diff --git a/config/common_base b/config/common_base index 757f365375..a104b5f8ad 100644 --- a/config/common_base +++ b/config/common_base @@ -537,6 +537,7 @@ CONFIG_RTE_PMD_PACKET_PREFETCH=y # EXPERIMENTAL: API may change without prior notice # CONFIG_RTE_LIBRTE_BBDEV=y +CONFIG_RTE_LIBRTE_BBDEV_DEBUG=n CONFIG_RTE_BBDEV_MAX_DEVS=128 CONFIG_RTE_BBDEV_OFFLOAD_COST=y CONFIG_RTE_BBDEV_SDK_AVX2=n @@ -551,6 +552,11 @@ CONFIG_RTE_LIBRTE_PMD_BBDEV_NULL=y # CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW=y +# +# Compile PMD for Intel FPGA LTE FEC bbdev device +# +CONFIG_RTE_LIBRTE_PMD_FPGA_LTE_FEC=y + # # Compile generic crypto device library # diff --git a/doc/guides/bbdevs/fpga_lte_fec.rst b/doc/guides/bbdevs/fpga_lte_fec.rst new file mode 100644 index 0000000000..4a3061a901 --- /dev/null +++ b/doc/guides/bbdevs/fpga_lte_fec.rst @@ -0,0 +1,316 @@ +.. SPDX-License-Identifier: BSD-3-Clause + Copyright(c) 2019 Intel Corporation + +Intel(R) FPGA LTE FEC Poll Mode Driver +====================================== + +The BBDEV FPGA LTE FEC poll mode driver (PMD) supports an FPGA implementation of a VRAN +Turbo Encode / Decode LTE wireless acceleration function, using Intel's PCI-e and FPGA +based Vista Creek device. + +Features +-------- + +FPGA LTE FEC PMD supports the following features: + +- Turbo Encode in the DL with total throughput of 4.5 Gbits/s +- Turbo Decode in the UL with total throughput of 1.5 Gbits/s assuming 8 decoder iterations +- 8 VFs per PF (physical device) +- Maximum of 32 UL queues per VF +- Maximum of 32 DL queues per VF +- PCIe Gen-3 x8 Interface +- MSI-X +- SR-IOV + + +FPGA LTE FEC PMD supports the following BBDEV capabilities: + +* For the turbo encode operation: + - ``RTE_BBDEV_TURBO_CRC_24B_ATTACH`` : set to attach CRC24B to CB(s) + - ``RTE_BBDEV_TURBO_RATE_MATCH`` : if set then do not do Rate Match bypass + - ``RTE_BBDEV_TURBO_ENC_INTERRUPTS`` : set for encoder dequeue interrupts + + +* For the turbo decode operation: + - ``RTE_BBDEV_TURBO_CRC_TYPE_24B`` : check CRC24B from CB(s) + - ``RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE`` : perform subblock de-interleave + - ``RTE_BBDEV_TURBO_DEC_INTERRUPTS`` : set for decoder dequeue interrupts + - ``RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN`` : set if negative LLR encoder i/p is supported + - ``RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP`` : keep CRC24B bits appended while decoding + + +Limitations +----------- + +FPGA LTE FEC does not support the following: + +- Scatter-Gather function + + +Installation +-------------- + +Section 3 of the DPDK manual provides instuctions on installing and compiling DPDK. The +default set of bbdev compile flags may be found in config/common_base, where for example +the flag to build the FPGA LTE FEC device, ``CONFIG_RTE_LIBRTE_PMD_FPGA_LTE_FEC``, is already +set. It is assumed DPDK has been compiled using for instance: + +.. code-block:: console + + make install T=x86_64-native-linuxapp-gcc + + +DPDK requires hugepages to be configured as detailed in section 2 of the DPDK manual. +The bbdev test application has been tested with a configuration 40 x 1GB hugepages. The +hugepage configuration of a server may be examined using: + +.. code-block:: console + + grep Huge* /proc/meminfo + + +Initialization +-------------- + +When the device first powers up, its PCI Physical Functions (PF) can be listed through this command: + +.. code-block:: console + + sudo lspci -vd1172:5052 + +The physical and virtual functions are compatible with Linux UIO drivers: +``vfio`` and ``igb_uio``. However, in order to work the FPGA LTE FEC device firstly needs +to be bound to one of these linux drivers through DPDK. + + +Bind PF UIO driver(s) +~~~~~~~~~~~~~~~~~~~~~ + +Install the DPDK igb_uio driver, bind it with the PF PCI device ID and use +``lspci`` to confirm the PF device is under use by ``igb_uio`` DPDK UIO driver. + +The igb_uio driver may be bound to the PF PCI device using one of three methods: + + +1. PCI functions (physical or virtual, depending on the use case) can be bound to +the UIO driver by repeating this command for every function. + +.. code-block:: console + + cd + insmod ./build/kmod/igb_uio.ko + echo "1172 5052" > /sys/bus/pci/drivers/igb_uio/new_id + lspci -vd1172: + + +2. Another way to bind PF with DPDK UIO driver is by using the ``dpdk-devbind.py`` tool + +.. code-block:: console + + cd + ./usertools/dpdk-devbind.py -b igb_uio 0000:06:00.0 + +where the PCI device ID (example: 0000:06:00.0) is obtained using lspci -vd1172: + + +3. A third way to bind is to use ``dpdk-setup.sh`` tool + +.. code-block:: console + + cd + ./usertools/dpdk-setup.sh + + select 'Bind Ethernet/Crypto/Baseband device to IGB UIO module' + or + select 'Bind Ethernet/Crypto/Baseband device to VFIO module' depending on driver required + enter PCI device ID + select 'Display current Ethernet/Crypto/Baseband device settings' to confirm binding + + +In the same way the FPGA LTE FEC PF can be bound with vfio, but vfio driver does not +support SR-IOV configuration right out of the box, so it will need to be patched. + + +Enable Virtual Functions +~~~~~~~~~~~~~~~~~~~~~~~~ + +Now, it should be visible in the printouts that PCI PF is under igb_uio control +"``Kernel driver in use: igb_uio``" + +To show the number of available VFs on the device, read ``sriov_totalvfs`` file.. + +.. code-block:: console + + cat /sys/bus/pci/devices/0000\:\:./sriov_totalvfs + + where 0000\:\:. is the PCI device ID + + +To enable VFs via igb_uio, echo the number of virtual functions intended to +enable to ``max_vfs`` file.. + +.. code-block:: console + + echo > /sys/bus/pci/devices/0000\:\:./max_vfs + + +Afterwards, all VFs must be bound to appropriate UIO drivers as required, same +way it was done with the physical function previously. + +Enabling SR-IOV via vfio driver is pretty much the same, except that the file +name is different: + +.. code-block:: console + + echo > /sys/bus/pci/devices/0000\:\:./sriov_numvfs + + +Configure the VFs through PF +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The PCI virtual functions must be configured before working or getting assigned +to VMs/Containers. The configuration involves allocating the number of hardware +queues, priorities, load balance, bandwidth and other settings necessary for the +device to perform FEC functions. + +This configuration needs to be executed at least once after reboot or PCI FLR and can +be achieved by using the function ``fpga_lte_fec_configure()``, which sets up the +parameters defined in ``fpga_lte_fec_conf`` structure: + +.. code-block:: c + + struct fpga_lte_fec_conf { + bool pf_mode_en; + uint8_t vf_ul_queues_number[FPGA_LTE_FEC_NUM_VFS]; + uint8_t vf_dl_queues_number[FPGA_LTE_FEC_NUM_VFS]; + uint8_t ul_bandwidth; + uint8_t dl_bandwidth; + uint8_t ul_load_balance; + uint8_t dl_load_balance; + uint16_t flr_time_out; + }; + +- ``pf_mode_en``: identifies whether only PF is to be used, or the VFs. PF and + VFs are mutually exclusive and cannot run simultaneously. + Set to 1 for PF mode enabled. + If PF mode is enabled all queues available in the device are assigned + exclusively to PF and 0 queues given to VFs. + +- ``vf_*l_queues_number``: defines the hardware queue mapping for every VF. + +- ``*l_bandwidth``: in case of congestion on PCIe interface. The device + allocates different bandwidth to UL and DL. The weight is configured by this + setting. The unit of weight is 3 code blocks. For example, if the code block + cbps (code block per second) ratio between UL and DL is 12:1, then the + configuration value should be set to 36:3. The schedule algorithm is based + on code block regardless the length of each block. + +- ``*l_load_balance``: hardware queues are load-balanced in a round-robin + fashion. Queues get filled first-in first-out until they reach a pre-defined + watermark level, if exceeded, they won't get assigned new code blocks.. + This watermark is defined by this setting. + + If all hardware queues exceeds the watermark, no code blocks will be + streamed in from UL/DL code block FIFO. + +- ``flr_time_out``: specifies how many 16.384us to be FLR time out. The + time_out = flr_time_out x 16.384us. For instance, if you want to set 10ms for + the FLR time out then set this setting to 0x262=610. + + +An example configuration code calling the function ``fpga_lte_fec_configure()`` is shown +below: + +.. code-block:: c + + struct fpga_lte_fec_conf conf; + unsigned int i; + + memset(&conf, 0, sizeof(struct fpga_lte_fec_conf)); + conf.pf_mode_en = 1; + + for (i = 0; i < FPGA_LTE_FEC_NUM_VFS; ++i) { + conf.vf_ul_queues_number[i] = 4; + conf.vf_dl_queues_number[i] = 4; + } + conf.ul_bandwidth = 12; + conf.dl_bandwidth = 5; + conf.dl_load_balance = 64; + conf.ul_load_balance = 64; + + /* setup FPGA PF */ + ret = fpga_lte_fec_configure(info->dev_name, &conf); + TEST_ASSERT_SUCCESS(ret, + "Failed to configure 4G FPGA PF for bbdev %s", + info->dev_name); + + +Test Application +---------------- + +BBDEV provides a test application, ``test-bbdev.py`` and range of test data for testing +the functionality of FPGA LTE FEC turbo encode and turbo decode, depending on the device's +capabilities. The test application is located under app->test-bbdev folder and has the +following options: + +.. code-block:: console + + "-p", "--testapp-path": specifies path to the bbdev test app. + "-e", "--eal-params" : EAL arguments which are passed to the test app. + "-t", "--timeout" : Timeout in seconds (default=300). + "-c", "--test-cases" : Defines test cases to run. Run all if not specified. + "-v", "--test-vector" : Test vector path (default=dpdk_path+/app/test-bbdev/test_vectors/bbdev_null.data). + "-n", "--num-ops" : Number of operations to process on device (default=32). + "-b", "--burst-size" : Operations enqueue/dequeue burst size (default=32). + "-l", "--num-lcores" : Number of lcores to run (default=16). + "-i", "--init-device" : Initialise PF device with default values. + + +To execute the test application tool using simple turbo decode or turbo encode data, +type one of the following: + +.. code-block:: console + + ./test-bbdev.py -c validation -n 64 -b 8 -v ./turbo_dec_default.data + ./test-bbdev.py -c validation -n 64 -b 8 -v ./turbo_enc_default.data + + +The test application ``test-bbdev.py``, supports the ability to configure the PF device with +a default set of values, if the "-i" or "- -init-device" option is included. The default values +are defined in test_bbdev_perf.c as: + +- VF_UL_QUEUE_VALUE 4 +- VF_DL_QUEUE_VALUE 4 +- UL_BANDWIDTH 3 +- DL_BANDWIDTH 3 +- UL_LOAD_BALANCE 128 +- DL_LOAD_BALANCE 128 +- FLR_TIMEOUT 610 + + +Test Vectors +~~~~~~~~~~~~ + +In addition to the simple turbo decoder and turbo encoder tests, bbdev also provides +a range of additional tests under the test_vectors folder, which may be useful. The results +of these tests will depend on the FPGA LTE FEC capabilities: + +* turbo decoder tests: + - ``turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_high_snr.data`` + - ``turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_low_snr.data`` + - ``turbo_dec_c1_k6144_r0_e34560_negllr.data`` + - ``turbo_dec_c1_k6144_r0_e34560_sbd_negllr.data`` + - ``turbo_dec_c2_k3136_r0_e4920_sbd_negllr_crc24b.data`` + - ``turbo_dec_c2_k3136_r0_e4920_sbd_negllr.data`` + + +* turbo encoder tests: + - ``turbo_enc_c1_k40_r0_e1190_rm.data`` + - ``turbo_enc_c1_k40_r0_e1194_rm.data`` + - ``turbo_enc_c1_k40_r0_e1196_rm.data`` + - ``turbo_enc_c1_k40_r0_e272_rm.data`` + - ``turbo_enc_c1_k6144_r0_e18444.data`` + - ``turbo_enc_c1_k6144_r0_e32256_crc24b_rm.data`` + - ``turbo_enc_c2_k5952_r0_e17868_crc24b.data`` + - ``turbo_enc_c3_k4800_r2_e14412_crc24b.data`` + - ``turbo_enc_c4_k4800_r2_e14412_crc24b.data`` diff --git a/doc/guides/bbdevs/index.rst b/doc/guides/bbdevs/index.rst index 93276edbd4..005b95e971 100644 --- a/doc/guides/bbdevs/index.rst +++ b/doc/guides/bbdevs/index.rst @@ -10,3 +10,4 @@ Baseband Device Drivers null turbo_sw + fpga_lte_fec diff --git a/doc/guides/rel_notes/release_19_08.rst b/doc/guides/rel_notes/release_19_08.rst index 40d3079b17..fd3b4b6313 100644 --- a/doc/guides/rel_notes/release_19_08.rst +++ b/doc/guides/rel_notes/release_19_08.rst @@ -133,6 +133,12 @@ New Features device to be received repeatedly at a high rate. This can be useful for quick performance testing of DPDK apps. +* **Added a FPGA_LTE_FEC bbdev PMD.