app/bbdev: add performance tests
Includes support for BLER (Block Error Rate) wireless performance test with new arguments for SNR and number of iterations for 5G. This generates LLRs for a given SNR level then measures the ratio of code blocks being successfully decoded or not. Signed-off-by: Nicolas Chautru <nicolas.chautru@intel.com> Acked-by: Dave Burley <dave.burley@accelercomm.com> Acked-by: Akhil Goyal <akhil.goyal@nxp.com>
This commit is contained in:
parent
335c11fd27
commit
f41c6e4d39
@ -29,6 +29,8 @@ static struct test_params {
|
||||
unsigned int num_ops;
|
||||
unsigned int burst_sz;
|
||||
unsigned int num_lcores;
|
||||
double snr;
|
||||
unsigned int iter_max;
|
||||
char test_vector_filename[PATH_MAX];
|
||||
bool init_device;
|
||||
} test_params;
|
||||
@ -140,6 +142,18 @@ get_num_lcores(void)
|
||||
return test_params.num_lcores;
|
||||
}
|
||||
|
||||
double
|
||||
get_snr(void)
|
||||
{
|
||||
return test_params.snr;
|
||||
}
|
||||
|
||||
unsigned int
|
||||
get_iter_max(void)
|
||||
{
|
||||
return test_params.iter_max;
|
||||
}
|
||||
|
||||
bool
|
||||
get_init_device(void)
|
||||
{
|
||||
@ -180,12 +194,15 @@ parse_args(int argc, char **argv, struct test_params *tp)
|
||||
{ "test-cases", 1, 0, 'c' },
|
||||
{ "test-vector", 1, 0, 'v' },
|
||||
{ "lcores", 1, 0, 'l' },
|
||||
{ "snr", 1, 0, 's' },
|
||||
{ "iter_max", 6, 0, 't' },
|
||||
{ "init-device", 0, 0, 'i'},
|
||||
{ "help", 0, 0, 'h' },
|
||||
{ NULL, 0, 0, 0 }
|
||||
};
|
||||
tp->iter_max = DEFAULT_ITER;
|
||||
|
||||
while ((opt = getopt_long(argc, argv, "hin:b:c:v:l:", lgopts,
|
||||
while ((opt = getopt_long(argc, argv, "hin:b:c:v:l:s:t:", lgopts,
|
||||
&option_index)) != EOF)
|
||||
switch (opt) {
|
||||
case 'n':
|
||||
@ -237,6 +254,16 @@ parse_args(int argc, char **argv, struct test_params *tp)
|
||||
sizeof(tp->test_vector_filename),
|
||||
"%s", optarg);
|
||||
break;
|
||||
case 's':
|
||||
TEST_ASSERT(strlen(optarg) > 0,
|
||||
"SNR is not provided");
|
||||
tp->snr = strtod(optarg, NULL);
|
||||
break;
|
||||
case 't':
|
||||
TEST_ASSERT(strlen(optarg) > 0,
|
||||
"Iter_max is not provided");
|
||||
tp->iter_max = strtol(optarg, NULL, 10);
|
||||
break;
|
||||
case 'l':
|
||||
TEST_ASSERT(strlen(optarg) > 0,
|
||||
"Num of lcores is not provided");
|
||||
|
@ -19,6 +19,8 @@
|
||||
#define MAX_BURST 512U
|
||||
#define DEFAULT_BURST 32U
|
||||
#define DEFAULT_OPS 64U
|
||||
#define DEFAULT_ITER 6U
|
||||
|
||||
|
||||
|
||||
#define TEST_ASSERT(cond, msg, ...) do { \
|
||||
@ -104,8 +106,7 @@ void add_test_command(struct test_command *t);
|
||||
.command = RTE_STR(name), \
|
||||
.callback = test_func_##name, \
|
||||
}; \
|
||||
static void __attribute__((constructor, used)) \
|
||||
test_register_##name(void) \
|
||||
RTE_INIT(test_register_##name) \
|
||||
{ \
|
||||
add_test_command(&test_struct_##name); \
|
||||
}
|
||||
