baseband/acc100: support 4G processing

Adding capability for 4G encode and decoder processing

Signed-off-by: Nicolas Chautru <nicolas.chautru@intel.com>
Acked-by: Liu Tianjiao <tianjiao.liu@intel.com>
Acked-by: Maxime Coquelin <maxime.coquelin@redhat.com>
This commit is contained in:
Nicolas Chautru 2020-10-05 15:12:46 -07:00 committed by Akhil Goyal
parent 48e17d2ffd
commit f404dfe35c
2 changed files with 872 additions and 11 deletions

View File

@ -4,8 +4,8 @@
; Refer to default.ini for the full list of available PMD features.
;
[Features]
Turbo Decoder (4G) = N
Turbo Encoder (4G) = N
Turbo Decoder (4G) = Y
Turbo Encoder (4G) = Y
LDPC Decoder (5G) = Y
LDPC Encoder (5G) = Y
LLR/HARQ Compression = Y

View File

@ -342,7 +342,6 @@ alloc_sw_rings_min_mem(struct rte_bbdev *dev, struct acc100_device *d,
free_base_addresses(base_addrs, i);
}
/* Allocate 64MB memory used for all software rings */
static int
acc100_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
@ -663,6 +662,41 @@ acc100_dev_info_get(struct rte_bbdev *dev,
struct acc100_device *d = dev->data->dev_private;
static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
{
.type = RTE_BBDEV_OP_TURBO_DEC,
.cap.turbo_dec = {
.capability_flags =
RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
RTE_BBDEV_TURBO_CRC_TYPE_24B |
RTE_BBDEV_TURBO_HALF_ITERATION_EVEN |
RTE_BBDEV_TURBO_EARLY_TERMINATION |
RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
RTE_BBDEV_TURBO_MAP_DEC |
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
RTE_BBDEV_TURBO_DEC_SCATTER_GATHER,
.max_llr_modulus = INT8_MAX,
.num_buffers_src =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
.num_buffers_hard_out =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
.num_buffers_soft_out =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
}
},
{
.type = RTE_BBDEV_OP_TURBO_ENC,
.cap.turbo_enc = {
.capability_flags =
RTE_BBDEV_TURBO_CRC_24B_ATTACH |
RTE_BBDEV_TURBO_RV_INDEX_BYPASS |
RTE_BBDEV_TURBO_RATE_MATCH |
RTE_BBDEV_TURBO_ENC_SCATTER_GATHER,
.num_buffers_src =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
.num_buffers_dst =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
}
},
{
.type = RTE_BBDEV_OP_LDPC_ENC,
.cap.ldpc_enc = {
@ -746,7 +780,6 @@ acc100_dev_info_get(struct rte_bbdev *dev,
#endif
}
static const struct rte_bbdev_ops acc100_bbdev_ops = {
.setup_queues = acc100_setup_queues,
.close = acc100_dev_close,
@ -790,6 +823,58 @@ mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
return tail;
}
/* Fill in a frame control word for turbo encoding. */
static inline void
acc100_fcw_te_fill(const struct rte_bbdev_enc_op *op, struct acc100_fcw_te *fcw)
{
fcw->code_block_mode = op->turbo_enc.code_block_mode;
if (fcw->code_block_mode == 0) { /* For TB mode */
fcw->k_neg = op->turbo_enc.tb_params.k_neg;
fcw->k_pos = op->turbo_enc.tb_params.k_pos;
fcw->c_neg = op->turbo_enc.tb_params.c_neg;
fcw->c = op->turbo_enc.tb_params.c;
fcw->ncb_neg = op->turbo_enc.tb_params.ncb_neg;
fcw->ncb_pos = op->turbo_enc.tb_params.ncb_pos;
if (check_bit(op->turbo_enc.op_flags,
RTE_BBDEV_TURBO_RATE_MATCH)) {
fcw->bypass_rm = 0;
fcw->cab = op->turbo_enc.tb_params.cab;
fcw->ea = op->turbo_enc.tb_params.ea;
fcw->eb = op->turbo_enc.tb_params.eb;
} else {
/* E is set to the encoding output size when RM is
* bypassed.
