net/iavf: add offload path for Rx AVX512

Add a specific path for RX AVX512 (traditional).
In this path, support the HW offload features, like,
checksum, VLAN stripping, RSS hash.
This path is chosen automatically according to the
configuration.

'inline' is used, then the duplicate code is generated
by the compiler.

Signed-off-by: Wenzhuo Lu <wenzhuo.lu@intel.com>
Acked-by: Qi Zhang <qi.z.zhang@intel.com>
This commit is contained in:
Wenzhuo Lu 2021-04-14 15:34:08 +08:00 committed by Qi Zhang
parent 059f18ae2a
commit eff56a7b9f
4 changed files with 324 additions and 163 deletions

View File

@ -2392,22 +2392,23 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
#ifdef RTE_ARCH_X86
struct iavf_rx_queue *rxq;
int i;
int check_ret;
bool use_sse = false;
bool use_avx2 = false;
#ifdef CC_AVX512_SUPPORT
bool use_avx512 = false;
#endif
bool use_flex = false;
if (!iavf_rx_vec_dev_check(dev) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
(void)iavf_rxq_vec_setup(rxq);
check_ret = iavf_rx_vec_dev_check(dev);
if (check_ret >= 0 &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) {
if (check_ret == IAVF_VECTOR_PATH) {
use_sse = true;
if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
use_avx2 = true;
}
if ((rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1) &&
rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_256)
use_avx2 = true;
#ifdef CC_AVX512_SUPPORT
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1 &&
rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512BW) == 1 &&
@ -2415,13 +2416,38 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
use_avx512 = true;
#endif
if (!use_sse && !use_avx2 && !use_avx512)
goto normal;
if (vf->vf_res->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
use_flex = true;
if (use_avx512 && check_ret == IAVF_VECTOR_OFFLOAD_PATH)
use_flex = false;
}
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
(void)iavf_rxq_vec_setup(rxq);
}
if (dev->data->scattered_rx) {
PMD_DRV_LOG(DEBUG,
"Using %sVector Scattered Rx (port %d).",
use_avx2 ? "avx2 " : "",
dev->data->port_id);
if (vf->vf_res->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
if (!use_avx512) {
PMD_DRV_LOG(DEBUG,
"Using %sVector Scattered Rx (port %d).",
use_avx2 ? "avx2 " : "",
dev->data->port_id);
} else {
if (check_ret == IAVF_VECTOR_PATH)
PMD_DRV_LOG(DEBUG,
"Using AVX512 Vector Scattered Rx (port %d).",
dev->data->port_id);
else
PMD_DRV_LOG(DEBUG,
"Using AVX512 OFFLOAD Vector Scattered Rx (port %d).",
dev->data->port_id);
}
if (use_flex) {
dev->rx_pkt_burst = use_avx2 ?
iavf_recv_scattered_pkts_vec_avx2_flex_rxd :
iavf_recv_scattered_pkts_vec_flex_rxd;
@ -2435,17 +2461,32 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
iavf_recv_scattered_pkts_vec_avx2 :
iavf_recv_scattered_pkts_vec;
#ifdef CC_AVX512_SUPPORT
if (use_avx512)
dev->rx_pkt_burst =
iavf_recv_scattered_pkts_vec_avx512;
if (use_avx512) {
if (check_ret == IAVF_VECTOR_PATH)
dev->rx_pkt_burst =
iavf_recv_scattered_pkts_vec_avx512;
else
dev->rx_pkt_burst =
iavf_recv_scattered_pkts_vec_avx512_offload;
}
#endif
}
} else {
PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
use_avx2 ? "avx2 " : "",
dev->data->port_id);
if (vf->vf_res->vf_cap_flags &
VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
if (!use_avx512) {
PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
use_avx2 ? "avx2 " : "",
dev->data->port_id);
} else {
if (check_ret == IAVF_VECTOR_PATH)
PMD_DRV_LOG(DEBUG,
"Using AVX512 Vector Rx (port %d).",
dev->data->port_id);
else
PMD_DRV_LOG(DEBUG,
"Using AVX512 OFFLOAD Vector Rx (port %d).",
dev->data->port_id);
}
if (use_flex) {
dev->rx_pkt_burst = use_avx2 ?
iavf_recv_pkts_vec_avx2_flex_rxd :
iavf_recv_pkts_vec_flex_rxd;
@ -2459,17 +2500,23 @@ iavf_set_rx_function(struct rte_eth_dev *dev)
iavf_recv_pkts_vec_avx2 :
iavf_recv_pkts_vec;
#ifdef CC_AVX512_SUPPORT
if (use_avx512)
dev->rx_pkt_burst =
iavf_recv_pkts_vec_avx512;
if (use_avx512) {
if (check_ret == IAVF_VECTOR_PATH)
dev->rx_pkt_burst =
iavf_recv_pkts_vec_avx512;
else
dev->rx_pkt_burst =
iavf_recv_pkts_vec_avx512_offload;
}
#endif
}
}
return;
}
#endif
normal:
#endif
if (dev->data->scattered_rx) {
PMD_DRV_LOG(DEBUG, "Using a Scattered Rx callback (port=%d).",
dev->data->port_id);