** + + Added the new ``fpga_lte_fec`` bbdev driver for the IntelĀ® FPGA PAC + (Programmable Acceleration Card) N3000. See the + :doc:`../bbdevs/fpga_lte_fec` BBDEV guide for more details on this new driver. + * **Added Intel QuickData Technology PMD** The PMD for Intel\ |reg| QuickData Technology, part of diff --git a/drivers/baseband/Makefile b/drivers/baseband/Makefile index 4ec83b0a00..ceffc7d494 100644 --- a/drivers/baseband/Makefile +++ b/drivers/baseband/Makefile @@ -10,5 +10,7 @@ DIRS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_NULL) += null DEPDIRS-null = $(core-libs) DIRS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW) += turbo_sw DEPDIRS-turbo_sw = $(core-libs) +DIRS-$(CONFIG_RTE_LIBRTE_PMD_FPGA_LTE_FEC) += fpga_lte_fec +DEPDIRS-fpga_lte_fec = $(core-libs) include $(RTE_SDK)/mk/rte.subdir.mk diff --git a/drivers/baseband/fpga_lte_fec/Makefile b/drivers/baseband/fpga_lte_fec/Makefile new file mode 100644 index 0000000000..a38a396aee --- /dev/null +++ b/drivers/baseband/fpga_lte_fec/Makefile @@ -0,0 +1,29 @@ +# SPDX-License-Identifier: BSD-3-Clause +# Copyright(c) 2019 Intel Corporation + +include $(RTE_SDK)/mk/rte.vars.mk + +# library name +LIB = librte_pmd_fpga_lte_fec.a + +# build flags +CFLAGS += -DALLOW_EXPERIMENTAL_API +CFLAGS += -O3 +CFLAGS += $(WERROR_FLAGS) +LDLIBS += -lrte_eal -lrte_mbuf -lrte_mempool -lrte_ring +LDLIBS += -lrte_bbdev +LDLIBS += -lrte_pci -lrte_bus_pci + +# versioning export map +EXPORT_MAP := rte_pmd_bbdev_fpga_lte_fec_version.map + +# library version +LIBABIVER := 1 + +# library source files +SRCS-$(CONFIG_RTE_LIBRTE_PMD_FPGA_LTE_FEC) += fpga_lte_fec.c + +# export include files +SYMLINK-$(CONFIG_RTE_LIBRTE_PMD_FPGA_LTE_FEC)-include += fpga_lte_fec.h + +include $(RTE_SDK)/mk/rte.lib.mk diff --git a/drivers/baseband/fpga_lte_fec/fpga_lte_fec.c b/drivers/baseband/fpga_lte_fec/fpga_lte_fec.c new file mode 100644 index 0000000000..19e7689793 --- /dev/null +++ b/drivers/baseband/fpga_lte_fec/fpga_lte_fec.c @@ -0,0 +1,2674 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2019 Intel Corporation + */ + +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#ifdef RTE_BBDEV_OFFLOAD_COST +#include +#endif + +#include +#include + +#include "fpga_lte_fec.h" + +/* Turbo SW PMD logging ID */ +static int fpga_lte_fec_logtype; + +/* Helper macro for logging */ +#define rte_bbdev_log(level, fmt, ...) \ + rte_log(RTE_LOG_ ## level, fpga_lte_fec_logtype, fmt "\n", \ + ##__VA_ARGS__) + +#ifdef RTE_LIBRTE_BBDEV_DEBUG +#define rte_bbdev_log_debug(fmt, ...) \ + rte_bbdev_log(DEBUG, "fpga_lte_fec: " fmt, \ + ##__VA_ARGS__) +#else +#define rte_bbdev_log_debug(fmt, ...) +#endif + +/* FPGA LTE FEC driver names */ +#define FPGA_LTE_FEC_PF_DRIVER_NAME intel_fpga_lte_fec_pf +#define FPGA_LTE_FEC_VF_DRIVER_NAME intel_fpga_lte_fec_vf + +/* FPGA LTE FEC PCI vendor & device IDs */ +#define FPGA_LTE_FEC_VENDOR_ID (0x1172) +#define FPGA_LTE_FEC_PF_DEVICE_ID (0x5052) +#define FPGA_LTE_FEC_VF_DEVICE_ID (0x5050) + +/* Align DMA descriptors to 256 bytes - cache-aligned */ +#define FPGA_RING_DESC_ENTRY_LENGTH (8) +/* Ring size is in 256 bits (32 bytes) units */ +#define FPGA_RING_DESC_LEN_UNIT_BYTES (32) +/* Maximum size of queue */ +#define FPGA_RING_MAX_SIZE (1024) +#define FPGA_FLR_TIMEOUT_UNIT (16.384) + +#define FPGA_NUM_UL_QUEUES (32) +#define FPGA_NUM_DL_QUEUES (32) +#define FPGA_TOTAL_NUM_QUEUES (FPGA_NUM_UL_QUEUES + FPGA_NUM_DL_QUEUES) +#define FPGA_NUM_INTR_VEC (FPGA_TOTAL_NUM_QUEUES - RTE_INTR_VEC_RXTX_OFFSET) + +#define FPGA_INVALID_HW_QUEUE_ID (0xFFFFFFFF) + +#define FPGA_QUEUE_FLUSH_TIMEOUT_US (1000) +#define FPGA_TIMEOUT_CHECK_INTERVAL (5) + +/* FPGA LTE FEC Register mapping on BAR0 */ +enum { + FPGA_LTE_FEC_VERSION_ID = 0x00000000, /* len: 4B */ + FPGA_LTE_FEC_CONFIGURATION = 0x00000004, /* len: 2B */ + FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE = 0x00000008, /* len: 1B */ + FPGA_LTE_FEC_LOAD_BALANCE_FACTOR = 0x0000000a, /* len: 2B */ + FPGA_LTE_FEC_RING_DESC_LEN = 0x0000000c, /* len: 2B */ + FPGA_LTE_FEC_FLR_TIME_OUT = 0x0000000e, /* len: 2B */ + FPGA_LTE_FEC_VFQ_FLUSH_STATUS_LW = 0x00000018, /* len: 4B */ + FPGA_LTE_FEC_VFQ_FLUSH_STATUS_HI = 0x0000001c, /* len: 4B */ + FPGA_LTE_FEC_VF0_DEBUG = 0x00000020, /* len: 4B */ + FPGA_LTE_FEC_VF1_DEBUG = 0x00000024, /* len: 4B */ + FPGA_LTE_FEC_VF2_DEBUG = 0x00000028, /* len: 4B */ + FPGA_LTE_FEC_VF3_DEBUG = 0x0000002c, /* len: 4B */ + FPGA_LTE_FEC_VF4_DEBUG = 0x00000030, /* len: 4B */ + FPGA_LTE_FEC_VF5_DEBUG = 0x00000034, /* len: 4B */ + FPGA_LTE_FEC_VF6_DEBUG = 0x00000038, /* len: 4B */ + FPGA_LTE_FEC_VF7_DEBUG = 0x0000003c, /* len: 4B */ + FPGA_LTE_FEC_QUEUE_MAP = 0x00000040, /* len: 256B */ + FPGA_LTE_FEC_RING_CTRL_REGS = 0x00000200 /* len: 2048B */ +}; + +/* FPGA LTE FEC Ring Control Registers */ +enum { + FPGA_LTE_FEC_RING_HEAD_ADDR = 0x00000008, + FPGA_LTE_FEC_RING_SIZE = 0x00000010, + FPGA_LTE_FEC_RING_MISC = 0x00000014, + FPGA_LTE_FEC_RING_ENABLE = 0x00000015, + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN = 0x00000016, + FPGA_LTE_FEC_RING_SHADOW_TAIL = 0x00000018, + FPGA_LTE_FEC_RING_HEAD_POINT = 0x0000001C +}; + +/* FPGA LTE FEC DESCRIPTOR ERROR */ +enum { + DESC_ERR_NO_ERR = 0x0, + DESC_ERR_K_OUT_OF_RANGE = 0x1, + DESC_ERR_K_NOT_NORMAL = 0x2, + DESC_ERR_KPAI_NOT_NORMAL = 0x3, + DESC_ERR_DESC_OFFSET_ERR = 0x4, + DESC_ERR_DESC_READ_FAIL = 0x8, + DESC_ERR_DESC_READ_TIMEOUT = 0x9, + DESC_ERR_DESC_READ_TLP_POISONED = 0xA, + DESC_ERR_CB_READ_FAIL = 0xC, + DESC_ERR_CB_READ_TIMEOUT = 0xD, + DESC_ERR_CB_READ_TLP_POISONED = 0xE +}; + +/* FPGA LTE FEC DMA Encoding Request Descriptor */ +struct __attribute__((__packed__)) fpga_dma_enc_desc { + uint32_t done:1, + rsrvd0:11, + error:4, + rsrvd1:16; + uint32_t ncb:16, + rsrvd2:14, + rv:2; + uint32_t bypass_rm:1, + irq_en:1, + crc_en:1, + rsrvd3:13, + offset:10, + rsrvd4:6; + uint16_t e; + uint16_t k; + uint32_t out_addr_lw; + uint32_t out_addr_hi; + uint32_t in_addr_lw; + uint32_t in_addr_hi; + + union { + struct { + /* Virtual addresses used to retrieve SW context info */ + void *op_addr; + /* Stores information about total number of Code Blocks + * in currently processed Transport Block + */ + uint64_t cbs_in_op; + }; + + uint8_t sw_ctxt[FPGA_RING_DESC_LEN_UNIT_BYTES * + (FPGA_RING_DESC_ENTRY_LENGTH - 1)]; + }; +}; + +/* FPGA LTE FEC DMA Decoding Request Descriptor */ +struct __attribute__((__packed__)) fpga_dma_dec_desc { + uint32_t done:1, + iter:5, + rsrvd0:2, + crc_pass:1, + rsrvd1:3, + error:4, + crc_type:1, + rsrvd2:7, + max_iter:5, + rsrvd3:3; + uint32_t rsrvd4; + uint32_t bypass_rm:1, + irq_en:1, + drop_crc:1, + rsrvd5:13, + offset:10, + rsrvd6:6; + uint16_t k; + uint16_t in_len; + uint32_t out_addr_lw; + uint32_t out_addr_hi; + uint32_t in_addr_lw; + uint32_t in_addr_hi; + + union { + struct { + /* Virtual addresses used to retrieve SW context info */ + void *op_addr; + /* Stores information about total number of Code Blocks + * in currently processed Transport Block + */ + uint8_t cbs_in_op; + }; + + uint32_t sw_ctxt[8 * (FPGA_RING_DESC_ENTRY_LENGTH - 1)]; + }; +}; + +/* FPGA LTE DMA Descriptor */ +union fpga_dma_desc { + struct fpga_dma_enc_desc enc_req; + struct fpga_dma_dec_desc dec_req; +}; + +/* FPGA LTE FEC Ring Control Register */ +struct __attribute__((__packed__)) fpga_ring_ctrl_reg { + uint64_t ring_base_addr; + uint64_t ring_head_addr; + uint16_t ring_size:11; + uint16_t rsrvd0; + union { /* Miscellaneous register */ + uint8_t misc; + uint8_t max_ul_dec:5, + max_ul_dec_en:1, + rsrvd1:2; + }; + uint8_t enable; + uint8_t flush_queue_en; + uint8_t rsrvd2; + uint16_t shadow_tail; + uint16_t rsrvd3; + uint16_t head_point; + uint16_t rsrvd4; + +}; + +/* Private data structure for each FPGA FEC device */ +struct fpga_lte_fec_device { + /** Base address of MMIO registers (BAR0) */ + void *mmio_base; + /** Base address of memory for sw rings */ + void *sw_rings; + /** Physical address of sw_rings */ + rte_iova_t sw_rings_phys; + /** Number of bytes available for each queue in device. */ + uint32_t sw_ring_size; + /** Max number of entries available for each queue in device */ + uint32_t sw_ring_max_depth; + /** Base address of response tail pointer buffer */ + uint32_t *tail_ptrs; + /** Physical address of tail pointers */ + rte_iova_t tail_ptr_phys; + /** Queues flush completion flag */ + uint64_t *flush_queue_status; + /* Bitmap capturing which Queues are bound to the PF/VF */ + uint64_t q_bound_bit_map; + /* Bitmap capturing which Queues have already been assigned */ + uint64_t q_assigned_bit_map; + /** True if this is a PF FPGA FEC device */ + bool pf_device; +}; + +/* Structure associated with each queue. */ +struct __rte_cache_aligned fpga_queue { + struct fpga_ring_ctrl_reg ring_ctrl_reg; /* Ring Control Register */ + union fpga_dma_desc *ring_addr; /* Virtual address of software ring */ + uint64_t *ring_head_addr; /* Virtual address of completion_head */ + uint64_t shadow_completion_head; /* Shadow completion head value */ + uint16_t head_free_desc; /* Ring head */ + uint16_t tail; /* Ring tail */ + /* Mask used to wrap enqueued descriptors on the sw ring */ + uint32_t sw_ring_wrap_mask; + uint32_t irq_enable; /* Enable ops dequeue interrupts if set to 1 */ + uint8_t q_idx; /* Queue index */ + struct fpga_lte_fec_device *d; + /* MMIO register of shadow_tail used to enqueue descriptors */ + void *shadow_tail_addr; +}; + +/* Write to 16 bit MMIO register address */ +static inline void +mmio_write_16(void *addr, uint16_t value) +{ + *((volatile uint16_t *)(addr)) = rte_cpu_to_le_16(value); +} + +/* Write to 32 bit MMIO register address */ +static inline void +mmio_write_32(void *addr, uint32_t value) +{ + *((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value); +} + +/* Write to 64 bit MMIO register address */ +static inline void +mmio_write_64(void *addr, uint64_t value) +{ + *((volatile uint64_t *)(addr)) = rte_cpu_to_le_64(value); +} + +/* Write a 8 bit register of a FPGA LTE FEC device */ +static inline void +fpga_reg_write_8(void *mmio_base, uint32_t offset, uint8_t payload) +{ + void *reg_addr = RTE_PTR_ADD(mmio_base, offset); + *((volatile uint8_t *)(reg_addr)) = payload; +} + +/* Write a 16 bit register of a FPGA LTE FEC device */ +static inline void +fpga_reg_write_16(void *mmio_base, uint32_t offset, uint16_t payload) +{ + void *reg_addr = RTE_PTR_ADD(mmio_base, offset); + mmio_write_16(reg_addr, payload); +} + +/* Write a 32 bit register of a FPGA LTE FEC device */ +static inline void +fpga_reg_write_32(void *mmio_base, uint32_t offset, uint32_t payload) +{ + void *reg_addr = RTE_PTR_ADD(mmio_base, offset); + mmio_write_32(reg_addr, payload); +} + +/* Write a 64 bit register of a FPGA LTE FEC device */ +static inline void +fpga_reg_write_64(void *mmio_base, uint32_t offset, uint64_t payload) +{ + void *reg_addr = RTE_PTR_ADD(mmio_base, offset); + mmio_write_64(reg_addr, payload); +} + +/* Write a ring control register of a FPGA LTE FEC device */ +static inline void +fpga_ring_reg_write(void *mmio_base, uint32_t offset, + struct fpga_ring_ctrl_reg payload) +{ + fpga_reg_write_64(mmio_base, offset, payload.ring_base_addr); + fpga_reg_write_64(mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_ADDR, + payload.ring_head_addr); + fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_SIZE, + payload.ring_size); + fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_POINT, + payload.head_point); + fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN, + payload.flush_queue_en); + fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_SHADOW_TAIL, + payload.shadow_tail); + fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_MISC, + payload.misc); + fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE, + payload.enable); +} + +/* Read a register of FPGA LTE FEC device */ +static uint32_t +fpga_reg_read_32(void *mmio_base, uint32_t offset) +{ + void *reg_addr = RTE_PTR_ADD(mmio_base, offset); + uint32_t ret = *((volatile uint32_t *)(reg_addr)); + return rte_le_to_cpu_32(ret); +} + +#ifdef RTE_LIBRTE_BBDEV_DEBUG +/* Read a register of FPGA LTE FEC device */ +static uint8_t +fpga_reg_read_8(void *mmio_base, uint32_t offset) +{ + void *reg_addr = RTE_PTR_ADD(mmio_base, offset); + return *((volatile uint8_t *)(reg_addr)); +} + +/* Read a register of FPGA LTE FEC device */ +static uint16_t +fpga_reg_read_16(void *mmio_base, uint32_t offset) +{ + void *reg_addr = RTE_PTR_ADD(mmio_base, offset); + uint16_t ret = *((volatile uint16_t *)(reg_addr)); + return rte_le_to_cpu_16(ret); +} + +/* Read a register of FPGA LTE FEC device */ +static uint64_t +fpga_reg_read_64(void *mmio_base, uint32_t offset) +{ + void *reg_addr = RTE_PTR_ADD(mmio_base, offset); + uint64_t ret = *((volatile uint64_t *)(reg_addr)); + return rte_le_to_cpu_64(ret); +} + +/* Read Ring Control Register of FPGA LTE FEC device */ +static inline void +print_ring_reg_debug_info(void *mmio_base, uint32_t offset) +{ + rte_bbdev_log_debug( + "FPGA MMIO base address @ %p | Ring Control Register @ offset = 0x%08" + PRIx32, mmio_base, offset); + rte_bbdev_log_debug( + "RING_BASE_ADDR = 0x%016"PRIx64, + fpga_reg_read_64(mmio_base, offset)); + rte_bbdev_log_debug( + "RING_HEAD_ADDR = 0x%016"PRIx64, + fpga_reg_read_64(mmio_base, offset + + FPGA_LTE_FEC_RING_HEAD_ADDR)); + rte_bbdev_log_debug( + "RING_SIZE = 0x%04"PRIx16, + fpga_reg_read_16(mmio_base, offset + + FPGA_LTE_FEC_RING_SIZE)); + rte_bbdev_log_debug( + "RING_MISC = 0x%02"PRIx8, + fpga_reg_read_8(mmio_base, offset + + FPGA_LTE_FEC_RING_MISC)); + rte_bbdev_log_debug( + "RING_ENABLE = 0x%02"PRIx8, + fpga_reg_read_8(mmio_base, offset + + FPGA_LTE_FEC_RING_ENABLE)); + rte_bbdev_log_debug( + "RING_FLUSH_QUEUE_EN = 0x%02"PRIx8, + fpga_reg_read_8(mmio_base, offset + + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN)); + rte_bbdev_log_debug( + "RING_SHADOW_TAIL = 0x%04"PRIx16, + fpga_reg_read_16(mmio_base, offset + + FPGA_LTE_FEC_RING_SHADOW_TAIL)); + rte_bbdev_log_debug( + "RING_HEAD_POINT = 0x%04"PRIx16, + fpga_reg_read_16(mmio_base, offset + + FPGA_LTE_FEC_RING_HEAD_POINT)); +} + +/* Read Static Register of FPGA LTE FEC device */ +static inline void +print_static_reg_debug_info(void *mmio_base) +{ + uint16_t config = fpga_reg_read_16(mmio_base, + FPGA_LTE_FEC_CONFIGURATION); + uint8_t qmap_done = fpga_reg_read_8(mmio_base, + FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE); + uint16_t lb_factor = fpga_reg_read_16(mmio_base, + FPGA_LTE_FEC_LOAD_BALANCE_FACTOR); + uint16_t ring_desc_len = fpga_reg_read_16(mmio_base, + FPGA_LTE_FEC_RING_DESC_LEN); + uint16_t flr_time_out = fpga_reg_read_16(mmio_base, + FPGA_LTE_FEC_FLR_TIME_OUT); + + rte_bbdev_log_debug("UL.DL Weights = %u.%u", + ((uint8_t)config), ((uint8_t)(config >> 8))); + rte_bbdev_log_debug("UL.DL Load Balance = %u.%u", + ((uint8_t)lb_factor), ((uint8_t)(lb_factor >> 8))); + rte_bbdev_log_debug("Queue-PF/VF Mapping Table = %s", + (qmap_done > 0) ? "READY" : "NOT-READY"); + rte_bbdev_log_debug("Ring Descriptor Size = %u bytes", + ring_desc_len*FPGA_RING_DESC_LEN_UNIT_BYTES); + rte_bbdev_log_debug("FLR Timeout = %f usec", + (float)flr_time_out*FPGA_FLR_TIMEOUT_UNIT); +} + +/* Print decode DMA Descriptor of FPGA LTE FEC device */ +static void +print_dma_dec_desc_debug_info(union fpga_dma_desc *desc) +{ + rte_bbdev_log_debug("DMA response desc %p\n" + "\t-- done(%"PRIu32") | iter(%"PRIu32") | crc_pass(%"PRIu32")" + " | error (%"PRIu32") | crc_type(%"PRIu32")\n" + "\t-- max_iter(%"PRIu32") | bypass_rm(%"PRIu32") | " + "irq_en (%"PRIu32") | drop_crc(%"PRIu32") | offset(%"PRIu32")\n" + "\t-- k(%"PRIu32") | in_len (%"PRIu16") | op_add(%p)\n" + "\t-- cbs_in_op(%"PRIu32") | in_add (0x%08"PRIx32"%08"PRIx32") | " + "out_add (0x%08"PRIx32"%08"PRIx32")", + desc, + (uint32_t)desc->dec_req.done, + (uint32_t)desc->dec_req.iter, + (uint32_t)desc->dec_req.crc_pass, + (uint32_t)desc->dec_req.error, + (uint32_t)desc->dec_req.crc_type, + (uint32_t)desc->dec_req.max_iter, + (uint32_t)desc->dec_req.bypass_rm, + (uint32_t)desc->dec_req.irq_en, + (uint32_t)desc->dec_req.drop_crc, + (uint32_t)desc->dec_req.offset, + (uint32_t)desc->dec_req.k, + (uint16_t)desc->dec_req.in_len, + desc->dec_req.op_addr, + (uint32_t)desc->dec_req.cbs_in_op, + (uint32_t)desc->dec_req.in_addr_hi, + (uint32_t)desc->dec_req.in_addr_lw, + (uint32_t)desc->dec_req.out_addr_hi, + (uint32_t)desc->dec_req.out_addr_lw); +} +#endif + +static int +fpga_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id) +{ + /* Number of queues bound to a PF/VF */ + uint32_t hw_q_num = 0; + uint32_t ring_size, payload, address, q_id, offset; + rte_iova_t phys_addr; + struct fpga_ring_ctrl_reg ring_reg; + struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private; + + address = FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE; + if (!(fpga_reg_read_32(fpga_dev->mmio_base, address) & 0x1)) { + rte_bbdev_log(ERR, + "Queue-PF/VF mapping is not set! Was PF configured for device (%s) ?", + dev->data->name); + return -EPERM; + } + + /* Clear queue registers structure */ + memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg)); + + /* Scan queue map. + * If a queue is valid and mapped to a calling PF/VF the read value is + * replaced with a queue ID and if it's not then + * FPGA_INVALID_HW_QUEUE_ID is returned. + */ + for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) { + uint32_t hw_q_id = fpga_reg_read_32(fpga_dev->mmio_base, + FPGA_LTE_FEC_QUEUE_MAP + (q_id << 2)); + + rte_bbdev_log_debug("%s: queue ID: %u, registry queue ID: %u", + dev->device->name, q_id, hw_q_id); + + if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID) { + fpga_dev->q_bound_bit_map |= (1ULL << q_id); + /* Clear queue register of found queue */ + offset = FPGA_LTE_FEC_RING_CTRL_REGS + + (sizeof(struct fpga_ring_ctrl_reg) * q_id); + fpga_ring_reg_write(fpga_dev->mmio_base, + offset, ring_reg); + ++hw_q_num; + } + } + if (hw_q_num == 0) { + rte_bbdev_log(ERR, + "No HW queues assigned to this device. Probably this is a VF configured for PF mode. Check device configuration!"); + return -ENODEV; + } + + if (num_queues > hw_q_num) { + rte_bbdev_log(ERR, + "Not enough queues for device %s! Requested: %u, available: %u", + dev->device->name, num_queues, hw_q_num); + return -EINVAL; + } + + ring_size = FPGA_RING_MAX_SIZE * sizeof(struct fpga_dma_dec_desc); + + /* Enforce 32 byte alignment */ + RTE_BUILD_BUG_ON((RTE_CACHE_LINE_SIZE % 32) != 0); + + /* Allocate memory for SW descriptor rings */ + fpga_dev->sw_rings = rte_zmalloc_socket(dev->device->driver->name, + num_queues * ring_size, RTE_CACHE_LINE_SIZE, + socket_id); + if (fpga_dev->sw_rings == NULL) { + rte_bbdev_log(ERR, + "Failed to allocate memory for %s:%u sw_rings", + dev->device->driver->name, dev->data->dev_id); + return -ENOMEM; + } + + fpga_dev->sw_rings_phys = rte_malloc_virt2iova(fpga_dev->sw_rings); + fpga_dev->sw_ring_size = ring_size; + fpga_dev->sw_ring_max_depth = FPGA_RING_MAX_SIZE; + + /* Allocate memory for ring flush status */ + fpga_dev->flush_queue_status = rte_zmalloc_socket(NULL, + sizeof(uint64_t), RTE_CACHE_LINE_SIZE, socket_id); + if (fpga_dev->flush_queue_status == NULL) { + rte_bbdev_log(ERR, + "Failed to allocate memory for %s:%u flush_queue_status", + dev->device->driver->name, dev->data->dev_id); + return -ENOMEM; + } + + /* Set the flush status address registers */ + phys_addr = rte_malloc_virt2iova(fpga_dev->flush_queue_status); + + address = FPGA_LTE_FEC_VFQ_FLUSH_STATUS_LW; + payload = (uint32_t)(phys_addr); + fpga_reg_write_32(fpga_dev->mmio_base, address, payload); + + address = FPGA_LTE_FEC_VFQ_FLUSH_STATUS_HI; + payload = (uint32_t)(phys_addr >> 32); + fpga_reg_write_32(fpga_dev->mmio_base, address, payload); + + return 0; +} + +static int +fpga_dev_close(struct rte_bbdev *dev) +{ + struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private; + + rte_free(fpga_dev->sw_rings); + rte_free(fpga_dev->flush_queue_status); + + return 0; +} + +static void +fpga_dev_info_get(struct rte_bbdev *dev, + struct rte_bbdev_driver_info *dev_info) +{ + struct fpga_lte_fec_device *d = dev->data->dev_private; + uint32_t q_id = 0; + + /* TODO RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN and numbers of buffers are set + * to temporary values as they are required by test application while + * validation phase. + */ + static const struct rte_bbdev_op_cap bbdev_capabilities[] = { + { + .type = RTE_BBDEV_OP_TURBO_DEC, + .cap.turbo_dec = { + .capability_flags = + RTE_BBDEV_TURBO_CRC_TYPE_24B | + RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE | + RTE_BBDEV_TURBO_DEC_INTERRUPTS | + RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN | + RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP, + .max_llr_modulus = INT8_MAX, + .num_buffers_src = + RTE_BBDEV_MAX_CODE_BLOCKS, + .num_buffers_hard_out = + RTE_BBDEV_MAX_CODE_BLOCKS, + .num_buffers_soft_out = 0 + } + }, + { + .type = RTE_BBDEV_OP_TURBO_ENC, + .cap.turbo_enc = { + .capability_flags = + RTE_BBDEV_TURBO_CRC_24B_ATTACH | + RTE_BBDEV_TURBO_RATE_MATCH | + RTE_BBDEV_TURBO_ENC_INTERRUPTS, + .num_buffers_src = + RTE_BBDEV_MAX_CODE_BLOCKS, + .num_buffers_dst = + RTE_BBDEV_MAX_CODE_BLOCKS + } + }, + RTE_BBDEV_END_OF_CAPABILITIES_LIST() + }; + + static struct rte_bbdev_queue_conf default_queue_conf; + default_queue_conf.socket = dev->data->socket_id; + default_queue_conf.queue_size = FPGA_RING_MAX_SIZE; + + + dev_info->driver_name = dev->device->driver->name; + dev_info->queue_size_lim = FPGA_RING_MAX_SIZE; + dev_info->hardware_accelerated = true; + dev_info->min_alignment = 64; + dev_info->default_queue_conf = default_queue_conf; + dev_info->capabilities = bbdev_capabilities; + dev_info->cpu_flag_reqs = NULL; + + /* Calculates number of queues assigned to device */ + dev_info->max_num_queues = 0; + for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) { + uint32_t hw_q_id = fpga_reg_read_32(d->mmio_base, + FPGA_LTE_FEC_QUEUE_MAP + (q_id << 2)); + if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID) + dev_info->max_num_queues++; + } +} + +/** + * Find index of queue bound to current PF/VF which is unassigned. Return -1 + * when there is no available queue + */ +static int +fpga_find_free_queue_idx(struct rte_bbdev *dev, + const struct rte_bbdev_queue_conf *conf) +{ + struct fpga_lte_fec_device *d = dev->data->dev_private; + uint64_t q_idx; + uint8_t i = 0; + uint8_t range = FPGA_TOTAL_NUM_QUEUES >> 1; + + if (conf->op_type == RTE_BBDEV_OP_TURBO_ENC) { + i = FPGA_NUM_DL_QUEUES; + range = FPGA_TOTAL_NUM_QUEUES; + } + + for (; i < range; ++i) { + q_idx = 1ULL << i; + /* Check if index of queue is bound to current PF/VF */ + if (d->q_bound_bit_map & q_idx) + /* Check if found queue was not already assigned */ + if (!