@ -118,6 +119,10 @@ unsigned int get_burst_sz(void);
|
||||
|
||||
unsigned int get_num_lcores(void);
|
||||
|
||||
double get_snr(void);
|
||||
|
||||
unsigned int get_iter_max(void);
|
||||
|
||||
bool get_init_device(void);
|
||||
|
||||
#endif
|
||||
|
@ -120,6 +120,8 @@ struct thread_params {
|
||||
double ops_per_sec;
|
||||
double mbps;
|
||||
uint8_t iter_count;
|
||||
double iter_average;
|
||||
double bler;
|
||||
rte_atomic16_t nb_dequeued;
|
||||
rte_atomic16_t processing_status;
|
||||
rte_atomic16_t burst_sz;
|
||||
@ -1207,6 +1209,312 @@ copy_reference_enc_op(struct rte_bbdev_enc_op **ops, unsigned int n,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Returns a random number drawn from a normal distribution
|
||||
* with mean of 0 and variance of 1
|
||||
* Marsaglia algorithm
|
||||
*/
|
||||
static double
|
||||
randn(int n)
|
||||
{
|
||||
double S, Z, U1, U2, u, v, fac;
|
||||
|
||||
do {
|
||||
U1 = (double)rand() / RAND_MAX;
|
||||
U2 = (double)rand() / RAND_MAX;
|
||||
u = 2. * U1 - 1.;
|
||||
v = 2. * U2 - 1.;
|
||||
S = u * u + v * v;
|
||||
} while (S >= 1 || S == 0);
|
||||
fac = sqrt(-2. * log(S) / S);
|
||||
Z = (n % 2) ? u * fac : v * fac;
|
||||
return Z;
|
||||
}
|
||||
|
||||
static inline double
|
||||
maxstar(double A, double B)
|
||||
{
|
||||
if (fabs(A - B) > 5)
|
||||
return RTE_MAX(A, B);
|
||||
else
|
||||
return RTE_MAX(A, B) + log1p(exp(-fabs(A - B)));
|
||||
}
|
||||
|
||||
/*
|
||||
* Generate Qm LLRS for Qm==8
|
||||
* Modulation, AWGN and LLR estimation from max log development
|
||||
*/
|
||||
static void
|
||||
gen_qm8_llr(int8_t *llrs, uint32_t i, double N0, double llr_max)
|
||||
{
|
||||
int qm = 8;
|
||||
int qam = 256;
|
||||
int m, k;
|
||||
double I, Q, p0, p1, llr_, b[qm], log_syml_prob[qam];
|
||||
/* 5.1.4 of TS38.211 */
|
||||
const double symbols_I[256] = {
|
||||
5, 5, 7, 7, 5, 5, 7, 7, 3, 3, 1, 1, 3, 3, 1, 1, 5,
|
||||
5, 7, 7, 5, 5, 7, 7, 3, 3, 1, 1, 3, 3, 1, 1, 11,
|
||||
11, 9, 9, 11, 11, 9, 9, 13, 13, 15, 15, 13, 13,
|
||||
15, 15, 11, 11, 9, 9, 11, 11, 9, 9, 13, 13, 15,
|
||||
15, 13, 13, 15, 15, 5, 5, 7, 7, 5, 5, 7, 7, 3, 3,
|
||||
1, 1, 3, 3, 1, 1, 5, 5, 7, 7, 5, 5, 7, 7, 3, 3, 1,
|
||||
1, 3, 3, 1, 1, 11, 11, 9, 9, 11, 11, 9, 9, 13, 13,
|
||||
15, 15, 13, 13, 15, 15, 11, 11, 9, 9, 11, 11, 9, 9,
|
||||
13, 13, 15, 15, 13, 13, 15, 15, -5, -5, -7, -7, -5,
|
||||
-5, -7, -7, -3, -3, -1, -1, -3, -3, -1, -1, -5, -5,
|
||||
-7, -7, -5, -5, -7, -7, -3, -3, -1, -1, -3, -3,
|
||||
-1, -1, -11, -11, -9, -9, -11, -11, -9, -9, -13,
|
||||
-13, -15, -15, -13, -13, -15, -15, -11, -11, -9,
|
||||
-9, -11, -11, -9, -9, -13, -13, -15, -15, -13,
|
||||
-13, -15, -15, -5, -5, -7, -7, -5, -5, -7, -7, -3,
|
||||
-3, -1, -1, -3, -3, -1, -1, -5, -5, -7, -7, -5, -5,
|
||||
-7, -7, -3, -3, -1, -1, -3, -3, -1, -1, -11, -11,
|
||||
-9, -9, -11, -11, -9, -9, -13, -13, -15, -15, -13,
|
||||
