hash: support read/write concurrency
The existing implementation of librte_hash does not support read-write concurrency. This commit implements read-write safety using rte_rwlock and rte_rwlock TM version if hardware transactional memory is available. Both multi-writer and read-write concurrency is protected by rte_rwlock now. The x86 specific header file is removed since the x86 specific RTM function is not called directly by rte hash now. Signed-off-by: Yipeng Wang <yipeng1.wang@intel.com> Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
This commit is contained in:
parent
406da3dfb3
commit
f2e3001b53
@ -6,7 +6,6 @@ headers = files('rte_cmp_arm64.h',
|
||||
'rte_cmp_x86.h',
|
||||
'rte_crc_arm64.h',
|
||||
'rte_cuckoo_hash.h',
|
||||
'rte_cuckoo_hash_x86.h',
|
||||
'rte_fbk_hash.h',
|
||||
'rte_hash_crc.h',
|
||||
'rte_hash.h',
|
||||
|
@ -31,9 +31,6 @@
|
||||
#include "rte_hash.h"
|
||||
#include "rte_cuckoo_hash.h"
|
||||
|
||||
#if defined(RTE_ARCH_X86)
|
||||
#include "rte_cuckoo_hash_x86.h"
|
||||
#endif
|
||||
|
||||
TAILQ_HEAD(rte_hash_list, rte_tailq_entry);
|
||||
|
||||
@ -93,8 +90,10 @@ rte_hash_create(const struct rte_hash_parameters *params)
|
||||
void *buckets = NULL;
|
||||
char ring_name[RTE_RING_NAMESIZE];
|
||||
unsigned num_key_slots;
|
||||
unsigned hw_trans_mem_support = 0;
|
||||
unsigned i;
|
||||
unsigned int hw_trans_mem_support = 0, multi_writer_support = 0;
|
||||
unsigned int readwrite_concur_support = 0;
|
||||
|
||||
rte_hash_function default_hash_func = (rte_hash_function)rte_jhash;
|
||||
|
||||
hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
|
||||
@ -117,8 +116,16 @@ rte_hash_create(const struct rte_hash_parameters *params)
|
||||
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT)
|
||||
hw_trans_mem_support = 1;
|
||||
|
||||
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD)
|
||||
multi_writer_support = 1;
|
||||
|
||||
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY) {
|
||||
readwrite_concur_support = 1;
|
||||
multi_writer_support = 1;
|
||||
}
|
||||
|
||||
/* Store all keys and leave the first entry as a dummy entry for lookup_bulk */
|
||||
if (hw_trans_mem_support)
|
||||
if (multi_writer_support)
|
||||
/*
|
||||
* Increase number of slots by total number of indices
|
||||
* that can be stored in the lcore caches
|
||||
@ -232,7 +239,7 @@ rte_hash_create(const struct rte_hash_parameters *params)
|
||||
h->cmp_jump_table_idx = KEY_OTHER_BYTES;
|
||||
#endif
|
||||
|
||||
if (hw_trans_mem_support) {
|
||||
if (multi_writer_support) {
|
||||
h->local_free_slots = rte_zmalloc_socket(NULL,
|
||||
sizeof(struct lcore_cache) * RTE_MAX_LCORE,
|
||||
RTE_CACHE_LINE_SIZE, params->socket_id);
|
||||
@ -260,6 +267,8 @@ rte_hash_create(const struct rte_hash_parameters *params)
|
||||
h->key_store = k;
|
||||
h->free_slots = r;
|
||||
h->hw_trans_mem_support = hw_trans_mem_support;
|
||||
h->multi_writer_support = multi_writer_support;
|
||||
h->readwrite_concur_support = readwrite_concur_support;
|
||||
|
||||
#if defined(RTE_ARCH_X86)
|
||||
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
|
||||
@ -270,24 +279,17 @@ rte_hash_create(const struct rte_hash_parameters *params)
|
||||
#endif
|
||||
h->sig_cmp_fn = RTE_HASH_COMPARE_SCALAR;
|
||||
|
||||
/* Turn on multi-writer only with explicit flat from user and TM
|
||||
/* Turn on multi-writer only with explicit flag from user and TM
|
||||
* support.