*/
fcw->bypass_rm = 1;
fcw->cab = fcw->c_neg;
fcw->ea = 3 * fcw->k_neg + 12;
fcw->eb = 3 * fcw->k_pos + 12;
}
} else { /* For CB mode */
fcw->k_pos = op->turbo_enc.cb_params.k;
fcw->ncb_pos = op->turbo_enc.cb_params.ncb;
if (check_bit(op->turbo_enc.op_flags,
RTE_BBDEV_TURBO_RATE_MATCH)) {
fcw->bypass_rm = 0;
fcw->eb = op->turbo_enc.cb_params.e;
} else {
/* E is set to the encoding output size when RM is
* bypassed.
*/
fcw->bypass_rm = 1;
fcw->eb = 3 * fcw->k_pos + 12;
}
}
fcw->bypass_rv_idx1 = check_bit(op->turbo_enc.op_flags,
RTE_BBDEV_TURBO_RV_INDEX_BYPASS);
fcw->code_block_crc = check_bit(op->turbo_enc.op_flags,
RTE_BBDEV_TURBO_CRC_24B_ATTACH);
fcw->rv_idx1 = op->turbo_enc.rv_index;
}
/* Compute value of k0.
* Based on 3GPP 38.212 Table 5.4.2.1-2
* Starting position of different redundancy versions, k0
@ -840,6 +925,25 @@ acc100_fcw_le_fill(const struct rte_bbdev_enc_op *op,
fcw->mcb_count = num_cb;
}
/* Fill in a frame control word for turbo decoding. */
static inline void
acc100_fcw_td_fill(const struct rte_bbdev_dec_op *op, struct acc100_fcw_td *fcw)
{
/* Note : Early termination is always enabled for 4GUL */
fcw->fcw_ver = 1;
if (op->turbo_dec.code_block_mode == 0)
fcw->k_pos = op->turbo_dec.tb_params.k_pos;
else
fcw->k_pos = op->turbo_dec.cb_params.k;
fcw->turbo_crc_type = check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_CRC_TYPE_24B);
fcw->bypass_sb_deint = 0;
fcw->raw_decoder_input_on = 0;
fcw->max_iter = op->turbo_dec.iter_max;
fcw->half_iter_on = !check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_HALF_ITERATION_EVEN);
}
/* Fill in a frame control word for LDPC decoding. */
static inline void
acc100_fcw_ld_fill(const struct rte_bbdev_dec_op *op, struct acc100_fcw_ld *fcw,
@ -1092,6 +1196,87 @@ check_mbuf_total_left(uint32_t mbuf_total_left)
}
#endif
static inline int
acc100_dma_desc_te_fill(struct rte_bbdev_enc_op *op,
struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
struct rte_mbuf *output, uint32_t *in_offset,
uint32_t *out_offset, uint32_t *out_length,
uint32_t *mbuf_total_left, uint32_t *seg_total_left, uint8_t r)
{
int next_triplet = 1; /* FCW already done */
uint32_t e, ea, eb, length;
uint16_t k, k_neg, k_pos;
uint8_t cab, c_neg;
desc->word0 = ACC100_DMA_DESC_TYPE;
desc->word1 = 0; /**< Timestamp could be disabled */
desc->word2 = 0;
desc->word3 = 0;
desc->numCBs = 1;
if (op->turbo_enc.code_block_mode == 0) {
ea = op->turbo_enc.tb_params.ea;
eb = op->turbo_enc.tb_params.eb;
cab = op->turbo_enc.tb_params.cab;
k_neg = op->turbo_enc.tb_params.k_neg;
k_pos = op->turbo_enc.tb_params.k_pos;
c_neg = op->turbo_enc.tb_params.c_neg;
e = (r < cab) ? ea : eb;
k = (r < c_neg) ? k_neg : k_pos;
} else {
