could be uio%d ...*/
int shortprefix_len = sizeof("uio") - 1;
/* ... or uio:uio%d */
int longprefix_len = sizeof("uio:uio") - 1;
char *endptr;
if (strncmp(e->d_name, "uio", 3) != 0)
continue;
/* first try uio%d */
errno = 0;
uio_num = strtoull(e->d_name + shortprefix_len, &endptr, 10);
if (errno == 0 && endptr != (e->d_name + shortprefix_len)) {
ret = uio_num;
break;
}
/* then try uio:uio%d */
errno = 0;
uio_num = strtoull(e->d_name + longprefix_len, &endptr, 10);
if (errno == 0 && endptr != (e->d_name + longprefix_len)) {
ret = uio_num;
break;
}
}
closedir(dir);
return ret;
}

View File

@ -0,0 +1,27 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Advanced Micro Devices, Inc. All rights reserved.
*/
#ifndef _CCP_PCI_H_
#define _CCP_PCI_H_
#include <stdint.h>
#include <rte_bus_pci.h>
#define SYSFS_PCI_DEVICES "/sys/bus/pci/devices"
#define PROC_MODULES "/proc/modules"
int ccp_check_pci_uio_module(void);
int ccp_parse_pci_addr_format(const char *buf, int bufsize, uint16_t *domain,
uint8_t *bus, uint8_t *devid, uint8_t *function);
int ccp_pci_parse_sysfs_value(const char *filename, unsigned long *val);
int ccp_pci_parse_sysfs_resource(const char *filename,
struct rte_pci_device *dev);
int ccp_find_uio_devname(const char *dirname);
#endif /* _CCP_PCI_H_ */

View File

@ -0,0 +1,29 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Advanced Micro Devices, Inc. All rights reserved.
*/
#include <rte_cryptodev_pmd.h>
struct rte_cryptodev_ops ccp_ops = {
.dev_configure = NULL,
.dev_start = NULL,
.dev_stop = NULL,
.dev_close = NULL,
.stats_get = NULL,
.stats_reset = NULL,
.dev_infos_get = NULL,
.queue_pair_setup = NULL,
.queue_pair_release = NULL,
.queue_pair_start = NULL,
.queue_pair_stop = NULL,
.queue_pair_count = NULL,
.session_get_size = NULL,
.session_configure = NULL,
.session_clear = NULL,
};
struct rte_cryptodev_ops *ccp_pmd_ops = &ccp_ops;

View File

@ -0,0 +1,56 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Advanced Micro Devices, Inc. All rights reserved.
*/
#ifndef _CCP_PMD_PRIVATE_H_
#define _CCP_PMD_PRIVATE_H_
#include <rte_cryptodev.h>
#define CRYPTODEV_NAME_CCP_PMD crypto_ccp
#define CCP_LOG_ERR(fmt, args...) \
RTE_LOG(ERR, CRYPTODEV, "[%s] %s() line %u: " fmt "\n", \
RTE_STR(CRYPTODEV_NAME_CCP_PMD), \
__func__, __LINE__, ## args)
#ifdef RTE_LIBRTE_CCP_DEBUG
#define CCP_LOG_INFO(fmt, args...) \
RTE_LOG(INFO, CRYPTODEV, "[%s] %s() line %u: " fmt "\n", \
RTE_STR(CRYPTODEV_NAME_CCP_PMD), \
__func__, __LINE__, ## args)
#define CCP_LOG_DBG(fmt, args...) \
RTE_LOG(DEBUG, CRYPTODEV, "[%s] %s() line %u: " fmt "\n", \
RTE_STR(CRYPTODEV_NAME_CCP_PMD), \
__func__, __LINE__, ## args)
#else
#define CCP_LOG_INFO(fmt, args...)
#define CCP_LOG_DBG(fmt, args...)
#endif
/**< Maximum queue pairs supported by CCP PMD */
#define CCP_PMD_MAX_QUEUE_PAIRS 1
#define CCP_NB_MAX_DESCRIPTORS 1024
#define CCP_MAX_BURST 64
/* private data structure for each CCP crypto device */
struct ccp_private {
unsigned int max_nb_qpairs; /**< Max number of queue pairs */
unsigned int max_nb_sessions; /**< Max number of sessions */
uint8_t crypto_num_dev; /**< Number of working crypto devices */
};
/**< device specific operations function pointer structure */
extern struct rte_cryptodev_ops *ccp_pmd_ops;
uint16_t
ccp_cpu_pmd_enqueue_burst(void *queue_pair,
struct rte_crypto_op **ops,
uint16_t nb_ops);
uint16_t
ccp_cpu_pmd_dequeue_burst(void *queue_pair,
struct rte_crypto_op **ops,
uint16_t nb_ops);
#endif /* _CCP_PMD_PRIVATE_H_ */