|
||||
*/
|
||||
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD) {
|
||||
if (h->hw_trans_mem_support) {
|
||||
h->add_key = ADD_KEY_MULTIWRITER_TM;
|
||||
} else {
|
||||
h->add_key = ADD_KEY_MULTIWRITER;
|
||||
h->multiwriter_lock = rte_malloc(NULL,
|
||||
sizeof(rte_spinlock_t),
|
||||
RTE_CACHE_LINE_SIZE);
|
||||
if (h->multiwriter_lock == NULL)
|
||||
goto err_unlock;
|
||||
if (h->multi_writer_support) {
|
||||
h->readwrite_lock = rte_malloc(NULL, sizeof(rte_rwlock_t),
|
||||
RTE_CACHE_LINE_SIZE);
|
||||
if (h->readwrite_lock == NULL)
|
||||
goto err_unlock;
|
||||
|
||||
rte_spinlock_init(h->multiwriter_lock);
|
||||
}
|
||||
} else
|
||||
h->add_key = ADD_KEY_SINGLEWRITER;
|
||||
rte_rwlock_init(h->readwrite_lock);
|
||||
}
|
||||
|
||||
/* Populate free slots ring. Entry zero is reserved for key misses. */
|
||||
for (i = 1; i < num_key_slots; i++)
|
||||
@ -337,11 +339,10 @@ rte_hash_free(struct rte_hash *h)
|
||||
|
||||
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
||||
|
||||
if (h->hw_trans_mem_support)
|
||||
if (h->multi_writer_support) {
|
||||
rte_free(h->local_free_slots);
|
||||
|
||||
if (h->add_key == ADD_KEY_MULTIWRITER)
|
||||
rte_free(h->multiwriter_lock);
|
||||
rte_free(h->readwrite_lock);
|
||||
}
|
||||
rte_ring_free(h->free_slots);
|
||||
rte_free(h->key_store);
|
||||
rte_free(h->buckets);
|
||||
@ -368,6 +369,44 @@ rte_hash_secondary_hash(const hash_sig_t primary_hash)
|
||||
return primary_hash ^ ((tag + 1) * alt_bits_xor);
|
||||
}
|
||||
|
||||
/* Read write locks implemented using rte_rwlock */
|
||||
static inline void
|
||||
__hash_rw_writer_lock(const struct rte_hash *h)
|
||||
{
|
||||
if (h->multi_writer_support && h->hw_trans_mem_support)
|
||||
rte_rwlock_write_lock_tm(h->readwrite_lock);
|
||||
else if (h->multi_writer_support)
|
||||
rte_rwlock_write_lock(h->readwrite_lock);
|
||||
}
|
||||
|
||||
|
||||
static inline void
|
||||
__hash_rw_reader_lock(const struct rte_hash *h)
|
||||
{
|
||||
if (h->readwrite_concur_support && h->hw_trans_mem_support)
|
||||
rte_rwlock_read_lock_tm(h->readwrite_lock);
|
||||
else if (h->readwrite_concur_support)
|
||||
rte_rwlock_read_lock(h->readwrite_lock);
|
||||
}
|
||||
|
||||
static inline void
|
||||
__hash_rw_writer_unlock(const struct rte_hash *h)
|
||||
{
|
||||
if (h->multi_writer_support && h->hw_trans_mem_support)
|
||||
rte_rwlock_write_unlock_tm(h->readwrite_lock);
|
||||
else if (h->multi_writer_support)
|
||||
rte_rwlock_write_unlock(h->readwrite_lock);
|
||||
}
|
||||
|
||||
static inline void
|
||||
__hash_rw_reader_unlock(const struct rte_hash *h)
|
||||
{
|
||||
if (h->readwrite_concur_support && h->hw_trans_mem_support)
|
||||
rte_rwlock_read_unlock_tm(h->readwrite_lock);
|
||||
else if (h->readwrite_concur_support)
|
||||
rte_rwlock_read_unlock(h->readwrite_lock);
|
||||
}
|
||||
|
||||
void
|
||||
rte_hash_reset(struct rte_hash *h)
|
||||
{
|
||||
@ -377,6 +416,7 @@ rte_hash_reset(struct rte_hash *h)
|
||||
if (h == NULL)
|
||||
return;
|
||||
|
||||
__hash_rw_writer_lock(h);
|
||||
memset(h->buckets, 0, h->num_buckets * sizeof(struct rte_hash_bucket));
|
||||
memset(h->key_store, 0, h->key_entry_size * (h->entries + 1));
|
||||
|
||||
@ -385,7 +425,7 @@ rte_hash_reset(struct rte_hash *h)
|
||||
rte_pause();
|
||||
|
||||
/* Repopulate the free slots ring. Entry zero is reserved for key misses */
|
||||
if (h->hw_trans_mem_support)
|
||||
if (h->multi_writer_support)
|
||||
tot_ring_cnt = h->entries + (RTE_MAX_LCORE - 1) *
|
||||
(LCORE_CACHE_SIZE - 1);
|
||||
else
|
||||
@ -394,77 +434,12 @@ rte_hash_reset(struct rte_hash *h)
|
||||
for (i = 1; i < tot_ring_cnt + 1; i++)
|
||||
rte_ring_sp_enqueue(h->free_slots, (void *)((uintptr_t) i));
|
||||
|
||||
if (h->hw_trans_mem_support) {
|
||||
if (h->multi_writer_support) {
|
||||
/* Reset local caches per lcore */
|
||||
for (i = 0; i < RTE_MAX_LCORE; i++)
|
||||
h->local_free_slots[i].len = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Search for an entry that can be pushed to its alternative location */
|
||||
static inline int
|
||||
make_space_bucket(const struct rte_hash *h, struct rte_hash_bucket *bkt,
|
||||
unsigned int *nr_pushes)
|
||||
{
|
||||
unsigned i, j;
|
||||
int ret;
|
||||
uint32_t next_bucket_idx;
|
||||
struct rte_hash_bucket *next_bkt[RTE_HASH_BUCKET_ENTRIES];
|
||||
|
||||
/*
|
||||
* Push existing item (search for bucket with space in
|
||||
* alternative locations) to its alternative location
|
||||
*/
|
||||
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
||||
/* Search for space in alternative locations */
|
||||
next_bucket_idx = bkt->sig_alt[i] & h->bucket_bitmask;
|
||||
next_bkt[i] = &h->buckets[next_bucket_idx];
|
||||
for (j = 0; j < RTE_HASH_BUCKET_ENTRIES; j++) {
|
||||
if (next_bkt[i]->key_idx[j] == EMPTY_SLOT)
|
||||
break;
|
||||
}
|
||||
|
||||
if (j != RTE_HASH_BUCKET_ENTRIES)
|
||||
break;
|
||||
}
|
||||
|
||||
/* Alternative location has spare room (end of recursive function) */
|
||||
if (i != RTE_HASH_BUCKET_ENTRIES) {
|
||||
next_bkt[i]->sig_alt[j] = bkt->sig_current[i];
|
||||
next_bkt[i]->sig_current[j] = bkt->sig_alt[i];
|
||||
next_bkt[i]->key_idx[j] = bkt->key_idx[i];
|
||||
return i;
|
||||
}
|
||||
|
||||
/* Pick entry that has not been pushed yet */
|
||||
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++)
|
||||
if (bkt->flag[i] == 0)
|
||||
break;
|
||||
|
||||
/* All entries have been pushed, so entry cannot be added */
|
||||
if (i == RTE_HASH_BUCKET_ENTRIES || ++(*nr_pushes) > RTE_HASH_MAX_PUSHES)
|
||||
return -ENOSPC;
|
||||
|
||||
/* Set flag to indicate that this entry is going to be pushed */
|
||||
bkt->flag[i] = 1;
|
||||
|
||||
/* Need room in alternative bucket to insert the pushed entry */
|
||||
ret = make_space_bucket(h, next_bkt[i], nr_pushes);
|
||||
/*
|
||||
* After recursive function.