-13, -15, -15, -11, -11, -9, -9, -11, -11, -9, -9,
|
||||
-13, -13, -15, -15, -13, -13, -15, -15};
|
||||
const double symbols_Q[256] = {
|
||||
5, 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1, 11,
|
||||
9, 11, 9, 13, 15, 13, 15, 11, 9, 11, 9, 13, 15, 13,
|
||||
15, 5, 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1,
|
||||
11, 9, 11, 9, 13, 15, 13, 15, 11, 9, 11, 9, 13,
|
||||
15, 13, 15, -5, -7, -5, -7, -3, -1, -3, -1, -5,
|
||||
-7, -5, -7, -3, -1, -3, -1, -11, -9, -11, -9, -13,
|
||||
-15, -13, -15, -11, -9, -11, -9, -13, -15, -13,
|
||||
-15, -5, -7, -5, -7, -3, -1, -3, -1, -5, -7, -5,
|
||||
-7, -3, -1, -3, -1, -11, -9, -11, -9, -13, -15,
|
||||
-13, -15, -11, -9, -11, -9, -13, -15, -13, -15, 5,
|
||||
7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1, 11,
|
||||
9, 11, 9, 13, 15, 13, 15, 11, 9, 11, 9, 13, 15,
|
||||
13, 15, 5, 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1,
|
||||
3, 1, 11, 9, 11, 9, 13, 15, 13, 15, 11, 9, 11, 9,
|
||||
13, 15, 13, 15, -5, -7, -5, -7, -3, -1, -3, -1,
|
||||
-5, -7, -5, -7, -3, -1, -3, -1, -11, -9, -11, -9,
|
||||
-13, -15, -13, -15, -11, -9, -11, -9, -13, -15,
|
||||
-13, -15, -5, -7, -5, -7, -3, -1, -3, -1, -5, -7,
|
||||
-5, -7, -3, -1, -3, -1, -11, -9, -11, -9, -13, -15,
|
||||
-13, -15, -11, -9, -11, -9, -13, -15, -13, -15};
|
||||
/* Average constellation point energy */
|
||||
N0 *= 170.0;
|
||||
for (k = 0; k < qm; k++)
|
||||
b[k] = llrs[qm * i + k] < 0 ? 1.0 : 0.0;
|
||||
/* 5.1.4 of TS38.211 */
|
||||
I = (1 - 2 * b[0]) * (8 - (1 - 2 * b[2]) *
|
||||
(4 - (1 - 2 * b[4]) * (2 - (1 - 2 * b[6]))));
|
||||
Q = (1 - 2 * b[1]) * (8 - (1 - 2 * b[3]) *
|
||||
(4 - (1 - 2 * b[5]) * (2 - (1 - 2 * b[7]))));
|
||||
/* AWGN channel */
|
||||
I += sqrt(N0 / 2) * randn(0);
|
||||
Q += sqrt(N0 / 2) * randn(1);
|
||||
/*
|
||||
* Calculate the log of the probability that each of
|
||||
* the constellation points was transmitted
|
||||
*/
|
||||
for (m = 0; m < qam; m++)
|
||||
log_syml_prob[m] = -(pow(I - symbols_I[m], 2.0)
|
||||
+ pow(Q - symbols_Q[m], 2.0)) / N0;
|
||||
/* Calculate an LLR for each of the k_64QAM bits in the set */
|
||||
for (k = 0; k < qm; k++) {
|
||||
p0 = -999999;
|
||||
p1 = -999999;
|
||||
/* For each constellation point */
|
||||
for (m = 0; m < qam; m++) {
|
||||
if ((m >> (qm - k - 1)) & 1)
|
||||
p1 = maxstar(p1, log_syml_prob[m]);
|
||||
else
|
||||
p0 = maxstar(p0, log_syml_prob[m]);
|
||||
}
|
||||
/* Calculate the LLR */
|
||||
llr_ = p0 - p1;
|
||||
llr_ *= (1 << ldpc_llr_decimals);
|
||||
llr_ = round(llr_);
|
||||
if (llr_ > llr_max)
|
||||
llr_ = llr_max;
|
||||
if (llr_ < -llr_max)
|
||||
llr_ = -llr_max;
|
||||
llrs[qm * i + k] = (int8_t) llr_;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Generate Qm LLRS for Qm==6
|
||||
* Modulation, AWGN and LLR estimation from max log development
|
||||
*/
|
||||
static void
|
||||
