net/hns3: support SVE Tx

This patch adds SVE vector instructions to optimize Tx burst process.

Signed-off-by: Chengwen Feng <fengchengwen@huawei.com>
Signed-off-by: Wei Hu (Xavier) <xavier.huwei@huawei.com>
Signed-off-by: Huisong Li <lihuisong@huawei.com>
This commit is contained in:
Chengwen Feng 2020-10-14 18:01:14 +08:00 committed by Ferruh Yigit
parent 952ebacce4
commit f0c243a6cb
4 changed files with 196 additions and 16 deletions

View File

@ -2345,7 +2345,7 @@ hns3_rx_check_vec_support(__rte_unused struct rte_eth_dev *dev)
uint16_t __rte_weak
hns3_recv_pkts_vec(__rte_unused void *tx_queue,
__rte_unused struct rte_mbuf **tx_pkts,
__rte_unused struct rte_mbuf **rx_pkts,
__rte_unused uint16_t nb_pkts)
{
return 0;
@ -2353,7 +2353,7 @@ hns3_recv_pkts_vec(__rte_unused void *tx_queue,
uint16_t __rte_weak
hns3_recv_pkts_vec_sve(__rte_unused void *tx_queue,
__rte_unused struct rte_mbuf **tx_pkts,
__rte_unused struct rte_mbuf **rx_pkts,
__rte_unused uint16_t nb_pkts)
{
return 0;
@ -3615,6 +3615,14 @@ hns3_xmit_pkts_vec(__rte_unused void *tx_queue,
return 0;
}
uint16_t __rte_weak
hns3_xmit_pkts_vec_sve(void __rte_unused * tx_queue,
struct rte_mbuf __rte_unused **tx_pkts,
uint16_t __rte_unused nb_pkts)
{
return 0;
}
int
hns3_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
struct rte_eth_burst_mode *mode)
@ -3628,6 +3636,8 @@ hns3_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id,
info = "Scalar";
else if (pkt_burst == hns3_xmit_pkts_vec)
info = "Vector Neon";
else if (pkt_burst == hns3_xmit_pkts_vec_sve)
info = "Vector Sve";
if (info == NULL)
return -EINVAL;
@ -3645,7 +3655,8 @@ hns3_get_tx_function(struct rte_eth_dev *dev, eth_tx_prep_t *prep)
if (hns->tx_vec_allowed && hns3_tx_check_vec_support(dev) == 0) {
*prep = NULL;
return hns3_xmit_pkts_vec;
return hns3_check_sve_support() ? hns3_xmit_pkts_vec_sve :
hns3_xmit_pkts_vec;
}
if (hns->tx_simple_allowed &&

View File

@ -644,6 +644,8 @@ uint16_t hns3_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
uint16_t hns3_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
uint16_t hns3_xmit_pkts_vec_sve(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
int hns3_tx_burst_mode_get(struct rte_eth_dev *dev,
__rte_unused uint16_t queue_id,
struct rte_eth_burst_mode *mode);

View File

@ -9,26 +9,14 @@
#include "hns3_ethdev.h"
static inline void
hns3_tx_free_buffers(struct hns3_tx_queue *txq)
hns3_tx_bulk_free_buffers(struct hns3_tx_queue *txq)
{
struct rte_mbuf **free = txq->free;
struct hns3_entry *tx_entry;
struct hns3_desc *tx_desc;
struct rte_mbuf *m;
int nb_free = 0;
int i;
/*
* All mbufs can be released only when the VLD bits of all
* descriptors in a batch are cleared.
*/
tx_desc = &txq->tx_ring[txq->next_to_clean];
for (i = 0; i < txq->tx_rs_thresh; i++, tx_desc++) {
if (tx_desc->tx.tp_fe_sc_vld_ra_ri &
rte_le_to_cpu_16(BIT(HNS3_TXD_VLD_B)))
return;
}
tx_entry = &txq->sw_ring[txq->next_to_clean];
for (i = 0; i < txq->tx_rs_thresh; i++, tx_entry++) {
m = rte_pktmbuf_prefree_seg(tx_entry->mbuf);
@ -55,6 +43,26 @@ hns3_tx_free_buffers(struct hns3_tx_queue *txq)
txq->next_to_clean = 0;
}
static inline void
hns3_tx_free_buffers(struct hns3_tx_queue *txq)
{
struct hns3_desc *tx_desc;
int i;
/*
* All mbufs can be released only when the VLD bits of all
* descriptors in a batch are cleared.
*/
tx_desc = &txq->tx_ring[txq->next_to_clean];
for (i = 0; i < txq->tx_rs_thresh; i++, tx_desc++) {
if (tx_desc->tx.tp_fe_sc_vld_ra_ri &
rte_le_to_cpu_16(BIT(HNS3_TXD_VLD_B)))
return;
}
hns3_tx_bulk_free_buffers(txq);
}
static inline uint16_t
hns3_rx_reassemble_pkts(struct rte_mbuf **rx_pkts,
uint16_t nb_pkts,