|
||||
* Clear flags and insert the pushed entry
|
||||
* in its alternative location if successful,
|
||||
* or return error
|
||||
*/
|
||||
bkt->flag[i] = 0;
|
||||
if (ret >= 0) {
|
||||
next_bkt[i]->sig_alt[ret] = bkt->sig_current[i];
|
||||
next_bkt[i]->sig_current[ret] = bkt->sig_alt[i];
|
||||
next_bkt[i]->key_idx[ret] = bkt->key_idx[i];
|
||||
return i;
|
||||
} else
|
||||
return ret;
|
||||
|
||||
__hash_rw_writer_unlock(h);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -477,7 +452,7 @@ enqueue_slot_back(const struct rte_hash *h,
|
||||
struct lcore_cache *cached_free_slots,
|
||||
void *slot_id)
|
||||
{
|
||||
if (h->hw_trans_mem_support) {
|
||||
if (h->multi_writer_support) {
|
||||
cached_free_slots->objs[cached_free_slots->len] = slot_id;
|
||||
cached_free_slots->len++;
|
||||
} else
|
||||
@ -511,13 +486,207 @@ search_and_update(const struct rte_hash *h, void *data, const void *key,
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Only tries to insert at one bucket (@prim_bkt) without trying to push
|
||||
* buckets around.
|
||||
* return 1 if matching existing key, return 0 if succeeds, return -1 for no
|
||||
* empty entry.
|
||||
*/
|
||||
static inline int32_t
|
||||
rte_hash_cuckoo_insert_mw(const struct rte_hash *h,
|
||||
struct rte_hash_bucket *prim_bkt,
|
||||
struct rte_hash_bucket *sec_bkt,
|
||||
const struct rte_hash_key *key, void *data,
|
||||
hash_sig_t sig, hash_sig_t alt_hash, uint32_t new_idx,
|
||||
int32_t *ret_val)
|
||||
{
|
||||
unsigned int i;
|
||||
struct rte_hash_bucket *cur_bkt = prim_bkt;
|
||||
int32_t ret;
|
||||
|
||||
__hash_rw_writer_lock(h);
|
||||
/* Check if key was inserted after last check but before this
|
||||
* protected region in case of inserting duplicated keys.
|
||||
*/
|
||||
ret = search_and_update(h, data, key, cur_bkt, sig, alt_hash);
|
||||
if (ret != -1) {
|
||||
__hash_rw_writer_unlock(h);
|
||||
*ret_val = ret;
|
||||
return 1;
|
||||
}
|
||||
ret = search_and_update(h, data, key, sec_bkt, alt_hash, sig);
|
||||
if (ret != -1) {
|
||||
__hash_rw_writer_unlock(h);
|
||||
*ret_val = ret;
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Insert new entry if there is room in the primary
|
||||
* bucket.
|
||||
*/
|
||||
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
||||
/* Check if slot is available */
|
||||
if (likely(prim_bkt->key_idx[i] == EMPTY_SLOT)) {
|
||||
prim_bkt->sig_current[i] = sig;
|
||||
prim_bkt->sig_alt[i] = alt_hash;
|
||||
prim_bkt->key_idx[i] = new_idx;
|
||||
break;
|
||||
}
|
||||
}
|
||||
__hash_rw_writer_unlock(h);
|
||||
|
||||
if (i != RTE_HASH_BUCKET_ENTRIES)
|
||||
return 0;
|
||||
|
||||
/* no empty entry */
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Shift buckets along provided cuckoo_path (@leaf and @leaf_slot) and fill
|
||||
* the path head with new entry (sig, alt_hash, new_idx)
|
||||
* return 1 if matched key found, return -1 if cuckoo path invalided and fail,
|
||||
* return 0 if succeeds.
|
||||
*/
|
||||
static inline int
|
||||
rte_hash_cuckoo_move_insert_mw(const struct rte_hash *h,
|
||||
struct rte_hash_bucket *bkt,
|
||||
struct rte_hash_bucket *alt_bkt,
|
||||
const struct rte_hash_key *key, void *data,
|
||||
struct queue_node *leaf, uint32_t leaf_slot,
|
||||
hash_sig_t sig, hash_sig_t alt_hash, uint32_t new_idx,
|
||||
int32_t *ret_val)
|
||||
{
|
||||
uint32_t prev_alt_bkt_idx;
|
||||
struct rte_hash_bucket *cur_bkt = bkt;
|
||||
struct queue_node *prev_node, *curr_node = leaf;
|
||||
struct rte_hash_bucket *prev_bkt, *curr_bkt = leaf->bkt;
|
||||
uint32_t prev_slot, curr_slot = leaf_slot;
|
||||
int32_t ret;
|
||||
|
||||
__hash_rw_writer_lock(h);
|
||||
|
||||
/* In case empty slot was gone before entering protected region */
|
||||
if (curr_bkt->key_idx[curr_slot] != EMPTY_SLOT) {
|
||||
__hash_rw_writer_unlock(h);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Check if key was inserted after last check but before this
|
||||
* protected region.