View File

@ -35,6 +35,12 @@
DEV_TX_OFFLOAD_UDP_CKSUM | \
DEV_TX_OFFLOAD_TCP_CKSUM)
#define IAVF_RX_VECTOR_OFFLOAD ( \
DEV_RX_OFFLOAD_CHECKSUM | \
DEV_RX_OFFLOAD_SCTP_CKSUM | \
DEV_RX_OFFLOAD_VLAN | \
DEV_RX_OFFLOAD_RSS_HASH)
#define IAVF_VECTOR_PATH 0
#define IAVF_VECTOR_OFFLOAD_PATH 1
@ -484,12 +490,18 @@ int iavf_rxq_vec_setup(struct iavf_rx_queue *rxq);
int iavf_txq_vec_setup(struct iavf_tx_queue *txq);
uint16_t iavf_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
uint16_t iavf_recv_pkts_vec_avx512_offload(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
uint16_t iavf_recv_pkts_vec_avx512_flex_rxd(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
uint16_t iavf_recv_scattered_pkts_vec_avx512(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
uint16_t iavf_recv_scattered_pkts_vec_avx512_offload(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);
uint16_t iavf_recv_scattered_pkts_vec_avx512_flex_rxd(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts);

View File

@ -13,6 +13,22 @@
#define IAVF_DESCS_PER_LOOP_AVX 8
#define PKTLEN_SHIFT 10
/******************************************************************************
* If user knows a specific offload is not enabled by APP,
* the macro can be commented to save the effort of fast path.
* Currently below 2 features are supported in RX path,
* 1, checksum offload
* 2, VLAN/QINQ stripping
* 3, RSS hash
* 4, packet type analysis
* 5, flow director ID report
******************************************************************************/
#define IAVF_RX_CSUM_OFFLOAD
#define IAVF_RX_VLAN_OFFLOAD
#define IAVF_RX_RSS_OFFLOAD
#define IAVF_RX_PTYPE_OFFLOAD
#define IAVF_RX_FDIR_OFFLOAD
static __rte_always_inline void
iavf_rxq_rearm(struct iavf_rx_queue *rxq)
{
@ -144,12 +160,15 @@ iavf_rxq_rearm(struct iavf_rx_queue *rxq)
}
#define IAVF_RX_LEN_MASK 0x80808080
static inline uint16_t
static __rte_always_inline uint16_t
_iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, uint8_t *split_packet)
uint16_t nb_pkts, uint8_t *split_packet,
bool offload)
{
#ifdef IAVF_RX_PTYPE_OFFLOAD
const uint32_t *type_table = rxq->vsi->adapter->ptype_tbl;
#endif
const __m256i mbuf_init = _mm256_set_epi64x(0, 0, 0,
rxq->mbuf_initializer);
@ -252,71 +271,6 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq,
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
/* Status/Error flag masks */
/**
* mask everything except RSS, flow director and VLAN flags
* bit2 is for VLAN tag, bit11 for flow director indication
* bit13:12 for RSS indication. Bits 3-5 of error
* field (bits 22-24) are for IP/L4 checksum errors
*/
const __m256i flags_mask =
_mm256_set1_epi32((1 << 2) | (1 << 11) |
(3 << 12) | (7 << 22));
/**
* data to be shuffled by result of flag mask. If VLAN bit is set,
* (bit 2), then position 4 in this array will be used in the
* destination
*/
const __m256i vlan_flags_shuf =
_mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
/**
* data to be shuffled by result of flag mask, shifted down 11.
* If RSS/FDIR bits are set, shuffle moves appropriate flags in
* place.
*/
const __m256i rss_flags_shuf =
_mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
0, 0, 0, 0, 0, 0, 0, 0,
PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
0, 0, 0, 0, PKT_RX_FDIR, 0);
/**
* data to be shuffled by the result of the flags mask shifted by 22
* bits. This gives use the l3_l4 flags.
*/
const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
/* shift right 1 bit to make sure it not exceed 255 */
(PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD) >> 1,
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
PKT_RX_IP_CKSUM_BAD >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
/* second 128-bits */
0, 0, 0, 0, 0, 0, 0, 0,
(PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD) >> 1,
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
PKT_RX_IP_CKSUM_BAD >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