e = op->turbo_enc.cb_params.e;
k = op->turbo_enc.cb_params.k;
}
if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
length = (k - 24) >> 3;
else
length = k >> 3;
if (unlikely((*mbuf_total_left == 0) || (*mbuf_total_left < length))) {
rte_bbdev_log(ERR,
"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
*mbuf_total_left, length);
return -1;
}
next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset,
length, seg_total_left, next_triplet);
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
desc->data_ptrs[next_triplet - 1].last = 1;
desc->m2dlen = next_triplet;
*mbuf_total_left -= length;
/* Set output length */
if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_RATE_MATCH))
/* Integer round up division by 8 */
*out_length = (e + 7) >> 3;
else
*out_length = (k >> 3) * 3 + 2;
next_triplet = acc100_dma_fill_blk_type_out(desc, output, *out_offset,
*out_length, next_triplet, ACC100_DMA_BLKID_OUT_ENC);
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
op->turbo_enc.output.length += *out_length;
*out_offset += *out_length;
desc->data_ptrs[next_triplet - 1].last = 1;
desc->d2mlen = next_triplet - desc->m2dlen;
desc->op_addr = op;
return 0;
}
static inline int
acc100_dma_desc_le_fill(struct rte_bbdev_enc_op *op,
struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
@ -1150,6 +1335,117 @@ acc100_dma_desc_le_fill(struct rte_bbdev_enc_op *op,
return 0;
}
static inline int
acc100_dma_desc_td_fill(struct rte_bbdev_dec_op *op,
struct acc100_dma_req_desc *desc, struct rte_mbuf **input,
struct rte_mbuf *h_output, struct rte_mbuf *s_output,
uint32_t *in_offset, uint32_t *h_out_offset,
uint32_t *s_out_offset, uint32_t *h_out_length,
uint32_t *s_out_length, uint32_t *mbuf_total_left,
uint32_t *seg_total_left, uint8_t r)
{
int next_triplet = 1; /* FCW already done */
uint16_t k;
uint16_t crc24_overlap = 0;
uint32_t e, kw;
desc->word0 = ACC100_DMA_DESC_TYPE;
desc->word1 = 0; /**< Timestamp could be disabled */
desc->word2 = 0;
desc->word3 = 0;
desc->numCBs = 1;
if (op->turbo_dec.code_block_mode == 0) {
k = (r < op->turbo_dec.tb_params.c_neg)
? op->turbo_dec.tb_params.k_neg
: op->turbo_dec.tb_params.k_pos;
e = (r < op->turbo_dec.tb_params.cab)
? op->turbo_dec.tb_params.ea
: op->turbo_dec.tb_params.eb;
} else {
k = op->turbo_dec.cb_params.k;
e = op->turbo_dec.cb_params.e;
}
if ((op->turbo_dec.code_block_mode == 0)
&& !check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
crc24_overlap = 24;
/* Calculates circular buffer size.
* According to 3gpp 36.212 section 5.1.4.2
* Kw = 3 * Kpi,
* where:
* Kpi = nCol * nRow
* where nCol is 32 and nRow can be calculated from:
* D =< nCol * nRow
* where D is the size of each output from turbo encoder block (k + 4).