(d->q_assigned_bit_map & q_idx)) { + d->q_assigned_bit_map |= q_idx; + return i; + } + } + + rte_bbdev_log(INFO, "Failed to find free queue on %s", dev->data->name); + + return -1; +} + +static int +fpga_queue_setup(struct rte_bbdev *dev, uint16_t queue_id, + const struct rte_bbdev_queue_conf *conf) +{ + uint32_t address, ring_offset; + struct fpga_lte_fec_device *d = dev->data->dev_private; + struct fpga_queue *q; + int8_t q_idx; + + /* Check if there is a free queue to assign */ + q_idx = fpga_find_free_queue_idx(dev, conf); + if (q_idx == -1) + return -1; + + /* Allocate the queue data structure. */ + q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q), + RTE_CACHE_LINE_SIZE, conf->socket); + if (q == NULL) { + /* Mark queue as un-assigned */ + d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx)); + rte_bbdev_log(ERR, "Failed to allocate queue memory"); + return -ENOMEM; + } + + q->d = d; + q->q_idx = q_idx; + + /* Set ring_base_addr */ + q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id)); + q->ring_ctrl_reg.ring_base_addr = d->sw_rings_phys + + (d->sw_ring_size * queue_id); + + /* Allocate memory for Completion Head variable*/ + q->ring_head_addr = rte_zmalloc_socket(dev->device->driver->name, + sizeof(uint64_t), RTE_CACHE_LINE_SIZE, conf->socket); + if (q->ring_head_addr == NULL) { + /* Mark queue as un-assigned */ + d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx)); + rte_free(q); + rte_bbdev_log(ERR, + "Failed to allocate memory for %s:%u completion_head", + dev->device->driver->name, dev->data->dev_id); + return -ENOMEM; + } + /* Set ring_head_addr */ + q->ring_ctrl_reg.ring_head_addr = + rte_malloc_virt2iova(q->ring_head_addr); + + /* Clear shadow_completion_head */ + q->shadow_completion_head = 0; + + /* Set ring_size */ + if (conf->queue_size > FPGA_RING_MAX_SIZE) { + /* Mark queue as un-assigned */ + d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx)); + rte_free(q->ring_head_addr); + rte_free(q); + rte_bbdev_log(ERR, + "Size of queue is too big %d (MAX: %d ) for %s:%u", + conf->queue_size, FPGA_RING_MAX_SIZE, + dev->device->driver->name, dev->data->dev_id); + return -EINVAL; + } + q->ring_ctrl_reg.ring_size = conf->queue_size; + + /* Set Miscellaneous FPGA register*/ + /* Max iteration number for TTI mitigation - todo */ + q->ring_ctrl_reg.max_ul_dec = 0; + /* Enable max iteration number for TTI - todo */ + q->ring_ctrl_reg.max_ul_dec_en = 0; + + /* Enable the ring */ + q->ring_ctrl_reg.enable = 1; + + /* Set FPGA head_point and tail registers */ + q->ring_ctrl_reg.head_point = q->tail = 0; + + /* Set FPGA shadow_tail register */ + q->ring_ctrl_reg.shadow_tail = q->tail; + + /* Calculates the ring offset for found queue */ + ring_offset = FPGA_LTE_FEC_RING_CTRL_REGS + + (sizeof(struct fpga_ring_ctrl_reg) * q_idx); + + /* Set FPGA Ring Control Registers */ + fpga_ring_reg_write(d->mmio_base, ring_offset, q->ring_ctrl_reg); + + /* Store MMIO register of shadow_tail */ + address = ring_offset + FPGA_LTE_FEC_RING_SHADOW_TAIL; + q->shadow_tail_addr = RTE_PTR_ADD(d->mmio_base, address); + + q->head_free_desc = q->tail; + + /* Set wrap mask */ + q->sw_ring_wrap_mask = conf->queue_size - 1; + + rte_bbdev_log_debug("Setup dev%u q%u: queue_idx=%u", + dev->data->dev_id, queue_id, q->q_idx); + + dev->data->queues[queue_id].queue_private = q; + + rte_bbdev_log_debug("BBDEV queue[%d] set up for FPGA queue[%d]", + queue_id, q_idx); + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + /* Read FPGA Ring Control Registers after configuration*/ + print_ring_reg_debug_info(d->mmio_base, ring_offset); +#endif + return 0; +} + +static int +fpga_queue_release(struct rte_bbdev *dev, uint16_t queue_id) +{ + struct fpga_lte_fec_device *d = dev->data->dev_private; + struct fpga_queue *q = dev->data->queues[queue_id].queue_private; + struct fpga_ring_ctrl_reg ring_reg; + uint32_t offset; + + rte_bbdev_log_debug("FPGA Queue[%d] released", queue_id); + + if (q != NULL) { + memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg)); + offset = FPGA_LTE_FEC_RING_CTRL_REGS + + (sizeof(struct fpga_ring_ctrl_reg) * q->q_idx); + /* Disable queue */ + fpga_reg_write_8(d->mmio_base, + offset + FPGA_LTE_FEC_RING_ENABLE, 0x00); + /* Clear queue registers */ + fpga_ring_reg_write(d->mmio_base, offset, ring_reg); + + /* Mark the Queue as un-assigned */ + d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q->q_idx)); + rte_free(q->ring_head_addr); + rte_free(q); + dev->data->queues[queue_id].queue_private = NULL; + } + + return 0; +} + +/* Function starts a device queue. */ +static int +fpga_queue_start(struct rte_bbdev *dev, uint16_t queue_id) +{ + struct fpga_lte_fec_device *d = dev->data->dev_private; +#ifdef RTE_LIBRTE_BBDEV_DEBUG + if (d == NULL) { + rte_bbdev_log(ERR, "Invalid device pointer"); + return -1; + } +#endif + struct fpga_queue *q = dev->data->queues[queue_id].queue_private; + uint32_t offset = FPGA_LTE_FEC_RING_CTRL_REGS + + (sizeof(struct fpga_ring_ctrl_reg) * q->q_idx); + uint8_t enable = 0x01; + uint16_t zero = 0x0000; + + /* Clear queue head and tail variables */ + q->tail = q->head_free_desc = 0; + + /* Clear FPGA head_point and tail registers */ + fpga_reg_write_16(d->mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_POINT, + zero); + fpga_reg_write_16(d->mmio_base, offset + FPGA_LTE_FEC_RING_SHADOW_TAIL, + zero); + + /* Enable queue */ + fpga_reg_write_8(d->mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE, + enable); + + rte_bbdev_log_debug("FPGA Queue[%d] started", queue_id); + return 0; +} + +/* Function stops a device queue. */ +static int +fpga_queue_stop(struct rte_bbdev *dev, uint16_t queue_id) +{ + struct fpga_lte_fec_device *d = dev->data->dev_private; +#ifdef RTE_LIBRTE_BBDEV_DEBUG + if (d == NULL) { + rte_bbdev_log(ERR, "Invalid device pointer"); + return -1; + } +#endif + struct fpga_queue *q = dev->data->queues[queue_id].queue_private; + uint32_t offset = FPGA_LTE_FEC_RING_CTRL_REGS + + (sizeof(struct fpga_ring_ctrl_reg) * q->q_idx); + uint8_t payload = 0x01; + uint8_t counter = 0; + uint8_t timeout = FPGA_QUEUE_FLUSH_TIMEOUT_US / + FPGA_TIMEOUT_CHECK_INTERVAL; + + /* Set flush_queue_en bit to trigger queue flushing */ + fpga_reg_write_8(d->mmio_base, + offset + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN, payload); + + /** Check if queue flush is completed. + * FPGA will update the completion flag after queue flushing is + * completed. If completion flag is not updated within 1ms it is + * considered as a failure. + */ + while (!(*((uint8_t *)d->flush_queue_status + q->q_idx) & payload)) { + if (counter > timeout) { + rte_bbdev_log(ERR, "FPGA Queue Flush failed for queue %d", + queue_id); + return -1; + } + usleep(FPGA_TIMEOUT_CHECK_INTERVAL); + counter++; + } + + /* Disable queue */ + payload = 0x00; + fpga_reg_write_8(d->mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE, + payload); + + rte_bbdev_log_debug("FPGA Queue[%d] stopped", queue_id); + return 0; +} + +static inline uint16_t +get_queue_id(struct rte_bbdev_data *data, uint8_t q_idx) +{ + uint16_t queue_id; + + for (queue_id = 0; queue_id < data->num_queues; ++queue_id) { + struct fpga_queue *q = data->queues[queue_id].queue_private; + if (q != NULL && q->q_idx == q_idx) + return queue_id; + } + + return -1; +} + +/* Interrupt handler triggered by FPGA dev for handling specific interrupt */ +static void +fpga_dev_interrupt_handler(void *cb_arg) +{ + struct rte_bbdev *dev = cb_arg; + struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private; + struct fpga_queue *q; + uint64_t ring_head; + uint64_t q_idx; + uint16_t queue_id; + uint8_t i; + + /* Scan queue assigned to this device */ + for (i = 0; i < FPGA_TOTAL_NUM_QUEUES; ++i) { + q_idx = 1ULL << i; + if (fpga_dev->q_bound_bit_map & q_idx) { + queue_id = get_queue_id(dev->data, i); + if (queue_id == (uint16_t) -1) + continue; + + /* Check if completion head was changed */ + q = dev->data->queues[queue_id].queue_private; + ring_head = *q->ring_head_addr; + if (q->shadow_completion_head != ring_head && + q->irq_enable == 1) { + q->shadow_completion_head = ring_head; + rte_bbdev_pmd_callback_process( + dev, + RTE_BBDEV_EVENT_DEQUEUE, + &queue_id); + } + } + } +} + +static int +fpga_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id) +{ + struct fpga_queue *q = dev->data->queues[queue_id].queue_private; + + if (!rte_intr_cap_multiple(dev->intr_handle)) + return -ENOTSUP; + + q->irq_enable = 1; + + return 0; +} + +static int +fpga_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id) +{ + struct fpga_queue *q = dev->data->queues[queue_id].queue_private; + q->irq_enable = 0; + + return 0; +} + +static int +fpga_intr_enable(struct rte_bbdev *dev) +{ + int ret; + uint8_t i; + + if (!rte_intr_cap_multiple(dev->intr_handle)) { + rte_bbdev_log(ERR, "Multiple intr vector is not supported by FPGA (%s)", + dev->data->name); + return -ENOTSUP; + } + + /* Create event file descriptors for each of 64 queue. Event fds will be + * mapped to FPGA IRQs in rte_intr_enable(). This is a 1:1 mapping where + * the IRQ number is a direct translation to the queue number. + * + * 63 (FPGA_NUM_INTR_VEC) event fds are created as rte_intr_enable() + * mapped the first IRQ to already created interrupt event file + * descriptor (intr_handle->fd). + */ + if (rte_intr_efd_enable(dev->intr_handle, FPGA_NUM_INTR_VEC)) { + rte_bbdev_log(ERR, "Failed to create fds for %u queues", + dev->data->num_queues); + return -1; + } + + /* TODO Each event file descriptor is overwritten by interrupt event + * file descriptor. That descriptor is added to epoll observed list. + * It ensures that callback function assigned to that descriptor will + * invoked when any FPGA queue issues interrupt. + */ + for (i = 0; i < FPGA_NUM_INTR_VEC; ++i) + dev->intr_handle->efds[i] = dev->intr_handle->fd; + + if (!dev->intr_handle->intr_vec) { + dev->intr_handle->intr_vec = rte_zmalloc("intr_vec", + dev->data->num_queues * sizeof(int), 0); + if (!dev->intr_handle->intr_vec) { + rte_bbdev_log(ERR, "Failed to allocate %u vectors", + dev->data->num_queues); + return -ENOMEM; + } + } + + ret = rte_intr_enable(dev->intr_handle); + if (ret < 0) { + rte_bbdev_log(ERR, + "Couldn't enable interrupts for device: %s", + dev->data->name); + return ret; + } + + ret = rte_intr_callback_register(dev->intr_handle, + fpga_dev_interrupt_handler, dev); + if (ret < 0) { + rte_bbdev_log(ERR, + "Couldn't register interrupt callback for device: %s", + dev->data->name); + return ret; + } + + return 0; +} + +static const struct rte_bbdev_ops fpga_ops = { + .setup_queues = fpga_setup_queues, + .intr_enable = fpga_intr_enable, + .close = fpga_dev_close, + .info_get = fpga_dev_info_get, + .queue_setup = fpga_queue_setup, + .queue_stop = fpga_queue_stop, + .queue_start = fpga_queue_start, + .queue_release = fpga_queue_release, + .queue_intr_enable = fpga_queue_intr_enable, + .queue_intr_disable = fpga_queue_intr_disable +}; + +static inline void +fpga_dma_enqueue(struct fpga_queue *q, uint16_t num_desc, + struct rte_bbdev_stats *queue_stats) +{ +#ifdef RTE_BBDEV_OFFLOAD_COST + uint64_t start_time = 0; + queue_stats->acc_offload_cycles = 0; +#else + RTE_SET_USED(queue_stats); +#endif + + /* Update tail and shadow_tail register */ + q->tail = (q->tail + num_desc) & q->sw_ring_wrap_mask; + + rte_wmb(); + +#ifdef RTE_BBDEV_OFFLOAD_COST + /* Start time measurement for enqueue function offload. */ + start_time = rte_rdtsc_precise(); +#endif + mmio_write_16(q->shadow_tail_addr, q->tail); + +#ifdef RTE_BBDEV_OFFLOAD_COST + rte_wmb(); + queue_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time; +#endif +} + +/* Calculates number of CBs in processed encoder TB based on 'r' and input + * length. + */ +static inline uint8_t +get_num_cbs_in_op_enc(struct rte_bbdev_op_turbo_enc *turbo_enc) +{ + uint8_t c, c_neg, r, crc24_bits = 0; + uint16_t k, k_neg, k_pos; + uint8_t cbs_in_op = 0; + int32_t length; + + length = turbo_enc->input.length; + r = turbo_enc->tb_params.r; + c = turbo_enc->tb_params.c; + c_neg = turbo_enc->tb_params.c_neg; + k_neg = turbo_enc->tb_params.k_neg; + k_pos = turbo_enc->tb_params.k_pos; + crc24_bits = 24; + while (length > 0 && r < c) { + k = (r < c_neg) ? k_neg : k_pos; + length -= (k - crc24_bits) >> 3; + r++; + cbs_in_op++; + } + + return cbs_in_op; +} + +/* Calculates number of CBs in processed decoder TB based on 'r' and input + * length. + */ +static inline uint16_t +get_num_cbs_in_op_dec(struct rte_bbdev_op_turbo_dec *turbo_dec) +{ + uint8_t c, c_neg, r = 0; + uint16_t kw, k, k_neg, k_pos, cbs_in_op = 0; + int32_t length; + + length = turbo_dec->input.length; + r = turbo_dec->tb_params.r; + c = turbo_dec->tb_params.c; + c_neg = turbo_dec->tb_params.c_neg; + k_neg = turbo_dec->tb_params.k_neg; + k_pos = turbo_dec->tb_params.k_pos; + while (length > 0 && r < c) { + k = (r < c_neg) ? k_neg : k_pos; + kw = RTE_ALIGN_CEIL(k + 4, 32) * 3; + length -= kw; + r++; + cbs_in_op++; + } + + return cbs_in_op; +} + +/* Read flag value 0/1/ from bitmap */ +static inline bool +check_bit(uint32_t bitmap, uint32_t bitmask) +{ + return bitmap & bitmask; +} + +/* Print an error if a descriptor error has occurred. + * Return 0 on success, 1 on failure + */ +static inline int +check_desc_error(uint32_t error_code) { + switch (error_code) { + case DESC_ERR_NO_ERR: + return 0; + case DESC_ERR_K_OUT_OF_RANGE: + rte_bbdev_log(ERR, "Block_size_k is out of range (k<40 or k>6144)"); + break; + case DESC_ERR_K_NOT_NORMAL: + rte_bbdev_log(ERR, "Block_size_k is not a normal value within normal range"); + break; + case DESC_ERR_KPAI_NOT_NORMAL: + rte_bbdev_log(ERR, "Three_kpai is not a normal value for UL only"); + break; + case DESC_ERR_DESC_OFFSET_ERR: + rte_bbdev_log(ERR, "Queue offset does not meet the expectation in the FPGA"); + break; + case (DESC_ERR_K_OUT_OF_RANGE | DESC_ERR_DESC_OFFSET_ERR): + rte_bbdev_log(ERR, "Block_size_k is out of range (k<40 or k>6144) and queue offset error"); + break; + case (DESC_ERR_K_NOT_NORMAL | DESC_ERR_DESC_OFFSET_ERR): + rte_bbdev_log(ERR, "Block_size_k is not a normal value within normal range and queue offset error"); + break; + case (DESC_ERR_KPAI_NOT_NORMAL | DESC_ERR_DESC_OFFSET_ERR): + rte_bbdev_log(ERR, "Three_kpai is not a normal value for UL only and queue offset error"); + break; + case DESC_ERR_DESC_READ_FAIL: + rte_bbdev_log(ERR, "Unsuccessful completion for descriptor read"); + break; + case DESC_ERR_DESC_READ_TIMEOUT: + rte_bbdev_log(ERR, "Descriptor read time-out"); + break; + case DESC_ERR_DESC_READ_TLP_POISONED: + rte_bbdev_log(ERR, "Descriptor read TLP poisoned"); + break; + case DESC_ERR_CB_READ_FAIL: + rte_bbdev_log(ERR, "Unsuccessful completion for code block"); + break; + case DESC_ERR_CB_READ_TIMEOUT: + rte_bbdev_log(ERR, "Code block read time-out"); + break; + case DESC_ERR_CB_READ_TLP_POISONED: + rte_bbdev_log(ERR, "Code block read TLP poisoned"); + break; + default: + rte_bbdev_log(ERR, "Descriptor error unknown error code %u", + error_code); + break; + } + return 1; +} + +/** + * Set DMA descriptor for encode operation (1 Code Block) + * + * @param op + * Pointer to a single encode operation. + * @param desc + * Pointer to DMA descriptor. + * @param input + * Pointer to pointer to input data which will be decoded. + * @param k + * K value (length of input in bits). + * @param e + * E value (length of output in bits). + * @param ncb + * Ncb value (size of the soft buffer). + * @param out_length + * Length of output buffer + * @param in_offset + * Input offset in rte_mbuf structure. It is used for calculating the point + * where data is starting. + * @param out_offset + * Output offset in rte_mbuf structure. It is used for calculating the point + * where hard output data will be stored. + * @param cbs_in_op + * Number of CBs contained in one operation. + */ +static inline int +fpga_dma_desc_te_fill(struct rte_bbdev_enc_op *op, + struct fpga_dma_enc_desc *desc, struct rte_mbuf *input, + struct rte_mbuf *output, uint16_t k, uint16_t e, uint16_t ncb, + uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset, + uint8_t cbs_in_op) + +{ + /* reset */ + desc->done = 0; + desc->crc_en = check_bit(op->turbo_enc.op_flags, + RTE_BBDEV_TURBO_CRC_24B_ATTACH); + desc->bypass_rm = !check_bit(op->turbo_enc.op_flags, + RTE_BBDEV_TURBO_RATE_MATCH); + desc->k = k; + desc->e = e; + desc->ncb = ncb; + desc->rv = op->turbo_enc.rv_index; + desc->offset = desc_offset; + /* Set inbound data buffer address */ + desc->in_addr_hi = (uint32_t)( + rte_pktmbuf_mtophys_offset(input, in_offset) >> 32); + desc->in_addr_lw = (uint32_t)( + rte_pktmbuf_mtophys_offset(input, in_offset)); + + desc->out_addr_hi = (uint32_t)( + rte_pktmbuf_mtophys_offset(output, out_offset) >> 32); + desc->out_addr_lw = (uint32_t)( + rte_pktmbuf_mtophys_offset(output, out_offset)); + + /* Save software context needed for dequeue */ + desc->op_addr = op; + + /* Set total number of CBs in an op */ + desc->cbs_in_op = cbs_in_op; + + return 0; +} + +/** + * Set DMA descriptor for encode operation (1 Code Block) + * + * @param op + * Pointer to a single encode operation. + * @param desc + * Pointer to DMA descriptor. + * @param input + * Pointer to pointer to input data which will be decoded. + * @param in_length + * Length of an input. + * @param k + * K value (length of an output in bits). + * @param in_offset + * Input offset in rte_mbuf structure. It is used for calculating the point + * where data is starting. + * @param out_offset + * Output offset in rte_mbuf structure. It is used for calculating the point + * where hard output data will be stored. + * @param cbs_in_op + * Number of CBs contained in one operation. + */ +static inline int +fpga_dma_desc_td_fill(struct rte_bbdev_dec_op *op, + struct fpga_dma_dec_desc *desc, struct rte_mbuf *input, + struct rte_mbuf *output, uint16_t in_length, uint16_t k, + uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset, + uint8_t cbs_in_op) +{ + /* reset */ + desc->done = 0; + /* Set inbound data buffer address */ + desc->in_addr_hi = (uint32_t)( + rte_pktmbuf_mtophys_offset(input, in_offset) >> 32); + desc->in_addr_lw = (uint32_t)( + rte_pktmbuf_mtophys_offset(input, in_offset)); + desc->in_len = in_length; + desc->k = k; + desc->crc_type = !check_bit(op->turbo_dec.op_flags, + RTE_BBDEV_TURBO_CRC_TYPE_24B); + if ((op->turbo_dec.code_block_mode == 0) + && !check_bit(op->turbo_dec.op_flags, + RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP)) + desc->drop_crc = 1; + desc->max_iter = op->turbo_dec.iter_max * 2; + desc->offset = desc_offset; + desc->out_addr_hi = (uint32_t)( + rte_pktmbuf_mtophys_offset(output, out_offset) >> 32); + desc->out_addr_lw = (uint32_t)( + rte_pktmbuf_mtophys_offset(output, out_offset)); + + /* Save software context needed for dequeue */ + desc->op_addr = op; + + /* Set total number of CBs in an op */ + desc->cbs_in_op = cbs_in_op; + + return 0; +} + +#ifdef RTE_LIBRTE_BBDEV_DEBUG +/* Validates turbo encoder parameters */ +static int +validate_enc_op(struct rte_bbdev_enc_op *op) +{ + struct rte_bbdev_op_turbo_enc *turbo_enc = &op->turbo_enc; + struct rte_bbdev_op_enc_cb_params *cb = NULL; + struct rte_bbdev_op_enc_tb_params *tb = NULL; + uint16_t kw, kw_neg, kw_pos; + + if (turbo_enc->input.length > + RTE_BBDEV_MAX_TB_SIZE >> 3) { + rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d", + turbo_enc->input.length, RTE_BBDEV_MAX_TB_SIZE); + op->status = 1 << RTE_BBDEV_DATA_ERROR; + return -1; + } + + if (op->mempool == NULL) { + rte_bbdev_log(ERR, "Invalid mempool pointer"); + return -1; + } + if (turbo_enc->input.data == NULL) { + rte_bbdev_log(ERR, "Invalid input pointer"); + return -1; + } + if (turbo_enc->output.data == NULL) { + rte_bbdev_log(ERR, "Invalid output pointer"); + return -1; + } + if (turbo_enc->rv_index > 3) { + rte_bbdev_log(ERR, + "rv_index (%u) is out of range 0 <= value <= 3", + turbo_enc->rv_index); + return -1; + } + if (turbo_enc->code_block_mode != 0 && + turbo_enc->code_block_mode != 1) { + rte_bbdev_log(ERR, + "code_block_mode (%u) is out of range 0 <= value <= 1", + turbo_enc->code_block_mode); + return -1; + } + + if (turbo_enc->code_block_mode == 0) { + tb = &turbo_enc->tb_params; + if ((tb->k_neg < RTE_BBDEV_MIN_CB_SIZE + || tb->k_neg > RTE_BBDEV_MAX_CB_SIZE) + && tb->c_neg > 0) { + rte_bbdev_log(ERR, + "k_neg (%u) is out of range %u <= value <= %u", + tb->k_neg, RTE_BBDEV_MIN_CB_SIZE, + RTE_BBDEV_MAX_CB_SIZE); + return -1; + } + if (tb->k_pos < RTE_BBDEV_MIN_CB_SIZE + || tb->k_pos > RTE_BBDEV_MAX_CB_SIZE) { + rte_bbdev_log(ERR, + "k_pos (%u) is out of range %u <= value <= %u", + tb->k_pos, RTE_BBDEV_MIN_CB_SIZE, + RTE_BBDEV_MAX_CB_SIZE); + return -1; + } + if (tb->c_neg > (RTE_BBDEV_MAX_CODE_BLOCKS - 1)) + rte_bbdev_log(ERR, + "c_neg (%u) is out of range 0 <= value <= %u", + tb->c_neg, + RTE_BBDEV_MAX_CODE_BLOCKS - 1); + if (tb->c < 1 || tb->c > RTE_BBDEV_MAX_CODE_BLOCKS) { + rte_bbdev_log(ERR, + "c (%u) is out of range 1 <= value <= %u", + tb->c, RTE_BBDEV_MAX_CODE_BLOCKS); + return -1; + } + if (tb->cab > tb->c) { + rte_bbdev_log(ERR, + "cab (%u) is greater than c (%u)", + tb->cab, tb->c); + return -1; + } + if ((tb->ea < RTE_BBDEV_MIN_CB_SIZE || (tb->ea % 2)) + && tb->r < tb->cab) { + rte_bbdev_log(ERR, + "ea (%u) is less than %u or it is not even", + tb->ea, RTE_BBDEV_MIN_CB_SIZE); + return -1; + } + if ((tb->eb < RTE_BBDEV_MIN_CB_SIZE || (tb->eb % 2)) + && tb->c > tb->cab) { + rte_bbdev_log(ERR, + "eb (%u) is less than %u or it is not even", + tb->eb, RTE_BBDEV_MIN_CB_SIZE); + return -1; + } + + kw_neg = 3 * RTE_ALIGN_CEIL(tb->k_neg + 4, + RTE_BBDEV_C_SUBBLOCK); + if (tb->ncb_neg < tb->k_neg || tb->ncb_neg > kw_neg) { + rte_bbdev_log(ERR, + "ncb_neg (%u) is out of range (%u) k_neg <= value <= (%u) kw_neg", + tb->ncb_neg, tb->k_neg, kw_neg); + return -1; + } + + kw_pos = 3 * RTE_ALIGN_CEIL(tb->k_pos + 4, + RTE_BBDEV_C_SUBBLOCK); + if (tb->ncb_pos < tb->k_pos || tb->ncb_pos > kw_pos) { + rte_bbdev_log(ERR, + "ncb_pos (%u) is out of range (%u) k_pos <= value <= (%u) kw_pos", + tb->ncb_pos, tb->k_pos, kw_pos); + return -1; + } + if (tb->r > (tb->c - 1)) { + rte_bbdev_log(ERR, + "r (%u) is greater than c - 1 (%u)", + tb->r, tb->c - 1); + return -1; + } + } else { + cb = &turbo_enc->cb_params; + if (cb->k < RTE_BBDEV_MIN_CB_SIZE + || cb->k > RTE_BBDEV_MAX_CB_SIZE) { + rte_bbdev_log(ERR, + "k (%u) is out of range %u <= value <= %u", + cb->k, RTE_BBDEV_MIN_CB_SIZE, + RTE_BBDEV_MAX_CB_SIZE); + return -1; + } + + if (cb->e < RTE_BBDEV_MIN_CB_SIZE || (cb->e % 2)) { + rte_bbdev_log(ERR, + "e (%u) is less than %u or it is not even", + cb->e, RTE_BBDEV_MIN_CB_SIZE); + return -1; + } + + kw = RTE_ALIGN_CEIL(cb->k + 4, RTE_BBDEV_C_SUBBLOCK) * 3; + if (cb->ncb < cb->k || cb->ncb > kw) { + rte_bbdev_log(ERR, + "ncb (%u) is out of range (%u) k <= value <= (%u) kw", + cb->ncb, cb->k, kw); + return -1; + } + } + + return 0; +} +#endif + +static inline char * +mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len) +{ + if (unlikely(len > rte_pktmbuf_tailroom(m))) + return NULL; + + char *tail = (char *)m->buf_addr + m->data_off + m->data_len; + m->data_len = (uint16_t)(m->data_len + len); + m_head->pkt_len = (m_head->pkt_len + len); + return tail; +} + +static inline int +enqueue_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op *op, + uint16_t desc_offset) +{ + union fpga_dma_desc *desc; + struct rte_mbuf *input; + struct rte_mbuf *output; + int ret; + uint16_t k, e, ncb, ring_offset; + uint32_t total_left, in_length, out_length, in_offset, out_offset; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + /* Validate op structure */ + if (validate_enc_op(op) == -1) { + rte_bbdev_log(ERR, "Turbo encoder validation failed"); + return -EINVAL; + } +#endif + + input = op->turbo_enc.input.data; + output = op->turbo_enc.output.data; + in_offset = op->turbo_enc.input.offset; + out_offset = op->turbo_enc.output.offset; + total_left = op->turbo_enc.input.length; + k = op->turbo_enc.cb_params.k; + e = op->turbo_enc.cb_params.e; + ncb = op->turbo_enc.cb_params.ncb; + + if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH)) + in_length = ((k - 24) >> 3); + else + in_length = k >> 3; + + if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_RATE_MATCH)) + out_length = (e + 7) >> 3; + else + out_length = (k >> 3) * 3 + 2; + + mbuf_append(output, output, out_length); + + /* Offset into the ring */ + ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask); + /* Setup DMA Descriptor */ + desc = q->ring_addr + ring_offset; + + ret = fpga_dma_desc_te_fill(op, &desc->enc_req, input, output, k, e, + ncb, in_offset, out_offset, ring_offset, 1); + if (unlikely(ret < 0)) + return ret; + + /* Update lengths */ + total_left -= in_length; + op->turbo_enc.output.length += out_length; + + if (total_left > 0) { + rte_bbdev_log(ERR, + "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u", + total_left, in_length); + return -1; + } + + return 1; +} + +static inline int +enqueue_enc_one_op_tb(struct fpga_queue *q, struct rte_bbdev_enc_op *op, + uint16_t desc_offset, uint8_t cbs_in_op) +{ + union fpga_dma_desc *desc; + struct rte_mbuf *input, *output_head, *output; + int ret; + uint8_t r, c, crc24_bits = 0; + uint16_t k, e, ncb, ring_offset; + uint32_t mbuf_total_left, in_length, out_length, in_offset, out_offset; + uint32_t seg_total_left; + uint16_t current_enqueued_cbs = 0; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + /* Validate op structure */ + if (validate_enc_op(op) == -1) { + rte_bbdev_log(ERR, "Turbo encoder validation failed"); + return -EINVAL; + } +#endif + + input = op->turbo_enc.input.data; + output_head = output = op->turbo_enc.output.data; + in_offset = op->turbo_enc.input.offset; + out_offset = op->turbo_enc.output.offset; + mbuf_total_left = op->turbo_enc.input.length; + + c = op->turbo_enc.tb_params.c; + r = op->turbo_enc.tb_params.r; + + if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH)) + crc24_bits = 24; + + while (mbuf_total_left > 0 && r < c && input != NULL) { + seg_total_left = rte_pktmbuf_data_len(input) - in_offset; + + e = (r < op->turbo_enc.tb_params.cab) ? + op->turbo_enc.tb_params.ea : + op->turbo_enc.tb_params.eb; + k = (r < op->turbo_enc.tb_params.c_neg) ? + op->turbo_enc.tb_params.k_neg : + op->turbo_enc.tb_params.k_pos; + ncb = (r < op->turbo_enc.tb_params.c_neg) ? + op->turbo_enc.tb_params.ncb_neg : + op->turbo_enc.tb_params.ncb_pos; + + in_length = ((k - crc24_bits) >> 3); + + if (check_bit(op->turbo_enc.op_flags, + RTE_BBDEV_TURBO_RATE_MATCH)) + out_length = (e + 7) >> 3; + else + out_length = (k >> 3) * 3 + 2; + + mbuf_append(output_head, output, out_length); + + /* Setup DMA Descriptor */ + ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask); + desc = q->ring_addr + ring_offset; + ret = fpga_dma_desc_te_fill(op, &desc->enc_req, input, output, + k, e, ncb, in_offset, out_offset, ring_offset, + cbs_in_op); + if (unlikely(ret < 0)) + return ret; + + rte_bbdev_log_debug("DMA request desc %p", desc); + + /* Update lengths */ + op->turbo_enc.output.length += out_length; + mbuf_total_left -= in_length; + + /* Update offsets */ + if (seg_total_left == in_length) { + /* Go to the next mbuf */ + input = input->next; + output = output->next; + in_offset = 0; + out_offset = 0; + } else { + in_offset += in_length; + out_offset += out_length; + } + + r++; + desc_offset++; + current_enqueued_cbs++; + } + + if (mbuf_total_left > 0) { + rte_bbdev_log(ERR, + "Some date still left for processing: mbuf_total_left = %u", + mbuf_total_left); + return -1; + } + + return current_enqueued_cbs; +} + +#ifdef RTE_LIBRTE_BBDEV_DEBUG +/* Validates turbo decoder parameters */ +static int +validate_dec_op(struct rte_bbdev_dec_op *op) +{ + struct rte_bbdev_op_turbo_dec *turbo_dec = &op->turbo_dec; + struct rte_bbdev_op_dec_cb_params *cb = NULL; + struct rte_bbdev_op_dec_tb_params *tb = NULL; + + if (op->mempool == NULL) { + rte_bbdev_log(ERR, "Invalid mempool pointer"); + return -1; + } + if (turbo_dec->input.data == NULL) { + rte_bbdev_log(ERR, "Invalid input pointer"); + return -1; + } + if (turbo_dec->hard_output.data == NULL) { + rte_bbdev_log(ERR, "Invalid hard_output pointer"); + return -1; + } + if (turbo_dec->rv_index > 3) { + rte_bbdev_log(ERR, + "rv_index (%u) is out of range 0 <= value <= 3", + turbo_dec->rv_index); + return -1; + } + if (turbo_dec->iter_min < 1) { + rte_bbdev_log(ERR, + "iter_min (%u) is less than 1", + turbo_dec->iter_min); + return -1; + } + if (turbo_dec->iter_max <= 2) { + rte_bbdev_log(ERR, + "iter_max (%u) is less than or equal to 2", + turbo_dec->iter_max); + return -1; + } + if (turbo_dec->iter_min > turbo_dec->iter_max) { + rte_bbdev_log(ERR, + "iter_min (%u) is greater than iter_max (%u)", + turbo_dec->iter_min, turbo_dec->iter_max); + return -1; + } + if (turbo_dec->code_block_mode != 0 && + turbo_dec->code_block_mode != 1) { + rte_bbdev_log(ERR, + "code_block_mode (%u) is out of range 0 <= value <= 1", + turbo_dec->code_block_mode); + return -1; + } + + if (turbo_dec->code_block_mode == 0) { + + if ((turbo_dec->op_flags & + RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP) && + !(turbo_dec->op_flags & RTE_BBDEV_TURBO_CRC_TYPE_24B)) { + rte_bbdev_log(ERR, + "RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP should accompany RTE_BBDEV_TURBO_CRC_TYPE_24B"); + return -1; + } + + tb = &turbo_dec->tb_params; + if ((tb->k_neg < RTE_BBDEV_MIN_CB_SIZE + || tb->k_neg > RTE_BBDEV_MAX_CB_SIZE) + && tb->c_neg > 0) { + rte_bbdev_log(ERR, + "k_neg (%u) is out of range %u <= value <= %u", + tb->k_neg, RTE_BBDEV_MIN_CB_SIZE, + RTE_BBDEV_MAX_CB_SIZE); + return -1; + } + if ((tb->k_pos < RTE_BBDEV_MIN_CB_SIZE + || tb->k_pos > RTE_BBDEV_MAX_CB_SIZE) + && tb->c > tb->c_neg) { + rte_bbdev_log(ERR, + "k_pos (%u) is out of range %u <= value <= %u", + tb->k_pos, RTE_BBDEV_MIN_CB_SIZE, + RTE_BBDEV_MAX_CB_SIZE); + return -1; + } + if (tb->c_neg > (RTE_BBDEV_MAX_CODE_BLOCKS - 1)) + rte_bbdev_log(ERR, + "c_neg (%u) is out of range 0 <= value <= %u", + tb->c_neg, + RTE_BBDEV_MAX_CODE_BLOCKS - 1); + if (tb->c < 1 || tb->c > RTE_BBDEV_MAX_CODE_BLOCKS) { + rte_bbdev_log(ERR, + "c (%u) is out of range 1 <= value <= %u", + tb->c, RTE_BBDEV_MAX_CODE_BLOCKS); + return -1; + } + if (tb->cab > tb->c) { + rte_bbdev_log(ERR, + "cab (%u) is greater than c (%u)", + tb->cab, tb->c); + return -1; + } + } else { + + if (turbo_dec->op_flags & RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP) { + rte_bbdev_log(ERR, + "RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP is invalid in CB-mode"); + return -1; + } + + cb = &turbo_dec->cb_params; + if (cb->k < RTE_BBDEV_MIN_CB_SIZE + || cb->k > RTE_BBDEV_MAX_CB_SIZE) { + rte_bbdev_log(ERR, + "k (%u) is out of range %u <= value <= %u", + cb->k, RTE_BBDEV_MIN_CB_SIZE, + RTE_BBDEV_MAX_CB_SIZE); + return -1; + } + } + + return 0; +} +#endif + +static inline int +enqueue_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op *op, + uint16_t desc_offset) +{ + union fpga_dma_desc *desc; + struct rte_mbuf *input; + struct rte_mbuf *output; + int ret; + uint16_t k, kw, ring_offset; + uint32_t total_left, in_length, out_length, in_offset, out_offset; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + /* Validate op structure */ + if (validate_dec_op(op) == -1) { + rte_bbdev_log(ERR, "Turbo decoder validation failed"); + return -EINVAL; + } +#endif + + input = op->turbo_dec.input.data; + output = op->turbo_dec.hard_output.data; + total_left = op->turbo_dec.input.length; + in_offset = op->turbo_dec.input.offset; + out_offset = op->turbo_dec.hard_output.offset; + + k = op->turbo_dec.cb_params.k; + kw = RTE_ALIGN_CEIL(k + 4, 32) * 3; + in_length = kw; + out_length = k >> 3; + + mbuf_append(output, output, out_length); + + /* Setup DMA Descriptor */ + ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask); + desc = q->ring_addr + ring_offset; + ret = fpga_dma_desc_td_fill(op, &desc->dec_req, input, output, + in_length, k, in_offset, out_offset, ring_offset, 1); + if (unlikely(ret < 0)) + return ret; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + print_dma_dec_desc_debug_info(desc); +#endif + + /* Update lengths */ + total_left -= in_length; + op->turbo_dec.hard_output.length += out_length; + + if (total_left > 0) { + rte_bbdev_log(ERR, + "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u", + total_left, in_length); + return -1; + } + + return 1; +} + + +static inline int +enqueue_dec_one_op_tb(struct fpga_queue *q, struct rte_bbdev_dec_op *op, + uint16_t desc_offset, uint8_t cbs_in_op) +{ + union fpga_dma_desc *desc; + struct rte_mbuf *input, *output_head, *output; + int ret; + uint8_t r, c; + uint16_t k, kw, in_length, out_length, ring_offset; + uint32_t mbuf_total_left, seg_total_left, in_offset, out_offset; + uint16_t current_enqueued_cbs = 0; + uint16_t crc24_overlap = 0; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + /* Validate op structure */ + if (validate_dec_op(op) == -1) { + rte_bbdev_log(ERR, "Turbo decoder validation failed"); + return -EINVAL; + } +#endif + + input = op->turbo_dec.input.data; + output_head = output = op->turbo_dec.hard_output.data; + mbuf_total_left = op->turbo_dec.input.length; + in_offset = op->turbo_dec.input.offset; + out_offset = op->turbo_dec.hard_output.offset; + + if (!check_bit(op->turbo_dec.op_flags, + RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP)) + crc24_overlap = 24; + + c = op->turbo_dec.tb_params.c; + r = op->turbo_dec.tb_params.r; + + while (mbuf_total_left > 0 && r < c && input != NULL) { + seg_total_left = rte_pktmbuf_data_len(input) - in_offset; + k = (r < op->turbo_dec.tb_params.c_neg) ? + op->turbo_dec.tb_params.k_neg : + op->turbo_dec.tb_params.k_pos; + kw = RTE_ALIGN_CEIL(k + 4, 32) * 3; + + in_length = kw; + out_length = (k - crc24_overlap) >> 3; + + mbuf_append(output_head, output, out_length); + + if (seg_total_left < in_length) { + rte_bbdev_log(ERR, + "Partial CB found in a TB. FPGA Driver doesn't support scatter-gather operations!"); + return -1; + } + + /* Setup DMA Descriptor */ + ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask); + desc = q->ring_addr + ring_offset; + ret = fpga_dma_desc_td_fill(op, &desc->dec_req, input, output, + in_length, k, in_offset, out_offset, + ring_offset, cbs_in_op); + if (unlikely(ret < 0)) + return ret; + + /* Update lengths */ + ret = rte_pktmbuf_trim(op->turbo_dec.hard_output.data, + (crc24_overlap >> 3)); +#ifdef RTE_LIBRTE_BBDEV_DEBUG + if (ret < 0) { + rte_bbdev_log(ERR, + "The length to remove is greater than the length of the last segment"); + return -EINVAL; + } +#endif + op->turbo_dec.hard_output.length += out_length; + mbuf_total_left -= in_length; + + /* Update offsets */ + if (seg_total_left == in_length) { + /* Go to the next mbuf */ + input = input->next; + output = output->next; + in_offset = 0; + out_offset = 0; + } else { + in_offset += in_length; + out_offset += out_length; + } + + r++; + desc_offset++; + current_enqueued_cbs++; + } + + if (mbuf_total_left > 0) { + rte_bbdev_log(ERR, + "Some date still left for processing: mbuf_total_left = %u", + mbuf_total_left); + return -1; + } + + return current_enqueued_cbs; +} + +static uint16_t +fpga_enqueue_enc(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_enc_op **ops, uint16_t num) +{ + uint8_t cbs_in_op; + uint16_t i, total_enqueued_cbs = 0; + int32_t avail; + int enqueued_cbs; + struct fpga_queue *q = q_data->queue_private; + union fpga_dma_desc *desc; + + /* Check if queue is not full */ + if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) == + q->head_free_desc)) + return 0; + + /* Calculates available space */ + avail = (q->head_free_desc > q->tail) ? + q->head_free_desc - q->tail - 1 : + q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1; + + for (i = 0; i < num; ++i) { + if (ops[i]->turbo_enc.code_block_mode == 0) { + cbs_in_op = get_num_cbs_in_op_enc(&ops[i]->turbo_enc); + /* Check if there is available space for further + * processing + */ + if (unlikely(avail - cbs_in_op < 0)) + break; + avail -= cbs_in_op; + enqueued_cbs = enqueue_enc_one_op_tb(q, ops[i], + total_enqueued_cbs, cbs_in_op); + } else { + /* Check if there is available space for further + * processing + */ + if (unlikely(avail - 1 < 0)) + break; + avail -= 1; + enqueued_cbs = enqueue_enc_one_op_cb(q, ops[i], + total_enqueued_cbs); + } + + if (enqueued_cbs < 0) + break; + + total_enqueued_cbs += enqueued_cbs; + + rte_bbdev_log_debug("enqueuing enc ops [%d/%d] | head %d | tail %d", + total_enqueued_cbs, num, + q->head_free_desc, q->tail); + } + + /* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt + * only when all previous CBs were already processed. + */ + desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1) + & q->sw_ring_wrap_mask); + desc->enc_req.irq_en = q->irq_enable; + + fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats); + + /* Update stats */ + q_data->queue_stats.enqueued_count += i; + q_data->queue_stats.enqueue_err_count += num - i; + + return i; +} + +static uint16_t +fpga_enqueue_dec(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_dec_op **ops, uint16_t num) +{ + uint8_t cbs_in_op; + uint16_t i, total_enqueued_cbs = 0; + int32_t avail; + int enqueued_cbs; + struct fpga_queue *q = q_data->queue_private; + union fpga_dma_desc *desc; + + /* Check if queue is not full */ + if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) == + q->head_free_desc)) + return 0; + + /* Calculates available space */ + avail = (q->head_free_desc > q->tail) ? + q->head_free_desc - q->tail - 1 : + q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1; + + for (i = 0; i < num; ++i) { + if (ops[i]->turbo_dec.code_block_mode == 0) { + cbs_in_op = get_num_cbs_in_op_dec(&ops[i]->turbo_dec); + /* Check if there is available space for further + * processing + */ + if (unlikely(avail - cbs_in_op < 0)) + break; + avail -= cbs_in_op; + enqueued_cbs = enqueue_dec_one_op_tb(q, ops[i], + total_enqueued_cbs, cbs_in_op); + } else { + /* Check if there is available space for further + * processing + */ + if (unlikely(avail - 1 < 0)) + break; + avail -= 1; + enqueued_cbs = enqueue_dec_one_op_cb(q, ops[i], + total_enqueued_cbs); + } + + if (enqueued_cbs < 0) + break; + + total_enqueued_cbs += enqueued_cbs; + + rte_bbdev_log_debug("enqueuing dec ops [%d/%d] | head %d | tail %d", + total_enqueued_cbs, num, + q->head_free_desc, q->tail); + } + + /* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt + * only when all previous CBs were already processed. + */ + desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1) + & q->sw_ring_wrap_mask); + desc->dec_req.irq_en = q->irq_enable; + + fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats); + + /* Update stats */ + q_data->queue_stats.enqueued_count += i; + q_data->queue_stats.enqueue_err_count += num - i; + + return i; +} + +static inline int +dequeue_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op **op, + uint16_t desc_offset) +{ + union fpga_dma_desc *desc; + int desc_error = 0; + + /* Set current desc */ + desc = q->ring_addr + ((q->head_free_desc + desc_offset) + & q->sw_ring_wrap_mask); + + /*check if done */ + if (desc->enc_req.done == 0) + return -1; + + /* make sure the response is read atomically */ + rte_smp_rmb(); + + rte_bbdev_log_debug("DMA response desc %p", desc); + + *op = desc->enc_req.op_addr; + /* Check the decriptor error field, return 1 on error */ + desc_error = check_desc_error(desc->enc_req.error); + (*op)->status = desc_error << RTE_BBDEV_DATA_ERROR; + + return 1; +} + +static inline int +dequeue_enc_one_op_tb(struct fpga_queue *q, struct rte_bbdev_enc_op **op, + uint16_t desc_offset) +{ + union fpga_dma_desc *desc; + uint8_t cbs_in_op, cb_idx; + int desc_error = 0; + int status = 0; + + /* Set descriptor */ + desc = q->ring_addr + ((q->head_free_desc + desc_offset) + & q->sw_ring_wrap_mask); + + /* Verify if done bit is set */ + if (desc->enc_req.done == 0) + return -1; + + /* Make sure the response is read atomically */ + rte_smp_rmb(); + + /* Verify if done bit in all CBs is set */ + cbs_in_op = desc->enc_req.cbs_in_op; + for (cb_idx = 1; cb_idx < cbs_in_op; ++cb_idx) { + desc = q->ring_addr + ((q->head_free_desc + desc_offset + + cb_idx) & q->sw_ring_wrap_mask); + if (desc->enc_req.done == 0) + return -1; + } + + /* Make sure the response is read atomically */ + rte_smp_rmb(); + + for (cb_idx = 0; cb_idx < cbs_in_op; ++cb_idx) { + desc = q->ring_addr + ((q->head_free_desc + desc_offset + + cb_idx) & q->sw_ring_wrap_mask); + /* Check the decriptor error field, return 1 on error */ + desc_error = check_desc_error(desc->enc_req.error); + status |= desc_error << RTE_BBDEV_DATA_ERROR; + rte_bbdev_log_debug("DMA response desc %p", desc); + } + + *op = desc->enc_req.op_addr; + (*op)->status = status; + return cbs_in_op; +} + +static inline int +dequeue_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op **op, + uint16_t desc_offset) +{ + union fpga_dma_desc *desc; + int desc_error = 0; + /* Set descriptor */ + desc = q->ring_addr + ((q->head_free_desc + desc_offset) + & q->sw_ring_wrap_mask); + + /* Verify done bit is set */ + if (desc->dec_req.done == 0) + return -1; + + /* make sure the response is read atomically */ + rte_smp_rmb(); + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + print_dma_dec_desc_debug_info(desc); + +#endif + + *op = desc->dec_req.op_addr; + /* FPGA reports in half-iterations, from 0 to 31. get ceiling */ + (*op)->turbo_dec.iter_count = (desc->dec_req.iter + 2) >> 1; + /* crc_pass = 0 when decoder fails */ + (*op)->status = !(desc->dec_req.crc_pass) << RTE_BBDEV_CRC_ERROR; + /* Check the decriptor error field, return 1 on error */ + desc_error = check_desc_error(desc->enc_req.error); + (*op)->status |= desc_error << RTE_BBDEV_DATA_ERROR; + return 1; +} + +static inline int +dequeue_dec_one_op_tb(struct fpga_queue *q, struct rte_bbdev_dec_op **op, + uint16_t desc_offset) +{ + union fpga_dma_desc *desc; + uint8_t cbs_in_op, cb_idx, iter_count = 0; + int status = 0; + int desc_error = 0; + /* Set descriptor */ + desc = q->ring_addr + ((q->head_free_desc + desc_offset) + & q->sw_ring_wrap_mask); + + /* Verify if done bit is set */ + if (desc->dec_req.done == 0) + return -1; + + /* Make sure the response is read atomically */ + rte_smp_rmb(); + + /* Verify if done bit in all CBs is set */ + cbs_in_op = desc->dec_req.cbs_in_op; + for (cb_idx = 1; cb_idx < cbs_in_op; ++cb_idx) { + desc = q->ring_addr + ((q->head_free_desc + desc_offset + + cb_idx) & q->sw_ring_wrap_mask); + if (desc->dec_req.done == 0) + return -1; + } + + /* Make sure the response is read atomically */ + rte_smp_rmb(); + + for (cb_idx = 0; cb_idx < cbs_in_op; ++cb_idx) { + desc = q->ring_addr + ((q->head_free_desc + desc_offset + + cb_idx) & q->sw_ring_wrap_mask); + /* get max iter_count for all CBs in op */ + iter_count = RTE_MAX(iter_count, (uint8_t) desc->dec_req.iter); + /* crc_pass = 0 when decoder fails, one fails all */ + status |= !(desc->dec_req.crc_pass) << RTE_BBDEV_CRC_ERROR; + /* Check the decriptor error field, return 1 on error */ + desc_error = check_desc_error(desc->enc_req.error); + status |= desc_error << RTE_BBDEV_DATA_ERROR; + rte_bbdev_log_debug("DMA response desc %p", desc); + } + + *op = desc->dec_req.op_addr; + + /* FPGA reports in half-iterations, get ceiling */ + (*op)->turbo_dec.iter_count = (iter_count + 2) >> 1; + (*op)->status = status; + return cbs_in_op; +} + +static uint16_t +fpga_dequeue_enc(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_enc_op **ops, uint16_t num) +{ + struct fpga_queue *q = q_data->queue_private; + uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask; + uint16_t i; + uint16_t dequeued_cbs = 0; + struct rte_bbdev_enc_op *op; + int ret; + + for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) { + op = (q->ring_addr + ((q->head_free_desc + dequeued_cbs) + & q->sw_ring_wrap_mask))->enc_req.op_addr; + if (op->turbo_enc.code_block_mode == 0) + ret = dequeue_enc_one_op_tb(q, &ops[i], dequeued_cbs); + else + ret = dequeue_enc_one_op_cb(q, &ops[i], dequeued_cbs); + + if (ret < 0) + break; + + dequeued_cbs += ret; + + rte_bbdev_log_debug("dequeuing enc ops [%d/%d] | head %d | tail %d", + dequeued_cbs, num, q->head_free_desc, q->tail); + } + + /* Update head */ + q->head_free_desc = (q->head_free_desc + dequeued_cbs) & + q->sw_ring_wrap_mask; + + /* Update stats */ + q_data->queue_stats.dequeued_count += i; + + return i; +} + +static uint16_t +fpga_dequeue_dec(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_dec_op **ops, uint16_t num) +{ + struct fpga_queue *q = q_data->queue_private; + uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask; + uint16_t i; + uint16_t dequeued_cbs = 0; + struct rte_bbdev_dec_op *op; + int ret; + + for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) { + op = (q->ring_addr + ((q->head_free_desc + dequeued_cbs) + & q->sw_ring_wrap_mask))->dec_req.op_addr; + if (op->turbo_dec.code_block_mode == 0) + ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs); + else + ret = dequeue_dec_one_op_cb(q, &ops[i], dequeued_cbs); + + if (ret < 0) + break; + + dequeued_cbs += ret; + + rte_bbdev_log_debug("dequeuing dec ops [%d/%d] | head %d | tail %d", + dequeued_cbs, num, q->head_free_desc, q->tail); + } + + /* Update head */ + q->head_free_desc = (q->head_free_desc + dequeued_cbs) & + q->sw_ring_wrap_mask; + + /* Update stats */ + q_data->queue_stats.dequeued_count += i; + + return i; +} + +/* Initialization Function */ +static void +fpga_lte_fec_init(struct rte_bbdev *dev) +{ + struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device); + + dev->dev_ops = &fpga_ops; + dev->enqueue_enc_ops = fpga_enqueue_enc; + dev->enqueue_dec_ops = fpga_enqueue_dec; + dev->dequeue_enc_ops = fpga_dequeue_enc; + dev->dequeue_dec_ops = fpga_dequeue_dec; + + ((struct fpga_lte_fec_device *) dev->data->dev_private)->pf_device = + !strcmp(dev->device->driver->name, + RTE_STR(FPGA_LTE_FEC_PF_DRIVER_NAME)); + ((struct fpga_lte_fec_device *) dev->data->dev_private)->mmio_base = + pci_dev->mem_resource[0].addr; + + rte_bbdev_log_debug( + "Init device %s [%s] @ virtaddr %p phyaddr %#"PRIx64, + dev->device->driver->name, dev->data->name, + (void *)pci_dev->mem_resource[0].addr, + pci_dev->mem_resource[0].phys_addr); +} + +static int +fpga_lte_fec_probe(struct rte_pci_driver *pci_drv __rte_unused, + struct rte_pci_device *pci_dev) +{ + struct rte_bbdev *bbdev = NULL; + char dev_name[RTE_BBDEV_NAME_MAX_LEN]; + + if (pci_dev == NULL) { + rte_bbdev_log(ERR, "NULL PCI device"); + return -EINVAL; + } + + rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name)); + + /* Allocate memory to be used privately by drivers */ + bbdev = rte_bbdev_allocate(pci_dev->device.name); + if (bbdev == NULL) + return -ENODEV; + + /* allocate device private memory */ + bbdev->data->dev_private = rte_zmalloc_socket(dev_name, + sizeof(struct fpga_lte_fec_device), RTE_CACHE_LINE_SIZE, + pci_dev->device.numa_node); + + if (bbdev->data->dev_private == NULL) { + rte_bbdev_log(CRIT, + "Allocate of %zu bytes for device \"%s\" failed", + sizeof(struct fpga_lte_fec_device), dev_name); + rte_bbdev_release(bbdev); + return -ENOMEM; + } + + /* Fill HW specific part of device structure */ + bbdev->device = &pci_dev->device; + bbdev->intr_handle = &pci_dev->intr_handle; + bbdev->data->socket_id = pci_dev->device.numa_node; + + /* Invoke FEC FPGA device initialization function */ + fpga_lte_fec_init(bbdev); + + rte_bbdev_log_debug("bbdev id = %u [%s]", + bbdev->data->dev_id, dev_name); + + struct fpga_lte_fec_device *d = bbdev->data->dev_private; + uint32_t version_id = fpga_reg_read_32(d->mmio_base, + FPGA_LTE_FEC_VERSION_ID); + rte_bbdev_log(INFO, "FEC FPGA RTL v%u.