const __m256i cksum_mask =
_mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
PKT_RX_OUTER_IP_CKSUM_BAD);
uint16_t i, received;
for (i = 0, received = 0; i < nb_pkts;
@ -384,6 +338,7 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq,
__m512i mb4_7 = _mm512_shuffle_epi8(desc4_7, shuf_msk);
mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust);
#ifdef IAVF_RX_PTYPE_OFFLOAD
/**
* to get packet types, shift 64-bit values down 30 bits
* and so ptype is in lower 8-bits in each
@ -402,6 +357,7 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq,
0, 0, 0, type_table[ptype5],
0, 0, 0, type_table[ptype4]);
mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7);
#endif
/**
* convert descriptors 0-3 into mbufs, adjusting length and
@ -415,6 +371,7 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq,
__m512i mb0_3 = _mm512_shuffle_epi8(desc0_3, shuf_msk);
mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust);
#ifdef IAVF_RX_PTYPE_OFFLOAD
/* get the packet types */
const __m512i ptypes0_3 = _mm512_srli_epi64(desc0_3, 30);
const __m256i ptypes2_3 = _mm512_extracti64x4_epi64(ptypes0_3, 1);
@ -430,6 +387,7 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq,
0, 0, 0, type_table[ptype1],
0, 0, 0, type_table[ptype0]);
mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3);
#endif
/**
* use permute/extract to get status content
@ -449,27 +407,122 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq,
/* now do flag manipulation */
/* get only flag/error bits we want */
const __m256i flag_bits =
_mm256_and_si256(status0_7, flags_mask);
/* set vlan and rss flags */
const __m256i vlan_flags =
_mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
const __m256i rss_flags =
_mm256_shuffle_epi8(rss_flags_shuf,
_mm256_srli_epi32(flag_bits, 11));
/**
* l3_l4_error flags, shuffle, then shift to correct adjustment
* of flags in flags_shuf, and finally mask out extra bits
*/
__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
_mm256_srli_epi32(flag_bits, 22));
l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
/* merge flags */
const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
_mm256_or_si256(rss_flags, vlan_flags));
__m256i mbuf_flags = _mm256_set1_epi32(0);
if (offload) {
#if defined(IAVF_RX_CSUM_OFFLOAD) || defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD)
/* Status/Error flag masks */
/**
* mask everything except RSS, flow director and VLAN flags
* bit2 is for VLAN tag, bit11 for flow director indication
* bit13:12 for RSS indication. Bits 3-5 of error
* field (bits 22-24) are for IP/L4 checksum errors
*/
const __m256i flags_mask =
_mm256_set1_epi32((1 << 2) | (1 << 11) |
(3 << 12) | (7 << 22));
#endif
#ifdef IAVF_RX_VLAN_OFFLOAD
/**
* data to be shuffled by result of flag mask. If VLAN bit is set,
* (bit 2), then position 4 in this array will be used in the
* destination
*/
const __m256i vlan_flags_shuf =
_mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
#endif
#ifdef IAVF_RX_RSS_OFFLOAD
/**
* data to be shuffled by result of flag mask, shifted down 11.
* If RSS/FDIR bits are set, shuffle moves appropriate flags in
* place.
*/
const __m256i rss_flags_shuf =
_mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */
0, 0, 0, 0, 0, 0, 0, 0,
PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH,
0, 0, 0, 0, PKT_RX_FDIR, 0);
#endif
#ifdef IAVF_RX_CSUM_OFFLOAD
/**
* data to be shuffled by the result of the flags mask shifted by 22
* bits. This gives use the l3_l4 flags.
*/
const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
/* shift right 1 bit to make sure it not exceed 255 */
(PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD) >> 1,
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
PKT_RX_IP_CKSUM_BAD >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
/* second 128-bits */
0, 0, 0, 0, 0, 0, 0, 0,
(PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_BAD) >> 1,
(PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD) >> 1,
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
PKT_RX_IP_CKSUM_BAD >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
const __m256i cksum_mask =
_mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
PKT_RX_OUTER_IP_CKSUM_BAD);
#endif
#if defined(IAVF_RX_CSUM_OFFLOAD) || defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD)
/* get only flag/error bits we want */
const __m256i flag_bits =
_mm256_and_si256(status0_7, flags_mask);
#endif
/* set vlan and rss flags */
#ifdef IAVF_RX_VLAN_OFFLOAD
const __m256i vlan_flags =
_mm256_shuffle_epi8(vlan_flags_shuf, flag_bits);
#endif
#ifdef IAVF_RX_RSS_OFFLOAD
const __m256i rss_flags =
_mm256_shuffle_epi8(rss_flags_shuf,
_mm256_srli_epi32(flag_bits, 11));
#endif
#ifdef IAVF_RX_CSUM_OFFLOAD
/**
* l3_l4_error flags, shuffle, then shift to correct adjustment
* of flags in flags_shuf, and finally mask out extra bits
*/
__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
_mm256_srli_epi32(flag_bits, 22));
l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
#endif
#ifdef IAVF_RX_CSUM_OFFLOAD
mbuf_flags = _mm256_or_si256(mbuf_flags, l3_l4_flags);
#endif
#ifdef IAVF_RX_RSS_OFFLOAD
mbuf_flags = _mm256_or_si256(mbuf_flags, rss_flags);
#endif
#ifdef IAVF_RX_VLAN_OFFLOAD
mbuf_flags = _mm256_or_si256(mbuf_flags, vlan_flags);
#endif
}
/**
* At this point, we have the 8 sets of flags in the low 16-bits
* of each 32-bit value in vlan0.
@ -487,7 +540,7 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq,
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
RTE_ALIGN(offsetof(struct rte_mbuf,
rearm_data),
16));
16));
/* build up data and do writes */
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
rearm6, rearm7;
@ -496,21 +549,28 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq,
const __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0);
const __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1);
rearm6 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 8),
0x04);
rearm4 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 4),
0x04);
rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
rearm0 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(mbuf_flags, 4),
0x04);
/* permute to add in the rx_descriptor e.g. rss fields */
rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
if (offload) {
rearm6 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 8),
0x04);
rearm4 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(mbuf_flags, 4),
0x04);
rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
rearm0 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(mbuf_flags, 4),
0x04);
/* permute to add in the rx_descriptor e.g. rss fields */
rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
} else {
rearm6 = _mm256_permute2f128_si256(mbuf_init, mb6_7, 0x20);
rearm4 = _mm256_permute2f128_si256(mbuf_init, mb4_5, 0x20);
rearm2 = _mm256_permute2f128_si256(mbuf_init, mb2_3, 0x20);
rearm0 = _mm256_permute2f128_si256(mbuf_init, mb0_1, 0x20);
}
/* write to mbuf */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data,
rearm6);
@ -522,24 +582,31 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq,
rearm0);
/* repeat for the odd mbufs */
const __m256i odd_flags =
_mm256_castsi128_si256
(_mm256_extracti128_si256(mbuf_flags, 1));
rearm7 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 8),
0x04);
rearm5 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 4),
0x04);
rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
rearm1 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(odd_flags, 4),
0x04);
/* since odd mbufs are already in hi 128-bits use blend */
rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
if (offload) {
const __m256i odd_flags =
_mm256_castsi128_si256
(_mm256_extracti128_si256(mbuf_flags, 1));
rearm7 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 8),
0x04);
rearm5 = _mm256_blend_epi32(mbuf_init,