*/
kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
if (unlikely((*mbuf_total_left == 0) || (*mbuf_total_left < kw))) {
rte_bbdev_log(ERR,
"Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
*mbuf_total_left, kw);
return -1;
}
next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset, kw,
seg_total_left, next_triplet);
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
desc->data_ptrs[next_triplet - 1].last = 1;
desc->m2dlen = next_triplet;
*mbuf_total_left -= kw;
next_triplet = acc100_dma_fill_blk_type_out(
desc, h_output, *h_out_offset,
k >> 3, next_triplet, ACC100_DMA_BLKID_OUT_HARD);
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
*h_out_length = ((k - crc24_overlap) >> 3);
op->turbo_dec.hard_output.length += *h_out_length;
*h_out_offset += *h_out_length;
/* Soft output */
if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
if (check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_EQUALIZER))
*s_out_length = e;
else
*s_out_length = (k * 3) + 12;
next_triplet = acc100_dma_fill_blk_type_out(desc, s_output,
*s_out_offset, *s_out_length, next_triplet,
ACC100_DMA_BLKID_OUT_SOFT);
if (unlikely(next_triplet < 0)) {
rte_bbdev_log(ERR,
"Mismatch between data to process and mbuf data length in bbdev_op: %p",
op);
return -1;
}
op->turbo_dec.soft_output.length += *s_out_length;
*s_out_offset += *s_out_length;
}
desc->data_ptrs[next_triplet - 1].last = 1;
desc->d2mlen = next_triplet - desc->m2dlen;
desc->op_addr = op;
return 0;
}
static inline int
acc100_dma_desc_ld_fill(struct rte_bbdev_dec_op *op,
struct acc100_dma_req_desc *desc,
@ -1402,6 +1698,51 @@ acc100_dma_enqueue(struct acc100_queue *q, uint16_t n,
}
/* Enqueue one encode operations for ACC100 device in CB mode */
static inline int
enqueue_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
uint16_t total_enqueued_cbs)
{
union acc100_dma_desc *desc = NULL;
int ret;
uint32_t in_offset, out_offset, out_length, mbuf_total_left,
seg_total_left;
struct rte_mbuf *input, *output_head, *output;
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
acc100_fcw_te_fill(op, &desc->req.fcw_te);
input = op->turbo_enc.input.data;
output_head = output = op->turbo_enc.output.data;
in_offset = op->turbo_enc.input.offset;
out_offset = op->turbo_enc.output.offset;
out_length = 0;
mbuf_total_left = op->turbo_enc.input.length;
seg_total_left = rte_pktmbuf_data_len(op->turbo_enc.input.data)
- in_offset;
ret = acc100_dma_desc_te_fill(op, &desc->req, &input, output,
&in_offset, &out_offset, &out_length, &mbuf_total_left,
&seg_total_left, 0);
if (unlikely(ret < 0))
return ret;
mbuf_append(output_head, output, out_length);
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_te,
sizeof(desc->req.fcw_te) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
if (check_mbuf_total_left(mbuf_total_left) != 0)
return -EINVAL;
#endif
/* One CB (one op) was successfully prepared to enqueue */
return 1;
}
/* Enqueue one encode operations for ACC100 device in CB mode */
static inline int
enqueue_ldpc_enc_n_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op **ops,
@ -1503,6 +1844,152 @@ enqueue_ldpc_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
return 1;
}
/* Enqueue one encode operations for ACC100 device in TB mode. */
static inline int
enqueue_enc_one_op_tb(struct acc100_queue *q, struct rte_bbdev_enc_op *op,
uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
{
union acc100_dma_desc *desc = NULL;
int ret;
uint8_t r, c;
uint32_t in_offset, out_offset, out_length, mbuf_total_left,
seg_total_left;
struct rte_mbuf *input, *output_head, *output;
uint16_t current_enqueued_cbs = 0;
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
acc100_fcw_te_fill(op, &desc->req.fcw_te);
input = op->turbo_enc.input.data;
output_head = output = op->turbo_enc.output.data;
in_offset = op->turbo_enc.input.offset;
out_offset = op->turbo_enc.output.offset;
out_length = 0;