gen_qm6_llr(int8_t *llrs, uint32_t i, double N0, double llr_max)
|
||||
{
|
||||
int qm = 6;
|
||||
int qam = 64;
|
||||
int m, k;
|
||||
double I, Q, p0, p1, llr_, b[qm], log_syml_prob[qam];
|
||||
/* 5.1.4 of TS38.211 */
|
||||
const double symbols_I[64] = {
|
||||
3, 3, 1, 1, 3, 3, 1, 1, 5, 5, 7, 7, 5, 5, 7, 7,
|
||||
3, 3, 1, 1, 3, 3, 1, 1, 5, 5, 7, 7, 5, 5, 7, 7,
|
||||
-3, -3, -1, -1, -3, -3, -1, -1, -5, -5, -7, -7,
|
||||
-5, -5, -7, -7, -3, -3, -1, -1, -3, -3, -1, -1,
|
||||
-5, -5, -7, -7, -5, -5, -7, -7};
|
||||
const double symbols_Q[64] = {
|
||||
3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7,
|
||||
-3, -1, -3, -1, -5, -7, -5, -7, -3, -1, -3, -1,
|
||||
-5, -7, -5, -7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1,
|
||||
5, 7, 5, 7, -3, -1, -3, -1, -5, -7, -5, -7,
|
||||
-3, -1, -3, -1, -5, -7, -5, -7};
|
||||
/* Average constellation point energy */
|
||||
N0 *= 42.0;
|
||||
for (k = 0; k < qm; k++)
|
||||
b[k] = llrs[qm * i + k] < 0 ? 1.0 : 0.0;
|
||||
/* 5.1.4 of TS38.211 */
|
||||
I = (1 - 2 * b[0])*(4 - (1 - 2 * b[2]) * (2 - (1 - 2 * b[4])));
|
||||
Q = (1 - 2 * b[1])*(4 - (1 - 2 * b[3]) * (2 - (1 - 2 * b[5])));
|
||||
/* AWGN channel */
|
||||
I += sqrt(N0 / 2) * randn(0);
|
||||
Q += sqrt(N0 / 2) * randn(1);
|
||||
/*
|
||||
* Calculate the log of the probability that each of
|
||||
* the constellation points was transmitted
|
||||
*/
|
||||
for (m = 0; m < qam; m++)
|
||||
log_syml_prob[m] = -(pow(I - symbols_I[m], 2.0)
|
||||
+ pow(Q - symbols_Q[m], 2.0)) / N0;
|
||||
/* Calculate an LLR for each of the k_64QAM bits in the set */
|
||||
for (k = 0; k < qm; k++) {
|
||||
p0 = -999999;
|
||||
p1 = -999999;
|
||||
/* For each constellation point */
|
||||
for (m = 0; m < qam; m++) {
|
||||
if ((m >> (qm - k - 1)) & 1)
|
||||
p1 = maxstar(p1, log_syml_prob[m]);
|
||||
else
|
||||
p0 = maxstar(p0, log_syml_prob[m]);
|
||||
}
|
||||
/* Calculate the LLR */
|
||||
llr_ = p0 - p1;
|
||||
llr_ *= (1 << ldpc_llr_decimals);
|
||||
llr_ = round(llr_);
|
||||
if (llr_ > llr_max)
|
||||
llr_ = llr_max;
|
||||
if (llr_ < -llr_max)
|
||||
llr_ = -llr_max;
|
||||
llrs[qm * i + k] = (int8_t) llr_;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Generate Qm LLRS for Qm==4
|
||||
* Modulation, AWGN and LLR estimation from max log development
|
||||
*/
|
||||
static void
|
||||
gen_qm4_llr(int8_t *llrs, uint32_t i, double N0, double llr_max)
|
||||
{
|
||||
int qm = 4;
|
||||
int qam = 16;
|
||||
int m, k;
|
||||
double I, Q, p0, p1, llr_, b[qm], log_syml_prob[qam];
|
||||
/* 5.1.4 of TS38.211 */
|
||||
const double symbols_I[16] = {1, 1, 3, 3, 1, 1, 3, 3,
|
||||
-1, -1, -3, -3, -1, -1, -3, -3};
|
||||
const double symbols_Q[16] = {1, 3, 1, 3, -1, -3, -1, -3,
|
||||
1, 3, 1, 3, -1, -3, -1, -3};
|
||||
/* Average constellation point energy */
|
||||
N0 *= 10.0;
|
||||
for (k = 0; k < qm; k++)
|
||||
b[k] = llrs[qm * i + k] < 0 ? 1.0 : 0.0;