|
||||
*/
|
||||
ret = search_and_update(h, data, key, cur_bkt, sig, alt_hash);
|
||||
if (ret != -1) {
|
||||
__hash_rw_writer_unlock(h);
|
||||
*ret_val = ret;
|
||||
return 1;
|
||||
}
|
||||
|
||||
ret = search_and_update(h, data, key, alt_bkt, alt_hash, sig);
|
||||
if (ret != -1) {
|
||||
__hash_rw_writer_unlock(h);
|
||||
*ret_val = ret;
|
||||
return 1;
|
||||
}
|
||||
|
||||
while (likely(curr_node->prev != NULL)) {
|
||||
prev_node = curr_node->prev;
|
||||
prev_bkt = prev_node->bkt;
|
||||
prev_slot = curr_node->prev_slot;
|
||||
|
||||
prev_alt_bkt_idx =
|
||||
prev_bkt->sig_alt[prev_slot] & h->bucket_bitmask;
|
||||
|
||||
if (unlikely(&h->buckets[prev_alt_bkt_idx]
|
||||
!= curr_bkt)) {
|
||||
/* revert it to empty, otherwise duplicated keys */
|
||||
curr_bkt->key_idx[curr_slot] = EMPTY_SLOT;
|
||||
__hash_rw_writer_unlock(h);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Need to swap current/alt sig to allow later
|
||||
* Cuckoo insert to move elements back to its
|
||||
* primary bucket if available
|
||||
*/
|
||||
curr_bkt->sig_alt[curr_slot] =
|
||||
prev_bkt->sig_current[prev_slot];
|
||||
curr_bkt->sig_current[curr_slot] =
|
||||
prev_bkt->sig_alt[prev_slot];
|
||||
curr_bkt->key_idx[curr_slot] =
|
||||
prev_bkt->key_idx[prev_slot];
|
||||
|
||||
curr_slot = prev_slot;
|
||||
curr_node = prev_node;
|
||||
curr_bkt = curr_node->bkt;
|
||||
}
|
||||
|
||||
curr_bkt->sig_current[curr_slot] = sig;
|
||||
curr_bkt->sig_alt[curr_slot] = alt_hash;
|
||||
curr_bkt->key_idx[curr_slot] = new_idx;
|
||||
|
||||
__hash_rw_writer_unlock(h);
|
||||
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
* Make space for new key, using bfs Cuckoo Search and Multi-Writer safe
|
||||
* Cuckoo
|
||||
*/
|
||||
static inline int
|
||||
rte_hash_cuckoo_make_space_mw(const struct rte_hash *h,
|
||||
struct rte_hash_bucket *bkt,
|
||||
struct rte_hash_bucket *sec_bkt,
|
||||
const struct rte_hash_key *key, void *data,
|
||||
hash_sig_t sig, hash_sig_t alt_hash,
|
||||
uint32_t new_idx, int32_t *ret_val)
|
||||
{
|
||||
unsigned int i;
|
||||
struct queue_node queue[RTE_HASH_BFS_QUEUE_MAX_LEN];
|
||||
struct queue_node *tail, *head;
|
||||
struct rte_hash_bucket *curr_bkt, *alt_bkt;
|
||||
|
||||
tail = queue;
|
||||
head = queue + 1;
|
||||
tail->bkt = bkt;
|
||||
tail->prev = NULL;
|
||||
tail->prev_slot = -1;
|
||||
|
||||
/* Cuckoo bfs Search */
|
||||
while (likely(tail != head && head <
|
||||
queue + RTE_HASH_BFS_QUEUE_MAX_LEN -
|
||||
RTE_HASH_BUCKET_ENTRIES)) {
|
||||
curr_bkt = tail->bkt;
|
||||
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
||||
if (curr_bkt->key_idx[i] == EMPTY_SLOT) {
|
||||
int32_t ret = rte_hash_cuckoo_move_insert_mw(h,
|
||||
bkt, sec_bkt, key, data,
|
||||
tail, i, sig, alt_hash,
|
||||
new_idx, ret_val);
|
||||
if (likely(ret != -1))
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Enqueue new node and keep prev node info */
|
||||
alt_bkt = &(h->buckets[curr_bkt->sig_alt[i]
|
||||
& h->bucket_bitmask]);
|
||||
head->bkt = alt_bkt;
|
||||
head->prev = tail;
|
||||
head->prev_slot = i;
|
||||
head++;
|
||||
}
|
||||
tail++;
|
||||
}
|
||||
|
||||
return -ENOSPC;
|
||||
}
|
||||
|
||||
static inline int32_t
|
||||
__rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key,
|
||||
hash_sig_t sig, void *data)
|
||||
{
|
||||
hash_sig_t alt_hash;
|
||||
uint32_t prim_bucket_idx, sec_bucket_idx;
|
||||
unsigned i;
|
||||
struct rte_hash_bucket *prim_bkt, *sec_bkt;
|
||||
struct rte_hash_key *new_k, *keys = h->key_store;
|
||||
void *slot_id = NULL;
|
||||
@ -526,10 +695,7 @@ __rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key,
|
||||
unsigned n_slots;
|
||||
unsigned lcore_id;
|
||||
struct lcore_cache *cached_free_slots = NULL;
|
||||
unsigned int nr_pushes = 0;
|
||||
|
||||
if (h->add_key == ADD_KEY_MULTIWRITER)