mbuf_total_left = op->turbo_enc.input.length;
c = op->turbo_enc.tb_params.c;
r = op->turbo_enc.tb_params.r;
while (mbuf_total_left > 0 && r < c) {
seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
/* Set up DMA descriptor */
desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
desc->req.data_ptrs[0].blen = ACC100_FCW_TE_BLEN;
ret = acc100_dma_desc_te_fill(op, &desc->req, &input, output,
&in_offset, &out_offset, &out_length,
&mbuf_total_left, &seg_total_left, r);
if (unlikely(ret < 0))
return ret;
mbuf_append(output_head, output, out_length);
/* Set total number of CBs in TB */
desc->req.cbs_in_tb = cbs_in_tb;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_te,
sizeof(desc->req.fcw_te) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
if (seg_total_left == 0) {
/* Go to the next mbuf */
input = input->next;
in_offset = 0;
output = output->next;
out_offset = 0;
}
total_enqueued_cbs++;
current_enqueued_cbs++;
r++;
}
if (unlikely(desc == NULL))
return current_enqueued_cbs;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (check_mbuf_total_left(mbuf_total_left) != 0)
return -EINVAL;
#endif
/* Set SDone on last CB descriptor for TB mode. */
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
return current_enqueued_cbs;
}
/** Enqueue one decode operations for ACC100 device in CB mode */
static inline int
enqueue_dec_one_op_cb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
uint16_t total_enqueued_cbs)
{
union acc100_dma_desc *desc = NULL;
int ret;
uint32_t in_offset, h_out_offset, s_out_offset, s_out_length,
h_out_length, mbuf_total_left, seg_total_left;
struct rte_mbuf *input, *h_output_head, *h_output,
*s_output_head, *s_output;
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
acc100_fcw_td_fill(op, &desc->req.fcw_td);
input = op->turbo_dec.input.data;
h_output_head = h_output = op->turbo_dec.hard_output.data;
s_output_head = s_output = op->turbo_dec.soft_output.data;
in_offset = op->turbo_dec.input.offset;
h_out_offset = op->turbo_dec.hard_output.offset;
s_out_offset = op->turbo_dec.soft_output.offset;
h_out_length = s_out_length = 0;
mbuf_total_left = op->turbo_dec.input.length;
seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (unlikely(input == NULL)) {
rte_bbdev_log(ERR, "Invalid mbuf pointer");
return -EFAULT;
}
#endif
/* Set up DMA descriptor */
desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
ret = acc100_dma_desc_td_fill(op, &desc->req, &input, h_output,
s_output, &in_offset, &h_out_offset, &s_out_offset,
&h_out_length, &s_out_length, &mbuf_total_left,
&seg_total_left, 0);
if (unlikely(ret < 0))
return ret;
/* Hard output */
mbuf_append(h_output_head, h_output, h_out_length);
/* Soft output */
if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT))
mbuf_append(s_output_head, s_output, s_out_length);
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_td,
sizeof(desc->req.fcw_td) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
if (check_mbuf_total_left(mbuf_total_left) != 0)
return -EINVAL;
#endif
/* One CB (one op) was successfully prepared to enqueue */
return 1;
}
static inline int
harq_loopback(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
uint16_t total_enqueued_cbs) {
@ -1510,6 +1997,7 @@ harq_loopback(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
union acc100_dma_desc *desc;
int next_triplet = 1;
struct rte_mbuf *hq_output_head, *hq_output;
uint16_t harq_dma_length_in, harq_dma_length_out;
uint16_t harq_in_length = op->ldpc_dec.harq_combined_input.length;
if (harq_in_length == 0) {
rte_bbdev_log(ERR, "Loopback of invalid null size\n");
@ -1519,13 +2007,16 @@ harq_loopback(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
int h_comp = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION
) ? 1 : 0;
if (h_comp == 1)
if (h_comp == 1) {
harq_in_length = harq_in_length * 8 / 6;
harq_in_length = RTE_ALIGN(harq_in_length, 64);
uint16_t harq_dma_length_in = (h_comp == 0) ?