|
||||
/* 5.1.4 of TS38.211 */
|
||||
I = (1 - 2 * b[0]) * (2 - (1 - 2 * b[2]));
|
||||
Q = (1 - 2 * b[1]) * (2 - (1 - 2 * b[3]));
|
||||
/* AWGN channel */
|
||||
I += sqrt(N0 / 2) * randn(0);
|
||||
Q += sqrt(N0 / 2) * randn(1);
|
||||
/*
|
||||
* Calculate the log of the probability that each of
|
||||
* the constellation points was transmitted
|
||||
*/
|
||||
for (m = 0; m < qam; m++)
|
||||
log_syml_prob[m] = -(pow(I - symbols_I[m], 2.0)
|
||||
+ pow(Q - symbols_Q[m], 2.0)) / N0;
|
||||
/* Calculate an LLR for each of the k_64QAM bits in the set */
|
||||
for (k = 0; k < qm; k++) {
|
||||
p0 = -999999;
|
||||
p1 = -999999;
|
||||
/* For each constellation point */
|
||||
for (m = 0; m < qam; m++) {
|
||||
if ((m >> (qm - k - 1)) & 1)
|
||||
p1 = maxstar(p1, log_syml_prob[m]);
|
||||
else
|
||||
p0 = maxstar(p0, log_syml_prob[m]);
|
||||
}
|
||||
/* Calculate the LLR */
|
||||
llr_ = p0 - p1;
|
||||
llr_ *= (1 << ldpc_llr_decimals);
|
||||
llr_ = round(llr_);
|
||||
if (llr_ > llr_max)
|
||||
llr_ = llr_max;
|
||||
if (llr_ < -llr_max)
|
||||
llr_ = -llr_max;
|
||||
llrs[qm * i + k] = (int8_t) llr_;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
gen_qm2_llr(int8_t *llrs, uint32_t j, double N0, double llr_max)
|
||||
{
|
||||
double b, b1, n;
|
||||
double coeff = 2.0 * sqrt(N0);
|
||||
|
||||
/* Ignore in vectors rare quasi null LLRs not to be saturated */
|
||||
if (llrs[j] < 8 && llrs[j] > -8)
|
||||
return;
|
||||
|
||||
/* Note don't change sign here */
|
||||
n = randn(j % 2);
|
||||
b1 = ((llrs[j] > 0 ? 2.0 : -2.0)
|
||||
+ coeff * n) / N0;
|
||||
b = b1 * (1 << ldpc_llr_decimals);
|
||||
b = round(b);
|
||||
if (b > llr_max)
|
||||
b = llr_max;
|
||||
if (b < -llr_max)
|
||||
b = -llr_max;
|
||||
llrs[j] = (int8_t) b;
|
||||
}
|
||||
|
||||
/* Generate LLR for a given SNR */
|
||||
static void
|
||||
generate_llr_input(uint16_t n, struct rte_bbdev_op_data *inputs,
|
||||
struct rte_bbdev_dec_op *ref_op)
|
||||
{
|
||||
struct rte_mbuf *m;
|
||||
uint16_t qm;
|
||||
uint32_t i, j, e, range;
|
||||
double N0, llr_max;
|
||||
|
||||
e = ref_op->ldpc_dec.cb_params.e;
|
||||
qm = ref_op->ldpc_dec.q_m;
|
||||
llr_max = (1 << (ldpc_llr_size - 1)) - 1;
|
||||
range = e / qm;
|
||||
N0 = 1.0 / pow(10.0, get_snr() / 10.0);
|
||||
|
||||
for (i = 0; i < n; ++i) {
|
||||
m = inputs[i].data;
|
||||
int8_t *llrs = rte_pktmbuf_mtod_offset(m, int8_t *, 0);
|
||||
if (qm == 8) {
|
||||
for (j = 0; j < range; ++j)
|
||||
gen_qm8_llr(llrs, j, N0, llr_max);
|
||||
} else if (qm == 6) {
|
||||
for (j = 0; j < range; ++j)
|
||||
gen_qm6_llr(llrs, j, N0, llr_max);
|
||||
} else if (qm == 4) {
|
||||
for (j = 0; j < range; ++j)
|
||||
gen_qm4_llr(llrs, j, N0, llr_max);
|
||||
} else {
|
||||
for (j = 0; j < e; ++j)
|
||||
gen_qm2_llr(llrs, j, N0, llr_max);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