|
||||
rte_spinlock_lock(h->multiwriter_lock);
|
||||
int32_t ret_val;
|
||||
|
||||
prim_bucket_idx = sig & h->bucket_bitmask;
|
||||
prim_bkt = &h->buckets[prim_bucket_idx];
|
||||
@ -540,8 +706,24 @@ __rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key,
|
||||
sec_bkt = &h->buckets[sec_bucket_idx];
|
||||
rte_prefetch0(sec_bkt);
|
||||
|
||||
/* Get a new slot for storing the new key */
|
||||
if (h->hw_trans_mem_support) {
|
||||
/* Check if key is already inserted in primary location */
|
||||
__hash_rw_writer_lock(h);
|
||||
ret = search_and_update(h, data, key, prim_bkt, sig, alt_hash);
|
||||
if (ret != -1) {
|
||||
__hash_rw_writer_unlock(h);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Check if key is already inserted in secondary location */
|
||||
ret = search_and_update(h, data, key, sec_bkt, alt_hash, sig);
|
||||
if (ret != -1) {
|
||||
__hash_rw_writer_unlock(h);
|
||||
return ret;
|
||||
}
|
||||
__hash_rw_writer_unlock(h);
|
||||
|
||||
/* Did not find a match, so get a new slot for storing the new key */
|
||||
if (h->multi_writer_support) {
|
||||
lcore_id = rte_lcore_id();
|
||||
cached_free_slots = &h->local_free_slots[lcore_id];
|
||||
/* Try to get a free slot from the local cache */
|
||||
@ -551,8 +733,7 @@ __rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key,
|
||||
cached_free_slots->objs,
|
||||
LCORE_CACHE_SIZE, NULL);
|
||||
if (n_slots == 0) {
|
||||
ret = -ENOSPC;
|
||||
goto failure;
|
||||
return -ENOSPC;
|
||||
}
|
||||
|
||||
cached_free_slots->len += n_slots;
|
||||
@ -563,92 +744,50 @@ __rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key,
|
||||
slot_id = cached_free_slots->objs[cached_free_slots->len];
|
||||
} else {
|
||||
if (rte_ring_sc_dequeue(h->free_slots, &slot_id) != 0) {
|
||||
ret = -ENOSPC;
|
||||
goto failure;
|
||||
return -ENOSPC;
|
||||
}
|
||||
}
|
||||
|
||||
new_k = RTE_PTR_ADD(keys, (uintptr_t)slot_id * h->key_entry_size);
|
||||
rte_prefetch0(new_k);
|
||||
new_idx = (uint32_t)((uintptr_t) slot_id);
|
||||
|
||||
/* Check if key is already inserted in primary location */
|
||||
ret = search_and_update(h, data, key, prim_bkt, sig, alt_hash);
|
||||
if (ret != -1)
|
||||
goto failure;
|
||||
|
||||
/* Check if key is already inserted in secondary location */
|
||||
ret = search_and_update(h, data, key, sec_bkt, alt_hash, sig);
|
||||
if (ret != -1)
|
||||
goto failure;
|
||||
|
||||
/* Copy key */
|
||||
rte_memcpy(new_k->key, key, h->key_len);
|
||||
new_k->pdata = data;
|
||||
|
||||
#if defined(RTE_ARCH_X86) /* currently only x86 support HTM */
|
||||
if (h->add_key == ADD_KEY_MULTIWRITER_TM) {
|
||||
ret = rte_hash_cuckoo_insert_mw_tm(prim_bkt,
|
||||
sig, alt_hash, new_idx);
|
||||
if (ret >= 0)
|
||||
return new_idx - 1;
|
||||
|
||||
/* Primary bucket full, need to make space for new entry */
|
||||
ret = rte_hash_cuckoo_make_space_mw_tm(h, prim_bkt, sig,
|
||||
alt_hash, new_idx);
|
||||
|
||||
if (ret >= 0)
|
||||
return new_idx - 1;
|
||||
|
||||
/* Also search secondary bucket to get better occupancy */
|
||||
ret = rte_hash_cuckoo_make_space_mw_tm(h, sec_bkt, sig,
|
||||
alt_hash, new_idx);
|
||||
|
||||
if (ret >= 0)
|
||||
return new_idx - 1;
|
||||
} else {
|
||||
#endif
|
||||
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
||||
/* Check if slot is available */
|
||||
if (likely(prim_bkt->key_idx[i] == EMPTY_SLOT)) {
|
||||
prim_bkt->sig_current[i] = sig;
|
||||
prim_bkt->sig_alt[i] = alt_hash;
|
||||
prim_bkt->key_idx[i] = new_idx;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (i != RTE_HASH_BUCKET_ENTRIES) {
|
||||
if (h->add_key == ADD_KEY_MULTIWRITER)
|
||||
rte_spinlock_unlock(h->multiwriter_lock);
|
||||
return new_idx - 1;
|
||||
}
|
||||
|
||||
/* Primary bucket full, need to make space for new entry
|
||||
* After recursive function.