View File

@ -311,3 +311,162 @@ hns3_recv_pkts_vec_sve(void *__restrict rx_queue,
return nb_rx;
}
static inline void
hns3_tx_free_buffers_sve(struct hns3_tx_queue *txq)
{
#define HNS3_SVE_CHECK_DESCS_PER_LOOP 8
#define TX_VLD_U8_ZIP_INDEX svindex_u8(0, 4)
svbool_t pg32 = svwhilelt_b32(0, HNS3_SVE_CHECK_DESCS_PER_LOOP);
svuint32_t vld, vld2;
svuint8_t vld_u8;
uint64_t vld_all;
struct hns3_desc *tx_desc;
int i;
/*
* All mbufs can be released only when the VLD bits of all
* descriptors in a batch are cleared.
*/
/* do logical OR operation for all desc's valid field */
vld = svdup_n_u32(0);
tx_desc = &txq->tx_ring[txq->next_to_clean];
for (i = 0; i < txq->tx_rs_thresh; i += HNS3_SVE_CHECK_DESCS_PER_LOOP,
tx_desc += HNS3_SVE_CHECK_DESCS_PER_LOOP) {
vld2 = svld1_gather_u32offset_u32(pg32, (uint32_t *)tx_desc,
svindex_u32(BD_FIELD_VALID_OFFSET, BD_SIZE));
vld = svorr_u32_z(pg32, vld, vld2);
}
/* shift left and then right to get all valid bit */
vld = svlsl_n_u32_z(pg32, vld,
HNS3_UINT32_BIT - 1 - HNS3_TXD_VLD_B);
vld = svreinterpret_u32_s32(svasr_n_s32_z(pg32,
svreinterpret_s32_u32(vld), HNS3_UINT32_BIT - 1));
/* use tbl to compress 32bit-lane to 8bit-lane */
vld_u8 = svtbl_u8(svreinterpret_u8_u32(vld), TX_VLD_U8_ZIP_INDEX);
/* dump compressed 64bit to variable */
svst1_u64(PG64_64BIT, &vld_all, svreinterpret_u64_u8(vld_u8));
if (vld_all > 0)
return;
hns3_tx_bulk_free_buffers(txq);
}
static inline void
hns3_tx_fill_hw_ring_sve(struct hns3_tx_queue *txq,
struct rte_mbuf **pkts,
uint16_t nb_pkts)
{
#define DATA_OFF_LEN_VAL_MASK 0xFFFF
struct hns3_desc *txdp = &txq->tx_ring[txq->next_to_use];
struct hns3_entry *tx_entry = &txq->sw_ring[txq->next_to_use];
const uint64_t valid_bit = (BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B)) <<
HNS3_UINT32_BIT;
svuint64_t base_addr, buf_iova, data_off, data_len, addr;
svuint64_t offsets = svindex_u64(0, BD_SIZE);
uint32_t i = 0;
svbool_t pg = svwhilelt_b64_u32(i, nb_pkts);
do {
base_addr = svld1_u64(pg, (uint64_t *)pkts);
/* calc mbuf's field buf_iova address */
buf_iova = svadd_n_u64_z(pg, base_addr,
offsetof(struct rte_mbuf, buf_iova));
/* calc mbuf's field data_off address */
data_off = svadd_n_u64_z(pg, base_addr,
offsetof(struct rte_mbuf, data_off));
/* calc mbuf's field data_len address */
data_len = svadd_n_u64_z(pg, base_addr,
offsetof(struct rte_mbuf, data_len));
/* store mbuf to tx_entry */
svst1_u64(pg, (uint64_t *)tx_entry, base_addr);
/* read pkts->buf_iova */
buf_iova = svld1_gather_u64base_u64(pg, buf_iova);