harq_in_length :
harq_in_length * 6 / 8;
uint16_t harq_dma_length_out = harq_dma_length_in;
harq_in_length = RTE_ALIGN(harq_in_length, 64);
harq_dma_length_in = harq_in_length * 6 / 8;
} else {
harq_in_length = RTE_ALIGN(harq_in_length, 64);
harq_dma_length_in = harq_in_length;
}
harq_dma_length_out = harq_dma_length_in;
bool ddr_mem_in = check_bit(op->ldpc_dec.op_flags,
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE);
union acc100_harq_layout_data *harq_layout = q->d->harq_layout;
@ -1831,6 +2322,102 @@ enqueue_ldpc_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
return current_enqueued_cbs;
}
/* Enqueue one decode operations for ACC100 device in TB mode */
static inline int
enqueue_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op *op,
uint16_t total_enqueued_cbs, uint8_t cbs_in_tb)
{
union acc100_dma_desc *desc = NULL;
int ret;
uint8_t r, c;
uint32_t in_offset, h_out_offset, s_out_offset, s_out_length,
h_out_length, mbuf_total_left, seg_total_left;
struct rte_mbuf *input, *h_output_head, *h_output,
*s_output_head, *s_output;
uint16_t current_enqueued_cbs = 0;
uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc = q->ring_addr + desc_idx;
uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET;
acc100_fcw_td_fill(op, &desc->req.fcw_td);
input = op->turbo_dec.input.data;
h_output_head = h_output = op->turbo_dec.hard_output.data;
s_output_head = s_output = op->turbo_dec.soft_output.data;
in_offset = op->turbo_dec.input.offset;
h_out_offset = op->turbo_dec.hard_output.offset;
s_out_offset = op->turbo_dec.soft_output.offset;
h_out_length = s_out_length = 0;
mbuf_total_left = op->turbo_dec.input.length;
c = op->turbo_dec.tb_params.c;
r = op->turbo_dec.tb_params.r;
while (mbuf_total_left > 0 && r < c) {
seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
/* Set up DMA descriptor */
desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs)
& q->sw_ring_wrap_mask);
desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
desc->req.data_ptrs[0].blen = ACC100_FCW_TD_BLEN;
ret = acc100_dma_desc_td_fill(op, &desc->req, &input,
h_output, s_output, &in_offset, &h_out_offset,
&s_out_offset, &h_out_length, &s_out_length,
&mbuf_total_left, &seg_total_left, r);
if (unlikely(ret < 0))
return ret;
/* Hard output */
mbuf_append(h_output_head, h_output, h_out_length);
/* Soft output */
if (check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_SOFT_OUTPUT))
mbuf_append(s_output_head, s_output, s_out_length);
/* Set total number of CBs in TB */
desc->req.cbs_in_tb = cbs_in_tb;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
rte_memdump(stderr, "FCW", &desc->req.fcw_td,
sizeof(desc->req.fcw_td) - 8);
rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc));
#endif
if (seg_total_left == 0) {
/* Go to the next mbuf */
input = input->next;
in_offset = 0;
h_output = h_output->next;
h_out_offset = 0;
if (check_bit(op->turbo_dec.op_flags,
RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
s_output = s_output->next;
s_out_offset = 0;
}
}
total_enqueued_cbs++;
current_enqueued_cbs++;
r++;
}
if (unlikely(desc == NULL))
return current_enqueued_cbs;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (check_mbuf_total_left(mbuf_total_left) != 0)
return -EINVAL;
#endif
/* Set SDone on last CB descriptor for TB mode */
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
return current_enqueued_cbs;
}
/* Calculates number of CBs in processed encoder TB based on 'r' and input
* length.