|
||||
* Insert the new entry in the position of the pushed entry
|
||||
* if successful or return error and
|
||||
* store the new slot back in the ring
|
||||
*/
|
||||
ret = make_space_bucket(h, prim_bkt, &nr_pushes);
|
||||
if (ret >= 0) {
|
||||
prim_bkt->sig_current[ret] = sig;
|
||||
prim_bkt->sig_alt[ret] = alt_hash;
|
||||
prim_bkt->key_idx[ret] = new_idx;
|
||||
if (h->add_key == ADD_KEY_MULTIWRITER)
|
||||
rte_spinlock_unlock(h->multiwriter_lock);
|
||||
return new_idx - 1;
|
||||
}
|
||||
#if defined(RTE_ARCH_X86)
|
||||
/* Find an empty slot and insert */
|
||||
ret = rte_hash_cuckoo_insert_mw(h, prim_bkt, sec_bkt, key, data,
|
||||
sig, alt_hash, new_idx, &ret_val);
|
||||
if (ret == 0)
|
||||
return new_idx - 1;
|
||||
else if (ret == 1) {
|
||||
enqueue_slot_back(h, cached_free_slots, slot_id);
|
||||
return ret_val;
|
||||
}
|
||||
#endif
|
||||
/* Error in addition, store new slot back in the ring and return error */
|
||||
enqueue_slot_back(h, cached_free_slots, (void *)((uintptr_t) new_idx));
|
||||
|
||||
failure:
|
||||
if (h->add_key == ADD_KEY_MULTIWRITER)
|
||||
rte_spinlock_unlock(h->multiwriter_lock);
|
||||
return ret;
|
||||
/* Primary bucket full, need to make space for new entry */
|
||||
ret = rte_hash_cuckoo_make_space_mw(h, prim_bkt, sec_bkt, key, data,
|
||||
sig, alt_hash, new_idx, &ret_val);
|
||||
if (ret == 0)
|
||||
return new_idx - 1;
|
||||
else if (ret == 1) {
|
||||
enqueue_slot_back(h, cached_free_slots, slot_id);
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
/* Also search secondary bucket to get better occupancy */
|
||||
ret = rte_hash_cuckoo_make_space_mw(h, sec_bkt, prim_bkt, key, data,
|
||||
alt_hash, sig, new_idx, &ret_val);
|
||||
|
||||
if (ret == 0)
|
||||
return new_idx - 1;
|
||||
else if (ret == 1) {
|
||||
enqueue_slot_back(h, cached_free_slots, slot_id);
|
||||
return ret_val;
|
||||
} else {
|
||||
enqueue_slot_back(h, cached_free_slots, slot_id);
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
int32_t
|
||||
@ -733,12 +872,14 @@ __rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key,
|
||||
bucket_idx = sig & h->bucket_bitmask;
|
||||
bkt = &h->buckets[bucket_idx];
|
||||
|
||||
__hash_rw_reader_lock(h);
|
||||
|
||||
/* Check if key is in primary location */
|
||||
ret = search_one_bucket(h, key, sig, data, bkt);
|
||||
if (ret != -1)
|
||||
if (ret != -1) {
|
||||
__hash_rw_reader_unlock(h);
|
||||
return ret;
|
||||
|
||||
}
|
||||
/* Calculate secondary hash */
|
||||
alt_hash = rte_hash_secondary_hash(sig);
|
||||
bucket_idx = alt_hash & h->bucket_bitmask;
|
||||
@ -746,9 +887,11 @@ __rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key,
|
||||
|
||||
/* Check if key is in secondary location */
|
||||
ret = search_one_bucket(h, key, alt_hash, data, bkt);
|
||||
if (ret != -1)
|
||||
if (ret != -1) {
|
||||
__hash_rw_reader_unlock(h);
|
||||
return ret;
|
||||
|
||||
}
|
||||
__hash_rw_reader_unlock(h);
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
@ -790,7 +933,7 @@ remove_entry(const struct rte_hash *h, struct rte_hash_bucket *bkt, unsigned i)
|
||||
|
||||
bkt->sig_current[i] = NULL_SIGNATURE;
|
||||
bkt->sig_alt[i] = NULL_SIGNATURE;
|
||||
if (h->hw_trans_mem_support) {
|
||||
if (h->multi_writer_support) {
|
||||
lcore_id = rte_lcore_id();
|
||||
cached_free_slots = &h->local_free_slots[lcore_id];
|
||||
/* Cache full, need to free it. */
|
||||
@ -854,10 +997,13 @@ __rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key,
|
||||
bucket_idx = sig & h->bucket_bitmask;
|
||||
bkt = &h->buckets[bucket_idx];
|
||||
|
||||
__hash_rw_writer_lock(h);
|
||||
/* look for key in primary bucket */
|
||||
ret = search_and_remove(h, key, bkt, sig);
|
||||
if (ret != -1)
|
||||
if (ret != -1) {
|
||||
__hash_rw_writer_unlock(h);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Calculate secondary hash */
|
||||
alt_hash = rte_hash_secondary_hash(sig);
|
||||
@ -866,9 +1012,12 @@ __rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key,
|
||||
|
||||
/* look for key in secondary bucket */
|
||||