%u", + ((uint16_t)(version_id >> 16)), ((uint16_t)version_id)); + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + if (!strcmp(bbdev->device->driver->name, + RTE_STR(FPGA_LTE_FEC_PF_DRIVER_NAME))) + print_static_reg_debug_info(d->mmio_base); +#endif + return 0; +} + +static int +fpga_lte_fec_remove(struct rte_pci_device *pci_dev) +{ + struct rte_bbdev *bbdev; + int ret; + uint8_t dev_id; + + if (pci_dev == NULL) + return -EINVAL; + + /* Find device */ + bbdev = rte_bbdev_get_named_dev(pci_dev->device.name); + if (bbdev == NULL) { + rte_bbdev_log(CRIT, + "Couldn't find HW dev \"%s\" to uninitialise it", + pci_dev->device.name); + return -ENODEV; + } + dev_id = bbdev->data->dev_id; + + /* free device private memory before close */ + rte_free(bbdev->data->dev_private); + + /* Close device */ + ret = rte_bbdev_close(dev_id); + if (ret < 0) + rte_bbdev_log(ERR, + "Device %i failed to close during uninit: %i", + dev_id, ret); + + /* release bbdev from library */ + ret = rte_bbdev_release(bbdev); + if (ret) + rte_bbdev_log(ERR, "Device %i failed to uninit: %i", dev_id, + ret); + + rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id); + + return 0; +} + +static inline void +set_default_fpga_conf(struct fpga_lte_fec_conf *def_conf) +{ + /* clear default configuration before initialization */ + memset(def_conf, 0, sizeof(struct fpga_lte_fec_conf)); + /* Set pf mode to true */ + def_conf->pf_mode_en = true; + + /* Set ratio between UL and DL to 1:1 (unit of weight is 3 CBs) */ + def_conf->ul_bandwidth = 3; + def_conf->dl_bandwidth = 3; + + /* Set Load Balance Factor to 64 */ + def_conf->dl_load_balance = 64; + def_conf->ul_load_balance = 64; +} + +/* Initial configuration of FPGA LTE FEC device */ +int +fpga_lte_fec_configure(const char *dev_name, + const struct fpga_lte_fec_conf *conf) +{ + uint32_t payload_32, address; + uint16_t payload_16; + uint8_t payload_8; + uint16_t q_id, vf_id, total_q_id, total_ul_q_id, total_dl_q_id; + struct rte_bbdev *bbdev = rte_bbdev_get_named_dev(dev_name); + struct fpga_lte_fec_conf def_conf; + + if (bbdev == NULL) { + rte_bbdev_log(ERR, + "Invalid dev_name (%s), or device is not yet initialised", + dev_name); + return -ENODEV; + } + + struct fpga_lte_fec_device *d = bbdev->data->dev_private; + + if (conf == NULL) { + rte_bbdev_log(ERR, + "FPGA Configuration was not provided. Default configuration will be loaded."); + set_default_fpga_conf(&def_conf); + conf = &def_conf; + } + + /* + * Configure UL:DL ratio. + * [7:0]: UL weight + * [15:8]: DL weight + */ + payload_16 = (conf->dl_bandwidth << 8) | conf->ul_bandwidth; + address = FPGA_LTE_FEC_CONFIGURATION; + fpga_reg_write_16(d->mmio_base, address, payload_16); + + /* Clear all queues registers */ + payload_32 = FPGA_INVALID_HW_QUEUE_ID; + for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) { + address = (q_id << 2) + FPGA_LTE_FEC_QUEUE_MAP; + fpga_reg_write_32(d->mmio_base, address, payload_32); + } + + /* + * If PF mode is enabled allocate all queues for PF only. + * + * For VF mode each VF can have different number of UL and DL queues. + * Total number of queues to configure cannot exceed FPGA + * capabilities - 64 queues - 32 queues for UL and 32 queues for DL. + * Queues mapping is done according to configuration: + * + * UL queues: + * | Q_ID | VF_ID | + * | 0 | 0 | + * | ... | 0 | + * | conf->vf_dl_queues_number[0] - 1 | 0 | + * | conf->vf_dl_queues_number[0] | 1 | + * | ... | 1 | + * | conf->vf_dl_queues_number[1] - 1 | 1 | + * | ... | ... | + * | conf->vf_dl_queues_number[7] - 1 | 7 | + * + * DL queues: + * | Q_ID | VF_ID | + * | 32 | 0 | + * | ... | 0 | + * | conf->vf_ul_queues_number[0] - 1 | 0 | + * | conf->vf_ul_queues_number[0] | 1 | + * | ... | 1 | + * | conf->vf_ul_queues_number[1] - 1 | 1 | + * | ... | ... | + * | conf->vf_ul_queues_number[7] - 1 | 7 | + * + * Example of configuration: + * conf->vf_ul_queues_number[0] = 4; -> 4 UL queues for VF0 + * conf->vf_dl_queues_number[0] = 4; -> 4 DL queues for VF0 + * conf->vf_ul_queues_number[1] = 2; -> 2 UL queues for VF1 + * conf->vf_dl_queues_number[1] = 2; -> 2 DL queues for VF1 + * + * UL: + * | Q_ID | VF_ID | + * | 0 | 0 | + * | 1 | 0 | + * | 2 | 0 | + * | 3 | 0 | + * | 4 | 1 | + * | 5 | 1 | + * + * DL: + * | Q_ID | VF_ID | + * | 32 | 0 | + * | 33 | 0 | + * | 34 | 0 | + * | 35 | 0 | + * | 36 | 1 | + * | 37 | 1 | + */ + if (conf->pf_mode_en) { + payload_32 = 0x1; + for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) { + address = (q_id << 2) + FPGA_LTE_FEC_QUEUE_MAP; + fpga_reg_write_32(d->mmio_base, address, payload_32); + } + } else { + /* Calculate total number of UL and DL queues to configure */ + total_ul_q_id = total_dl_q_id = 0; + for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) { + total_ul_q_id += conf->vf_ul_queues_number[vf_id]; + total_dl_q_id += conf->vf_dl_queues_number[vf_id]; + } + total_q_id = total_dl_q_id + total_ul_q_id; + /* + * Check if total number of queues to configure does not exceed + * FPGA capabilities (64 queues - 32 UL and 32 DL queues) + */ + if ((total_ul_q_id > FPGA_NUM_UL_QUEUES) || + (total_dl_q_id > FPGA_NUM_DL_QUEUES) || + (total_q_id > FPGA_TOTAL_NUM_QUEUES)) { + rte_bbdev_log(ERR, + "FPGA Configuration failed. Too many queues to configure: UL_Q %u, DL_Q %u, FPGA_Q %u", + total_ul_q_id, total_dl_q_id, + FPGA_TOTAL_NUM_QUEUES); + return -EINVAL; + } + total_ul_q_id = 0; + for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) { + for (q_id = 0; q_id < conf->vf_ul_queues_number[vf_id]; + ++q_id, ++total_ul_q_id) { + address = (total_ul_q_id << 2) + + FPGA_LTE_FEC_QUEUE_MAP; + payload_32 = ((0x80 + vf_id) << 16) | 0x1; + fpga_reg_write_32(d->mmio_base, address, + payload_32); + } + } + total_dl_q_id = 0; + for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) { + for (q_id = 0; q_id < conf->vf_dl_queues_number[vf_id]; + ++q_id, ++total_dl_q_id) { + address = ((total_dl_q_id + FPGA_NUM_UL_QUEUES) + << 2) + FPGA_LTE_FEC_QUEUE_MAP; + payload_32 = ((0x80 + vf_id) << 16) | 0x1; + fpga_reg_write_32(d->mmio_base, address, + payload_32); + } + } + } + + /* Setting Load Balance Factor */ + payload_16 = (conf->dl_load_balance << 8) | (conf->ul_load_balance); + address = FPGA_LTE_FEC_LOAD_BALANCE_FACTOR; + fpga_reg_write_16(d->mmio_base, address, payload_16); + + /* Setting length of ring descriptor entry */ + payload_16 = FPGA_RING_DESC_ENTRY_LENGTH; + address = FPGA_LTE_FEC_RING_DESC_LEN; + fpga_reg_write_16(d->mmio_base, address, payload_16); + + /* Setting FLR timeout value */ + payload_16 = conf->flr_time_out; + address = FPGA_LTE_FEC_FLR_TIME_OUT; + fpga_reg_write_16(d->mmio_base, address, payload_16); + + /* Queue PF/VF mapping table is ready */ + payload_8 = 0x1; + address = FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE; + fpga_reg_write_8(d->mmio_base, address, payload_8); + + rte_bbdev_log_debug("PF FPGA LTE FEC configuration complete for %s", + dev_name); + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + print_static_reg_debug_info(d->mmio_base); +#endif + return 0; +} + +/* FPGA LTE FEC PCI PF address map */ +static struct rte_pci_id pci_id_fpga_lte_fec_pf_map[] = { + { + RTE_PCI_DEVICE(FPGA_LTE_FEC_VENDOR_ID, + FPGA_LTE_FEC_PF_DEVICE_ID) + }, + {.device_id = 0}, +}; + +static struct rte_pci_driver fpga_lte_fec_pci_pf_driver = { + .probe = fpga_lte_fec_probe, + .remove = fpga_lte_fec_remove, + .id_table = pci_id_fpga_lte_fec_pf_map, + .drv_flags = RTE_PCI_DRV_NEED_MAPPING +}; + +/* FPGA LTE FEC PCI VF address map */ +static struct rte_pci_id pci_id_fpga_lte_fec_vf_map[] = { + { + RTE_PCI_DEVICE(FPGA_LTE_FEC_VENDOR_ID, + FPGA_LTE_FEC_VF_DEVICE_ID) + }, + {.device_id = 0}, +}; + +static struct rte_pci_driver fpga_lte_fec_pci_vf_driver = { + .probe = fpga_lte_fec_probe, + .remove = fpga_lte_fec_remove, + .id_table = pci_id_fpga_lte_fec_vf_map, + .drv_flags = RTE_PCI_DRV_NEED_MAPPING +}; + + +RTE_PMD_REGISTER_PCI(FPGA_LTE_FEC_PF_DRIVER_NAME, fpga_lte_fec_pci_pf_driver); +RTE_PMD_REGISTER_PCI_TABLE(FPGA_LTE_FEC_PF_DRIVER_NAME, + pci_id_fpga_lte_fec_pf_map); +RTE_PMD_REGISTER_PCI(FPGA_LTE_FEC_VF_DRIVER_NAME, fpga_lte_fec_pci_vf_driver); +RTE_PMD_REGISTER_PCI_TABLE(FPGA_LTE_FEC_VF_DRIVER_NAME, + pci_id_fpga_lte_fec_vf_map); + +RTE_INIT(fpga_lte_fec_init_log) +{ + fpga_lte_fec_logtype = rte_log_register("pmd.bb.fpga_lte_fec"); + if (fpga_lte_fec_logtype >= 0) +#ifdef RTE_LIBRTE_BBDEV_DEBUG + rte_log_set_level(fpga_lte_fec_logtype, RTE_LOG_DEBUG); +#else + rte_log_set_level(fpga_lte_fec_logtype, RTE_LOG_NOTICE); +#endif +} diff --git a/drivers/baseband/fpga_lte_fec/fpga_lte_fec.h b/drivers/baseband/fpga_lte_fec/fpga_lte_fec.h new file mode 100644 index 0000000000..9ae8b1226f --- /dev/null +++ b/drivers/baseband/fpga_lte_fec/fpga_lte_fec.h @@ -0,0 +1,73 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2019 Intel Corporation + */ + +#ifndef _FPGA_LTE_FEC_H_ +#define _FPGA_LTE_FEC_H_ + +#include +#include + +/** + * @file fpga_lte_fec.h + * + * Interface for Intel(R) FGPA LTE FEC device configuration at the host level, + * directly accessible by the application. + * Configuration related to LTE Turbo coding functionality is done through + * librte_bbdev library. + * + * @warning + * @b EXPERIMENTAL: this API may change without prior notice + */ + +#ifdef __cplusplus +extern "C" { +#endif + +/**< Number of Virtual Functions FGPA 4G FEC supports */ +#define FPGA_LTE_FEC_NUM_VFS 8 + +/** + * Structure to pass FPGA 4G FEC configuration. + */ +struct fpga_lte_fec_conf { + /**< 1 if PF is used for dataplane, 0 for VFs */ + bool pf_mode_en; + /**< Number of UL queues per VF */ + uint8_t vf_ul_queues_number[FPGA_LTE_FEC_NUM_VFS]; + /**< Number of DL queues per VF */ + uint8_t vf_dl_queues_number[FPGA_LTE_FEC_NUM_VFS]; + /**< UL bandwidth. Needed for schedule algorithm */ + uint8_t ul_bandwidth; + /**< DL bandwidth. Needed for schedule algorithm */ + uint8_t dl_bandwidth; + /**< UL Load Balance */ + uint8_t ul_load_balance; + /**< DL Load Balance */ + uint8_t dl_load_balance; + /**< FLR timeout value */ + uint16_t flr_time_out; +}; + +/** + * Configure Intel(R) FPGA LTE FEC device + * + * @param dev_name + * The name of the device. This is the short form of PCI BDF, e.g. 00:01.0. + * It can also be retrieved for a bbdev device from the dev_name field in the + * rte_bbdev_info structure returned by rte_bbdev_info_get(). + * @param conf + * Configuration to apply to FPGA 4G FEC. + * + * @return + * Zero on success, negative value on failure. + */ +int +fpga_lte_fec_configure(const char *dev_name, + const struct fpga_lte_fec_conf *conf); + +#ifdef __cplusplus +} +#endif + +#endif /* _FPGA_LTE_FEC_H_ */ diff --git a/drivers/baseband/fpga_lte_fec/meson.build b/drivers/baseband/fpga_lte_fec/meson.build new file mode 100644 index 0000000000..bf44e6bbab --- /dev/null +++ b/drivers/baseband/fpga_lte_fec/meson.build @@ -0,0 +1,7 @@ +# SPDX-License-Identifier: BSD-3-Clause +# Copyright(c) 2019 Intel Corporation + +deps += ['bbdev', 'bus_vdev', 'ring', 'pci', 'bus_pci'] +name = 'bbdev_fpga_lte_fec' +allow_experimental_apis = true +sources = files('fpga_lte_fec.c') diff --git a/drivers/baseband/fpga_lte_fec/rte_pmd_bbdev_fpga_lte_fec_version.map b/drivers/baseband/fpga_lte_fec/rte_pmd_bbdev_fpga_lte_fec_version.map new file mode 100644 index 0000000000..e923270751 --- /dev/null +++ b/drivers/baseband/fpga_lte_fec/rte_pmd_bbdev_fpga_lte_fec_version.map @@ -0,0 +1,3 @@ +DPDK_19.08 { + local: *; +}; diff --git a/drivers/baseband/meson.build b/drivers/baseband/meson.build index 40a87d2a13..391bd511b8 100644 --- a/drivers/baseband/meson.build +++ b/drivers/baseband/meson.build @@ -1,7 +1,7 @@ # SPDX-License-Identifier: BSD-3-Clause # Copyright(c) 2018 Luca Boccassi -drivers = ['null', 'turbo_sw'] +drivers = ['null', 'turbo_sw', 'fpga_lte_fec'] config_flag_fmt = 'RTE_LIBRTE_@0@_PMD' driver_name_fmt = 'rte_pmd_@0@' diff --git a/mk/rte.app.mk b/mk/rte.app.mk index 5dcef13295..8bda05ab0e 100644 --- a/mk/rte.app.mk +++ b/mk/rte.app.mk @@ -226,6 +226,7 @@ _LDLIBS-$(CONFIG_RTE_LIBRTE_NETVSC_PMD) += -lrte_pmd_netvsc ifeq ($(CONFIG_RTE_LIBRTE_BBDEV),y) _LDLIBS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_NULL) += -lrte_pmd_bbdev_null +_LDLIBS-$(CONFIG_RTE_LIBRTE_PMD_FPGA_LTE_FEC) += -lrte_pmd_fpga_lte_fec # TURBO SOFTWARE PMD is dependent on the FLEXRAN library _LDLIBS-$(CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW) += -lrte_pmd_bbdev_turbo_sw