_mm256_slli_si256(odd_flags, 4),
0x04);
rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
rearm1 = _mm256_blend_epi32(mbuf_init,
_mm256_srli_si256(odd_flags, 4),
0x04);
/* since odd mbufs are already in hi 128-bits use blend */
rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
} else {
rearm7 = _mm256_blend_epi32(mbuf_init, mb6_7, 0xF0);
rearm5 = _mm256_blend_epi32(mbuf_init, mb4_5, 0xF0);
rearm3 = _mm256_blend_epi32(mbuf_init, mb2_3, 0xF0);
rearm1 = _mm256_blend_epi32(mbuf_init, mb0_1, 0xF0);
}
/* again write to mbufs */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data,
rearm7);
@ -1250,7 +1317,8 @@ uint16_t
iavf_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _iavf_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL);
return _iavf_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts,
NULL, false);
}
/**
@ -1270,16 +1338,16 @@ iavf_recv_pkts_vec_avx512_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts,
* Notice:
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
*/
static uint16_t
static __rte_always_inline uint16_t
iavf_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
uint16_t nb_pkts, bool offload)
{
struct iavf_rx_queue *rxq = rx_queue;
uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0};
/* get some new buffers */
uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts,
split_flags);
split_flags, offload);
if (nb_bufs == 0)
return 0;
@ -1312,22 +1380,30 @@ iavf_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
* Notice:
* - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet
*/
uint16_t
iavf_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
static __rte_always_inline uint16_t
iavf_recv_scattered_pkts_vec_avx512_cmn(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, bool offload)
{
uint16_t retval = 0;
while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) {
uint16_t burst = iavf_recv_scattered_burst_vec_avx512(rx_queue,
rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST);
rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST, offload);
retval += burst;
nb_pkts -= burst;
if (burst < IAVF_VPMD_RX_MAX_BURST)
return retval;
}
return retval + iavf_recv_scattered_burst_vec_avx512(rx_queue,
rx_pkts + retval, nb_pkts);
rx_pkts + retval, nb_pkts, offload);
}
uint16_t
iavf_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return iavf_recv_scattered_pkts_vec_avx512_cmn(rx_queue, rx_pkts,
nb_pkts, false);
}
/**
@ -1400,6 +1476,23 @@ iavf_recv_scattered_pkts_vec_avx512_flex_rxd(void *rx_queue,
rx_pkts + retval, nb_pkts);
}
uint16_t
iavf_recv_pkts_vec_avx512_offload(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _iavf_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts,
nb_pkts, NULL, true);
}
uint16_t
iavf_recv_scattered_pkts_vec_avx512_offload(void *rx_queue,
struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return iavf_recv_scattered_pkts_vec_avx512_cmn(rx_queue, rx_pkts,
nb_pkts, true);
}
static __rte_always_inline int
iavf_tx_free_bufs_avx512(struct iavf_tx_queue *txq)
{

View File

@ -15,7 +15,7 @@
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
static inline uint16_t
static __rte_always_inline uint16_t
reassemble_packets(struct iavf_rx_queue *rxq, struct rte_mbuf **rx_bufs,
uint16_t nb_bufs, uint8_t *split_flags)
{
@ -231,7 +231,10 @@ iavf_rx_vec_queue_default(struct iavf_rx_queue *rxq)
if (rxq->proto_xtr != IAVF_PROTO_XTR_NONE)
return -1;
return 0;
if (rxq->offloads & IAVF_RX_VECTOR_OFFLOAD)
return IAVF_VECTOR_OFFLOAD_PATH;
return IAVF_VECTOR_PATH;
}
static inline int
@ -258,14 +261,20 @@ iavf_rx_vec_dev_check_default(struct rte_eth_dev *dev)
{
int i;
struct iavf_rx_queue *rxq;
int ret;
int result = 0;
for (i = 0; i < dev->data->nb_rx_queues; i++) {
rxq = dev->data->rx_queues[i];
if (iavf_rx_vec_queue_default(rxq))
ret = iavf_rx_vec_queue_default(rxq);
if (ret < 0)
return -1;
if (ret > result)
result = ret;
}
return 0;
return result;
}
static inline int