ret = search_and_remove(h, key, bkt, alt_hash);
|
||||
if (ret != -1)
|
||||
if (ret != -1) {
|
||||
__hash_rw_writer_unlock(h);
|
||||
return ret;
|
||||
}
|
||||
|
||||
__hash_rw_writer_unlock(h);
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
@ -1010,6 +1159,7 @@ __rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
|
||||
rte_prefetch0(secondary_bkt[i]);
|
||||
}
|
||||
|
||||
__hash_rw_reader_lock(h);
|
||||
/* Compare signatures and prefetch key slot of first hit */
|
||||
for (i = 0; i < num_keys; i++) {
|
||||
compare_signatures(&prim_hitmask[i], &sec_hitmask[i],
|
||||
@ -1092,6 +1242,8 @@ __rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
|
||||
continue;
|
||||
}
|
||||
|
||||
__hash_rw_reader_unlock(h);
|
||||
|
||||
if (hit_mask != NULL)
|
||||
*hit_mask = hits;
|
||||
}
|
||||
@ -1150,7 +1302,7 @@ rte_hash_iterate(const struct rte_hash *h, const void **key, void **data, uint32
|
||||
bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
|
||||
idx = *next % RTE_HASH_BUCKET_ENTRIES;
|
||||
}
|
||||
|
||||
__hash_rw_reader_lock(h);
|
||||
/* Get position of entry in key table */
|
||||
position = h->buckets[bucket_idx].key_idx[idx];
|
||||
next_key = (struct rte_hash_key *) ((char *)h->key_store +
|
||||
@ -1159,6 +1311,8 @@ rte_hash_iterate(const struct rte_hash *h, const void **key, void **data, uint32
|
||||
*key = next_key->key;
|
||||
*data = next_key->pdata;
|
||||
|
||||
__hash_rw_reader_unlock(h);
|
||||
|
||||
/* Increment iterator */
|
||||
(*next)++;
|
||||
|
||||
|
@ -88,11 +88,6 @@ const rte_hash_cmp_eq_t cmp_jump_table[NUM_KEY_CMP_CASES] = {
|
||||
|
||||
#endif
|
||||
|
||||
enum add_key_case {
|
||||
ADD_KEY_SINGLEWRITER = 0,
|
||||
ADD_KEY_MULTIWRITER,
|
||||
ADD_KEY_MULTIWRITER_TM,
|
||||
};
|
||||
|
||||
/** Number of items per bucket. */
|
||||
#define RTE_HASH_BUCKET_ENTRIES 8
|
||||
@ -159,18 +154,20 @@ struct rte_hash {
|
||||
|
||||
struct rte_ring *free_slots;
|
||||
/**< Ring that stores all indexes of the free slots in the key table */
|
||||
uint8_t hw_trans_mem_support;
|
||||
/**< Hardware transactional memory support */
|
||||
|
||||
struct lcore_cache *local_free_slots;
|
||||
/**< Local cache per lcore, storing some indexes of the free slots */
|
||||
enum add_key_case add_key; /**< Multi-writer hash add behavior */
|
||||
|
||||
rte_spinlock_t *multiwriter_lock; /**< Multi-writer spinlock for w/o TM */
|
||||
|
||||
/* Fields used in lookup */
|
||||
|
||||
uint32_t key_len __rte_cache_aligned;
|
||||
/**< Length of hash key. */
|
||||
uint8_t hw_trans_mem_support;
|
||||
/**< If hardware transactional memory is used. */
|
||||
uint8_t multi_writer_support;
|
||||
/**< If multi-writer support is enabled. */
|
||||
uint8_t readwrite_concur_support;
|
||||
/**< If read-write concurrency support is enabled */
|
||||
rte_hash_function hash_func; /**< Function used to calculate hash. */
|
||||
uint32_t hash_func_init_val; /**< Init value used by hash_func. */
|
||||
rte_hash_cmp_eq_t rte_hash_custom_cmp_eq;
|
||||
@ -188,6 +185,7 @@ struct rte_hash {
|
||||
/**< Table with buckets storing all the hash values and key indexes
|
||||
* to the key table.
|
||||
*/
|
||||
rte_rwlock_t *readwrite_lock; /**< Read-write lock thread-safety. */
|
||||
} __rte_cache_aligned;
|
||||
|
||||
struct queue_node {
|
||||
|
@ -1,167 +0,0 @@
|
||||
/* SPDX-License-Identifier: BSD-3-Clause
|
||||
* Copyright(c) 2016 Intel Corporation
|
||||
*/
|
||||
|
||||
/* rte_cuckoo_hash_x86.h
|
||||
* This file holds all x86 specific Cuckoo Hash functions
|
||||
*/
|
||||
|
||||
/* Only tries to insert at one bucket (@prim_bkt) without trying to push
|
||||
* buckets around
|
||||
*/
|
||||
static inline unsigned
|
||||
rte_hash_cuckoo_insert_mw_tm(struct rte_hash_bucket *prim_bkt,
|
||||
hash_sig_t sig, hash_sig_t alt_hash, uint32_t new_idx)
|
||||
{
|
||||
unsigned i, status;
|
||||
unsigned try = 0;
|
||||
|
||||
while (try < RTE_HASH_TSX_MAX_RETRY) {
|
||||
status = rte_xbegin();
|
||||
if (likely(status == RTE_XBEGIN_STARTED)) {
|
||||
/* Insert new entry if there is room in the primary
|
||||
* bucket.