@ -1908,6 +2495,45 @@ get_num_cbs_in_tb_ldpc_dec(struct rte_bbdev_op_ldpc_dec *ldpc_dec)
return cbs_in_tb;
}
/* Enqueue encode operations for ACC100 device in CB mode. */
static uint16_t
acc100_enqueue_enc_cb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
uint16_t i;
union acc100_dma_desc *desc;
int ret;
for (i = 0; i < num; ++i) {
/* Check if there are available space for further processing */
if (unlikely(avail - 1 < 0))
break;
avail -= 1;
ret = enqueue_enc_one_op_cb(q, ops[i], i);
if (ret < 0)
break;
}
if (unlikely(i == 0))
return 0; /* Nothing to enqueue */
/* Set SDone in last CB in enqueued ops for CB mode*/
desc = q->ring_addr + ((q->sw_ring_head + i - 1)
& q->sw_ring_wrap_mask);
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
acc100_dma_enqueue(q, i, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Check we can mux encode operations with common FCW */
static inline bool
check_mux(struct rte_bbdev_enc_op **ops, uint16_t num) {
@ -1976,6 +2602,54 @@ acc100_enqueue_ldpc_enc_cb(struct rte_bbdev_queue_data *q_data,
return i;
}
/* Enqueue encode operations for ACC100 device in TB mode. */
static uint16_t
acc100_enqueue_enc_tb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
uint16_t i, enqueued_cbs = 0;
uint8_t cbs_in_tb;
int ret;
for (i = 0; i < num; ++i) {
cbs_in_tb = get_num_cbs_in_tb_enc(&ops[i]->turbo_enc);
/* Check if there are available space for further processing */
if (unlikely(avail - cbs_in_tb < 0))
break;
avail -= cbs_in_tb;
ret = enqueue_enc_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb);
if (ret < 0)
break;
enqueued_cbs += ret;
}
if (unlikely(enqueued_cbs == 0))
return 0; /* Nothing to enqueue */
acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Enqueue encode operations for ACC100 device. */
static uint16_t
acc100_enqueue_enc(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
if (unlikely(num == 0))
return 0;
if (ops[0]->turbo_enc.code_block_mode == 0)
return acc100_enqueue_enc_tb(q_data, ops, num);
else
return acc100_enqueue_enc_cb(q_data, ops, num);
}
/* Enqueue encode operations for ACC100 device. */
static uint16_t
acc100_enqueue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
@ -1983,7 +2657,51 @@ acc100_enqueue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
{
if (unlikely(num == 0))
return 0;
return acc100_enqueue_ldpc_enc_cb(q_data, ops, num);
if (ops[0]->ldpc_enc.code_block_mode == 0)
return acc100_enqueue_enc_tb(q_data, ops, num);
else
return acc100_enqueue_ldpc_enc_cb(q_data, ops, num);
}
/* Enqueue decode operations for ACC100 device in CB mode */
static uint16_t
acc100_enqueue_dec_cb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
uint16_t i;
union acc100_dma_desc *desc;
int ret;
for (i = 0; i < num; ++i) {
/* Check if there are available space for further processing */
if (unlikely(avail - 1 < 0))
break;
avail -= 1;
ret = enqueue_dec_one_op_cb(q, ops[i], i);
if (ret < 0)
break;
}
if (unlikely(i == 0))
return 0; /* Nothing to enqueue */
/* Set SDone in last CB in enqueued ops for CB mode*/
desc = q->ring_addr + ((q->sw_ring_head + i - 1)
& q->sw_ring_wrap_mask);
desc->req.sdone_enable = 1;
desc->req.irq_enable = q->irq_enable;
acc100_dma_enqueue(q, i, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Check we can mux encode operations with common FCW */
@ -2081,6 +2799,53 @@ acc100_enqueue_ldpc_dec_cb(struct rte_bbdev_queue_data *q_data,
return i;
}
/* Enqueue decode operations for ACC100 device in TB mode */
static uint16_t
acc100_enqueue_dec_tb(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head;
uint16_t i, enqueued_cbs = 0;
uint8_t cbs_in_tb;
int ret;
for (i = 0; i < num; ++i) {
cbs_in_tb = get_num_cbs_in_tb_dec(&ops[i]->turbo_dec);
/* Check if there are available space for further processing */
if (unlikely(avail - cbs_in_tb < 0))
break;
avail -= cbs_in_tb;