copy_reference_ldpc_dec_op(struct rte_bbdev_dec_op **ops, unsigned int n,
|
||||
unsigned int start_idx,
|
||||
@ -1593,6 +1901,30 @@ validate_dec_op(struct rte_bbdev_dec_op **ops, const uint16_t n,
|
||||
return TEST_SUCCESS;
|
||||
}
|
||||
|
||||
/* Check Number of code blocks errors */
|
||||
static int
|
||||
validate_ldpc_bler(struct rte_bbdev_dec_op **ops, const uint16_t n)
|
||||
{
|
||||
unsigned int i;
|
||||
struct op_data_entries *hard_data_orig =
|
||||
&test_vector.entries[DATA_HARD_OUTPUT];
|
||||
struct rte_bbdev_op_ldpc_dec *ops_td;
|
||||
struct rte_bbdev_op_data *hard_output;
|
||||
int errors = 0;
|
||||
struct rte_mbuf *m;
|
||||
|
||||
for (i = 0; i < n; ++i) {
|
||||
ops_td = &ops[i]->ldpc_dec;
|
||||
hard_output = &ops_td->hard_output;
|
||||
m = hard_output->data;
|
||||
if (memcmp(rte_pktmbuf_mtod_offset(m, uint32_t *, 0),
|
||||
hard_data_orig->segments[0].addr,
|
||||
hard_data_orig->segments[0].length))
|
||||
errors++;
|
||||
}
|
||||
return errors;
|
||||
}
|
||||
|
||||
static int
|
||||
validate_ldpc_dec_op(struct rte_bbdev_dec_op **ops, const uint16_t n,
|
||||
struct rte_bbdev_dec_op *ref_op, const int vector_mask)
|
||||
@ -2505,6 +2837,139 @@ throughput_pmd_lcore_dec(void *arg)
|
||||
return TEST_SUCCESS;
|
||||
}
|
||||
|
||||
static int
|
||||
bler_pmd_lcore_ldpc_dec(void *arg)
|
||||
{
|
||||
struct thread_params *tp = arg;
|
||||
uint16_t enq, deq;
|
||||
uint64_t total_time = 0, start_time;
|
||||
const uint16_t queue_id = tp->queue_id;
|
||||
const uint16_t burst_sz = tp->op_params->burst_sz;
|
||||
const uint16_t num_ops = tp->op_params->num_to_process;
|
||||
struct rte_bbdev_dec_op *ops_enq[num_ops];
|
||||
struct rte_bbdev_dec_op *ops_deq[num_ops];
|
||||
struct rte_bbdev_dec_op *ref_op = tp->op_params->ref_dec_op;
|
||||
struct test_buffers *bufs = NULL;
|
||||
int i, j, ret;
|
||||
float parity_bler = 0;
|
||||
struct rte_bbdev_info info;
|
||||
uint16_t num_to_enq;
|
||||
bool extDdr = check_bit(ldpc_cap_flags,
|
||||
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE);
|
||||
bool loopback = check_bit(ref_op->ldpc_dec.op_flags,
|
||||
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK);
|
||||
bool hc_out = check_bit(ref_op->ldpc_dec.op_flags,
|
||||
RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE);
|
||||
|
||||
TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
|
||||
"BURST_SIZE should be <= %u", MAX_BURST);
|
||||
|
||||
rte_bbdev_info_get(tp->dev_id, &info);
|
||||
|
||||
TEST_ASSERT_SUCCESS((num_ops > info.drv.queue_size_lim),
|
||||
"NUM_OPS cannot exceed %u for this device",
|
||||
info.drv.queue_size_lim);
|
||||
|
||||
bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
|
||||
|
||||
while (rte_atomic16_read(&tp->op_params->sync) == SYNC_WAIT)
|
||||
rte_pause();
|
||||
|
||||
ret = rte_bbdev_dec_op_alloc_bulk(tp->op_params->mp, ops_enq, num_ops);
|
||||
TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops", num_ops);