|
||||
*/
|
||||
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
||||
/* Check if slot is available */
|
||||
if (likely(prim_bkt->key_idx[i] == EMPTY_SLOT)) {
|
||||
prim_bkt->sig_current[i] = sig;
|
||||
prim_bkt->sig_alt[i] = alt_hash;
|
||||
prim_bkt->key_idx[i] = new_idx;
|
||||
break;
|
||||
}
|
||||
}
|
||||
rte_xend();
|
||||
|
||||
if (i != RTE_HASH_BUCKET_ENTRIES)
|
||||
return 0;
|
||||
|
||||
break; /* break off try loop if transaction commits */
|
||||
} else {
|
||||
/* If we abort we give up this cuckoo path. */
|
||||
try++;
|
||||
rte_pause();
|
||||
}
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Shift buckets along provided cuckoo_path (@leaf and @leaf_slot) and fill
|
||||
* the path head with new entry (sig, alt_hash, new_idx)
|
||||
*/
|
||||
static inline int
|
||||
rte_hash_cuckoo_move_insert_mw_tm(const struct rte_hash *h,
|
||||
struct queue_node *leaf, uint32_t leaf_slot,
|
||||
hash_sig_t sig, hash_sig_t alt_hash, uint32_t new_idx)
|
||||
{
|
||||
unsigned try = 0;
|
||||
unsigned status;
|
||||
uint32_t prev_alt_bkt_idx;
|
||||
|
||||
struct queue_node *prev_node, *curr_node = leaf;
|
||||
struct rte_hash_bucket *prev_bkt, *curr_bkt = leaf->bkt;
|
||||
uint32_t prev_slot, curr_slot = leaf_slot;
|
||||
|
||||
while (try < RTE_HASH_TSX_MAX_RETRY) {
|
||||
status = rte_xbegin();
|
||||
if (likely(status == RTE_XBEGIN_STARTED)) {
|
||||
/* In case empty slot was gone before entering TSX */
|
||||
if (curr_bkt->key_idx[curr_slot] != EMPTY_SLOT)
|
||||
rte_xabort(RTE_XABORT_CUCKOO_PATH_INVALIDED);
|
||||
while (likely(curr_node->prev != NULL)) {
|
||||
prev_node = curr_node->prev;
|
||||
prev_bkt = prev_node->bkt;
|
||||
prev_slot = curr_node->prev_slot;
|
||||
|
||||
prev_alt_bkt_idx
|
||||
= prev_bkt->sig_alt[prev_slot]
|
||||
& h->bucket_bitmask;
|
||||
|
||||
if (unlikely(&h->buckets[prev_alt_bkt_idx]
|
||||
!= curr_bkt)) {
|
||||
rte_xabort(RTE_XABORT_CUCKOO_PATH_INVALIDED);
|
||||
}
|
||||
|
||||
/* Need to swap current/alt sig to allow later
|
||||
* Cuckoo insert to move elements back to its
|
||||
* primary bucket if available
|
||||
*/
|
||||
curr_bkt->sig_alt[curr_slot] =
|
||||
prev_bkt->sig_current[prev_slot];
|
||||
curr_bkt->sig_current[curr_slot] =
|
||||
prev_bkt->sig_alt[prev_slot];
|
||||
curr_bkt->key_idx[curr_slot]
|
||||
= prev_bkt->key_idx[prev_slot];
|
||||
|
||||
curr_slot = prev_slot;
|
||||
curr_node = prev_node;
|
||||
curr_bkt = curr_node->bkt;
|
||||
}
|
||||
|
||||
curr_bkt->sig_current[curr_slot] = sig;
|
||||
curr_bkt->sig_alt[curr_slot] = alt_hash;
|
||||
curr_bkt->key_idx[curr_slot] = new_idx;
|
||||
|
||||
rte_xend();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* If we abort we give up this cuckoo path, since most likely it's
|
||||
* no longer valid as TSX detected data conflict
|
||||
*/
|
||||
try++;
|
||||
rte_pause();
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Make space for new key, using bfs Cuckoo Search and Multi-Writer safe
|
||||
* Cuckoo
|
||||
*/
|
||||
static inline int
|
||||
rte_hash_cuckoo_make_space_mw_tm(const struct rte_hash *h,
|
||||
struct rte_hash_bucket *bkt,
|
||||
hash_sig_t sig, hash_sig_t alt_hash,
|
||||
uint32_t new_idx)
|
||||
{
|
||||
unsigned i;
|
||||
struct queue_node queue[RTE_HASH_BFS_QUEUE_MAX_LEN];
|
||||
struct queue_node *tail, *head;
|
||||
struct rte_hash_bucket *curr_bkt, *alt_bkt;
|
||||
|
||||
tail = queue;
|
||||
head = queue + 1;
|
||||
tail->bkt = bkt;
|
||||
tail->prev = NULL;
|
||||
tail->prev_slot = -1;
|
||||
|
||||
/* Cuckoo bfs Search */
|
||||
while (likely(tail != head && head <
|
||||
queue + RTE_HASH_BFS_QUEUE_MAX_LEN -
|
||||
RTE_HASH_BUCKET_ENTRIES)) {
|
||||
curr_bkt = tail->bkt;
|
||||
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
||||
if (curr_bkt->key_idx[i] == EMPTY_SLOT) {
|
||||
if (likely(rte_hash_cuckoo_move_insert_mw_tm(h,
|
||||
tail, i, sig,
|
||||
alt_hash, new_idx) == 0))
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Enqueue new node and keep prev node info */
|
||||
alt_bkt = &(h->buckets[curr_bkt->sig_alt[i]
|
||||
& h->bucket_bitmask]);
|
||||
head->bkt = alt_bkt;
|
||||
head->prev = tail;
|
||||
head->prev_slot = i;
|
||||
head++;
|
||||
}
|
||||
tail++;
|
||||
}
|
||||
|
||||
return -ENOSPC;
|
||||
}
|
@ -34,6 +34,9 @@ extern "C" {
|
||||
/** Default behavior of insertion, single writer/multi writer */
|
||||
#define RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD 0x02
|
||||
|
||||
/** Flag to support reader writer concurrency */
|
||||
#define RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY 0x04
|
||||
|
||||
/** Signature of key that is stored internally. */
|
||||
typedef uint32_t hash_sig_t;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user