ret = enqueue_dec_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb);
if (ret < 0)
break;
enqueued_cbs += ret;
}
acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats);
/* Update stats */
q_data->queue_stats.enqueued_count += i;
q_data->queue_stats.enqueue_err_count += num - i;
return i;
}
/* Enqueue decode operations for ACC100 device. */
static uint16_t
acc100_enqueue_dec(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
if (unlikely(num == 0))
return 0;
if (ops[0]->turbo_dec.code_block_mode == 0)
return acc100_enqueue_dec_tb(q_data, ops, num);
else
return acc100_enqueue_dec_cb(q_data, ops, num);
}
/* Enqueue decode operations for ACC100 device. */
static uint16_t
acc100_enqueue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
@ -2404,6 +3169,52 @@ dequeue_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op,
return cb_idx;
}
/* Dequeue encode operations from ACC100 device. */
static uint16_t
acc100_dequeue_enc(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_enc_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
uint16_t dequeue_num;
uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
uint32_t aq_dequeued = 0;
uint16_t i, dequeued_cbs = 0;
struct rte_bbdev_enc_op *op;
int ret;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (unlikely(ops == NULL || q == NULL)) {
rte_bbdev_log_debug("Unexpected undefined pointer");
return 0;
}
#endif
dequeue_num = (avail < num) ? avail : num;
for (i = 0; i < dequeue_num; ++i) {
op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
& q->sw_ring_wrap_mask))->req.op_addr;
if (op->turbo_enc.code_block_mode == 0)
ret = dequeue_enc_one_op_tb(q, &ops[i], dequeued_cbs,
&aq_dequeued);
else
ret = dequeue_enc_one_op_cb(q, &ops[i], dequeued_cbs,
&aq_dequeued);
if (ret < 0)
break;
dequeued_cbs += ret;
}
q->aq_dequeued += aq_dequeued;
q->sw_ring_tail += dequeued_cbs;
/* Update enqueue stats */
q_data->queue_stats.dequeued_count += i;
return i;
}
/* Dequeue LDPC encode operations from ACC100 device. */
static uint16_t
acc100_dequeue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
@ -2442,6 +3253,52 @@ acc100_dequeue_ldpc_enc(struct rte_bbdev_queue_data *q_data,
return dequeued_cbs;
}
/* Dequeue decode operations from ACC100 device. */
static uint16_t
acc100_dequeue_dec(struct rte_bbdev_queue_data *q_data,
struct rte_bbdev_dec_op **ops, uint16_t num)
{
struct acc100_queue *q = q_data->queue_private;
uint16_t dequeue_num;
uint32_t avail = q->sw_ring_head - q->sw_ring_tail;
uint32_t aq_dequeued = 0;
uint16_t i;
uint16_t dequeued_cbs = 0;
struct rte_bbdev_dec_op *op;
int ret;
#ifdef RTE_LIBRTE_BBDEV_DEBUG
if (unlikely(ops == 0 && q == NULL))
return 0;
#endif
dequeue_num = (avail < num) ? avail : num;
for (i = 0; i < dequeue_num; ++i) {
op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs)
& q->sw_ring_wrap_mask))->req.op_addr;
if (op->turbo_dec.code_block_mode == 0)
ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs,
&aq_dequeued);
else
ret = dequeue_dec_one_op_cb(q_data, q, &ops[i],
dequeued_cbs, &aq_dequeued);
if (ret < 0)
break;
dequeued_cbs += ret;
}
q->aq_dequeued += aq_dequeued;
q->sw_ring_tail += dequeued_cbs;
/* Update enqueue stats */
q_data->queue_stats.dequeued_count += i;
return i;
}
/* Dequeue decode operations from ACC100 device. */
static uint16_t
acc100_dequeue_ldpc_dec(struct rte_bbdev_queue_data *q_data,
@ -2495,6 +3352,10 @@ acc100_bbdev_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
dev->dev_ops = &acc100_bbdev_ops;
dev->enqueue_enc_ops = acc100_enqueue_enc;
dev->enqueue_dec_ops = acc100_enqueue_dec;
dev->dequeue_enc_ops = acc100_dequeue_enc;
dev->dequeue_dec_ops = acc100_dequeue_dec;
dev->enqueue_ldpc_enc_ops = acc100_enqueue_ldpc_enc;
dev->enqueue_ldpc_dec_ops = acc100_enqueue_ldpc_dec;
dev->dequeue_ldpc_enc_ops = acc100_dequeue_ldpc_enc;