|
||||
|
||||
/* For BLER tests we need to enable early termination */
|
||||
if (!check_bit(ref_op->ldpc_dec.op_flags,
|
||||
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE))
|
||||
ref_op->ldpc_dec.op_flags +=
|
||||
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE;
|
||||
ref_op->ldpc_dec.iter_max = get_iter_max();
|
||||
ref_op->ldpc_dec.iter_count = ref_op->ldpc_dec.iter_max;
|
||||
|
||||
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
|
||||
copy_reference_ldpc_dec_op(ops_enq, num_ops, 0, bufs->inputs,
|
||||
bufs->hard_outputs, bufs->soft_outputs,
|
||||
bufs->harq_inputs, bufs->harq_outputs, ref_op);
|
||||
generate_llr_input(num_ops, bufs->inputs, ref_op);
|
||||
|
||||
/* Set counter to validate the ordering */
|
||||
for (j = 0; j < num_ops; ++j)
|
||||
ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
|
||||
|
||||
for (i = 0; i < 1; ++i) { /* Could add more iterations */
|
||||
for (j = 0; j < num_ops; ++j) {
|
||||
if (!loopback)
|
||||
mbuf_reset(
|
||||
ops_enq[j]->ldpc_dec.hard_output.data);
|
||||
if (hc_out || loopback)
|
||||
mbuf_reset(
|
||||
ops_enq[j]->ldpc_dec.harq_combined_output.data);
|
||||
}
|
||||
if (extDdr) {
|
||||
bool preload = i == (TEST_REPETITIONS - 1);
|
||||
preload_harq_ddr(tp->dev_id, queue_id, ops_enq,
|
||||
num_ops, preload);
|
||||
}
|
||||
start_time = rte_rdtsc_precise();
|
||||
|
||||
for (enq = 0, deq = 0; enq < num_ops;) {
|
||||
num_to_enq = burst_sz;
|
||||
|
||||
if (unlikely(num_ops - enq < num_to_enq))
|
||||
num_to_enq = num_ops - enq;
|
||||
|
||||
enq += rte_bbdev_enqueue_ldpc_dec_ops(tp->dev_id,
|
||||
queue_id, &ops_enq[enq], num_to_enq);
|
||||
|
||||
deq += rte_bbdev_dequeue_ldpc_dec_ops(tp->dev_id,
|
||||
queue_id, &ops_deq[deq], enq - deq);
|
||||
}
|
||||
|
||||
/* dequeue the remaining */
|
||||
while (deq < enq) {
|
||||
deq += rte_bbdev_dequeue_ldpc_dec_ops(tp->dev_id,
|
||||
queue_id, &ops_deq[deq], enq - deq);
|
||||
}
|
||||
|
||||
total_time += rte_rdtsc_precise() - start_time;
|
||||
}
|
||||
|
||||
tp->iter_count = 0;
|
||||
tp->iter_average = 0;
|
||||
/* get the max of iter_count for all dequeued ops */
|
||||
for (i = 0; i < num_ops; ++i) {
|
||||
tp->iter_count = RTE_MAX(ops_enq[i]->ldpc_dec.iter_count,
|
||||
tp->iter_count);
|
||||
tp->iter_average += (double) ops_enq[i]->ldpc_dec.iter_count;
|
||||
if (ops_enq[i]->status & (1 << RTE_BBDEV_SYNDROME_ERROR))
|
||||
parity_bler += 1.0;
|
||||
}
|
||||
|
||||
parity_bler /= num_ops; /* This one is based on SYND */
|
||||
tp->iter_average /= num_ops;
|
||||
tp->bler = (double) validate_ldpc_bler(ops_deq, num_ops) / num_ops;
|
||||
|
||||
if (test_vector.op_type != RTE_BBDEV_OP_NONE
|
||||
&& tp->bler == 0
|
||||
&& parity_bler == 0
|
||||
&& !hc_out) {
|
||||
ret = validate_ldpc_dec_op(ops_deq, num_ops, ref_op,
|
||||
tp->op_params->vector_mask);
|
||||