/* read pkts->data_off's 64bit val */
data_off = svld1_gather_u64base_u64(pg, data_off);
/* read pkts->data_len's 64bit val */
data_len = svld1_gather_u64base_u64(pg, data_len);
/* zero data_off high 48bit by svand ops */
data_off = svand_n_u64_z(pg, data_off, DATA_OFF_LEN_VAL_MASK);
/* zero data_len high 48bit by svand ops */
data_len = svand_n_u64_z(pg, data_len, DATA_OFF_LEN_VAL_MASK);
/* calc mbuf data region iova addr */
addr = svadd_u64_z(pg, buf_iova, data_off);
/* shift due data_len's offset is 2byte of BD's second 8byte */
data_len = svlsl_n_u64_z(pg, data_len, HNS3_UINT16_BIT);
/* save offset 0~7byte of every BD */
svst1_scatter_u64offset_u64(pg, (uint64_t *)&txdp->addr,
offsets, addr);
/* save offset 8~15byte of every BD */
svst1_scatter_u64offset_u64(pg, (uint64_t *)&txdp->tx.vlan_tag,
offsets, data_len);
/* save offset 16~23byte of every BD */
svst1_scatter_u64offset_u64(pg,
(uint64_t *)&txdp->tx.outer_vlan_tag,
offsets, svdup_n_u64(0));
/* save offset 24~31byte of every BD */
svst1_scatter_u64offset_u64(pg, (uint64_t *)&txdp->tx.paylen,
offsets, svdup_n_u64(valid_bit));
/* update index for next loop */
i += svcntd();
pkts += svcntd();
txdp += svcntd();
tx_entry += svcntd();
pg = svwhilelt_b64_u32(i, nb_pkts);
} while (svptest_any(svptrue_b64(), pg));
}
static uint16_t
hns3_xmit_fixed_burst_vec_sve(void *__restrict tx_queue,
struct rte_mbuf **__restrict tx_pkts,
uint16_t nb_pkts)
{
struct hns3_tx_queue *txq = (struct hns3_tx_queue *)tx_queue;
uint16_t nb_tx = 0;
if (txq->tx_bd_ready < txq->tx_free_thresh)
hns3_tx_free_buffers_sve(txq);
nb_pkts = RTE_MIN(txq->tx_bd_ready, nb_pkts);
if (unlikely(nb_pkts == 0)) {
txq->queue_full_cnt++;
return 0;
}
if (txq->next_to_use + nb_pkts > txq->nb_tx_desc) {
nb_tx = txq->nb_tx_desc - txq->next_to_use;
hns3_tx_fill_hw_ring_sve(txq, tx_pkts, nb_tx);
txq->next_to_use = 0;
}
hns3_tx_fill_hw_ring_sve(txq, tx_pkts + nb_tx, nb_pkts - nb_tx);
txq->next_to_use += nb_pkts - nb_tx;
txq->tx_bd_ready -= nb_pkts;
hns3_write_reg_opt(txq->io_tail_reg, nb_pkts);
return nb_pkts;
}
uint16_t
hns3_xmit_pkts_vec_sve(void *tx_queue,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct hns3_tx_queue *txq = (struct hns3_tx_queue *)tx_queue;
uint16_t ret, new_burst;
uint16_t nb_tx = 0;
while (nb_pkts) {
new_burst = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
ret = hns3_xmit_fixed_burst_vec_sve(tx_queue, &tx_pkts[nb_tx],
new_burst);
nb_tx += ret;
nb_pkts -= ret;
if (ret < new_burst)
break;
}
return nb_tx;
}