View File

@ -2,23 +2,170 @@
* Copyright(c) 2018 Advanced Micro Devices, Inc. All rights reserved.
*/
#include <rte_bus_pci.h>
#include <rte_bus_vdev.h>
#include <rte_common.h>
#include <rte_config.h>
#include <rte_cryptodev.h>
#include <rte_cryptodev_pmd.h>
#include <rte_pci.h>
#include <rte_dev.h>
#include <rte_malloc.h>
#include "ccp_dev.h"
#include "ccp_pmd_private.h"
/**
* Global static parameter used to find if CCP device is already initialized.
*/
static unsigned int ccp_pmd_init_done;
uint8_t ccp_cryptodev_driver_id;
static uint16_t
ccp_pmd_enqueue_burst(void *queue_pair __rte_unused,
struct rte_crypto_op **ops __rte_unused,
uint16_t nb_ops __rte_unused)
{
uint16_t enq_cnt = 0;
return enq_cnt;
}
static uint16_t
ccp_pmd_dequeue_burst(void *queue_pair __rte_unused,
struct rte_crypto_op **ops __rte_unused,
uint16_t nb_ops __rte_unused)
{
uint16_t nb_dequeued = 0;
return nb_dequeued;
}
/*
* The set of PCI devices this driver supports
*/
static struct rte_pci_id ccp_pci_id[] = {
{
RTE_PCI_DEVICE(0x1022, 0x1456), /* AMD CCP-5a */
},
{
RTE_PCI_DEVICE(0x1022, 0x1468), /* AMD CCP-5b */
},
{.device_id = 0},
};
/** Remove ccp pmd */
static int
cryptodev_ccp_remove(struct rte_vdev_device *dev __rte_unused)
cryptodev_ccp_remove(struct rte_vdev_device *dev)
{
const char *name;
ccp_pmd_init_done = 0;
name = rte_vdev_device_name(dev);
if (name == NULL)
return -EINVAL;
RTE_LOG(INFO, PMD, "Closing ccp device %s on numa socket %u\n",
name, rte_socket_id());
return 0;
}
/** Create crypto device */
static int
cryptodev_ccp_create(const char *name,
struct rte_vdev_device *vdev,
struct rte_cryptodev_pmd_init_params *init_params)
{
struct rte_cryptodev *dev;
struct ccp_private *internals;
uint8_t cryptodev_cnt = 0;
if (init_params->name[0] == '\0')
snprintf(init_params->name, sizeof(init_params->name),
"%s", name);
dev = rte_cryptodev_pmd_create(init_params->name,
&vdev->device,
init_params);
if (dev == NULL) {
CCP_LOG_ERR("failed to create cryptodev vdev");
goto init_error;
}
cryptodev_cnt = ccp_probe_devices(ccp_pci_id);
if (cryptodev_cnt == 0) {
CCP_LOG_ERR("failed to detect CCP crypto device");
goto init_error;
}
printf("CCP : Crypto device count = %d\n", cryptodev_cnt);
dev->driver_id = ccp_cryptodev_driver_id;
/* register rx/tx burst functions for data path */
dev->dev_ops = ccp_pmd_ops;
dev->enqueue_burst = ccp_pmd_enqueue_burst;
dev->dequeue_burst = ccp_pmd_dequeue_burst;
dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
RTE_CRYPTODEV_FF_HW_ACCELERATED |
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING;
internals = dev->data->dev_private;
internals->max_nb_qpairs = init_params->max_nb_queue_pairs;
internals->max_nb_sessions = init_params->max_nb_sessions;
internals->crypto_num_dev = cryptodev_cnt;
return 0;
init_error:
CCP_LOG_ERR("driver %s: %s() failed",
init_params->name, __func__);
cryptodev_ccp_remove(vdev);
return -EFAULT;
}
/** Probe ccp pmd */
static int
cryptodev_ccp_probe(struct rte_vdev_device *vdev __rte_unused)
cryptodev_ccp_probe(struct rte_vdev_device *vdev)
{
int rc = 0;
const char *name;
struct rte_cryptodev_pmd_init_params init_params = {
"",
sizeof(struct ccp_private),
rte_socket_id(),
CCP_PMD_MAX_QUEUE_PAIRS,
RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_SESSIONS
};
const char *input_args;
if (ccp_pmd_init_done) {
RTE_LOG(INFO, PMD, "CCP PMD already initialized\n");
return -EFAULT;
}
name = rte_vdev_device_name(vdev);
if (name == NULL)
return -EINVAL;
input_args = rte_vdev_device_args(vdev);
rte_cryptodev_pmd_parse_input_args(&init_params, input_args);
init_params.max_nb_queue_pairs = CCP_PMD_MAX_QUEUE_PAIRS;
RTE_LOG(INFO, PMD, "Initialising %s on NUMA node %d\n", name,
init_params.socket_id);
RTE_LOG(INFO, PMD, "Max number of queue pairs = %d\n",
init_params.max_nb_queue_pairs);
RTE_LOG(INFO, PMD, "Max number of sessions = %d\n",
init_params.max_nb_sessions);
rc = cryptodev_ccp_create(name, vdev, &init_params);
if (rc)
return rc;
ccp_pmd_init_done = 1;
return 0;
}