TEST_ASSERT_SUCCESS(ret, "Validation failed!");
|
||||
}
|
||||
|
||||
rte_bbdev_dec_op_free_bulk(ops_enq, num_ops);
|
||||
|
||||
double tb_len_bits = calc_ldpc_dec_TB_size(ref_op);
|
||||
tp->ops_per_sec = ((double)num_ops * 1) /
|
||||
((double)total_time / (double)rte_get_tsc_hz());
|
||||
tp->mbps = (((double)(num_ops * 1 * tb_len_bits)) /
|
||||
1000000.0) / ((double)total_time /
|
||||
(double)rte_get_tsc_hz());
|
||||
|
||||
return TEST_SUCCESS;
|
||||
}
|
||||
|
||||
static int
|
||||
throughput_pmd_lcore_ldpc_dec(void *arg)
|
||||
{
|
||||
@ -2550,7 +3015,7 @@ throughput_pmd_lcore_ldpc_dec(void *arg)
|
||||
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE))
|
||||
ref_op->ldpc_dec.op_flags -=
|
||||
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE;
|
||||
ref_op->ldpc_dec.iter_max = 6;
|
||||
ref_op->ldpc_dec.iter_max = get_iter_max();
|
||||
ref_op->ldpc_dec.iter_count = ref_op->ldpc_dec.iter_max;
|
||||
|
||||
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
|
||||
@ -2831,27 +3296,147 @@ print_enc_throughput(struct thread_params *t_params, unsigned int used_cores)
|
||||
used_cores, total_mops, total_mbps);
|
||||
}
|
||||
|
||||
/* Aggregate the performance results over the number of cores used */
|
||||
static void
|
||||
print_dec_throughput(struct thread_params *t_params, unsigned int used_cores)
|
||||
{
|
||||
unsigned int iter = 0;
|
||||
unsigned int core_idx = 0;
|
||||
double total_mops = 0, total_mbps = 0;
|
||||
uint8_t iter_count = 0;
|
||||
|
||||
for (iter = 0; iter < used_cores; iter++) {
|
||||
for (core_idx = 0; core_idx < used_cores; core_idx++) {
|
||||
printf(
|
||||
"Throughput for core (%u): %.8lg Ops/s, %.8lg Mbps @ max %u iterations\n",
|
||||
t_params[iter].lcore_id, t_params[iter].ops_per_sec,
|
||||
t_params[iter].mbps, t_params[iter].iter_count);
|
||||
total_mops += t_params[iter].ops_per_sec;
|
||||
total_mbps += t_params[iter].mbps;
|
||||
iter_count = RTE_MAX(iter_count, t_params[iter].iter_count);
|
||||
t_params[core_idx].lcore_id,
|
||||
t_params[core_idx].ops_per_sec,
|
||||
t_params[core_idx].mbps,
|
||||
t_params[core_idx].iter_count);
|
||||
total_mops += t_params[core_idx].ops_per_sec;
|
||||
total_mbps += t_params[core_idx].mbps;
|
||||
iter_count = RTE_MAX(iter_count,
|
||||
t_params[core_idx].iter_count);
|
||||
}
|
||||
printf(
|
||||
"\nTotal throughput for %u cores: %.8lg MOPS, %.8lg Mbps @ max %u iterations\n",
|
||||
used_cores, total_mops, total_mbps, iter_count);
|
||||
}
|
||||
|
||||
/* Aggregate the performance results over the number of cores used */
|
||||
static void
|
||||
print_dec_bler(struct thread_params *t_params, unsigned int used_cores)
|
||||
{
|
||||
unsigned int core_idx = 0;
|
||||
double total_mbps = 0, total_bler = 0, total_iter = 0;
|
||||
double snr = get_snr();
|
||||
|
||||
for (core_idx = 0; core_idx < used_cores; core_idx++) {
|
||||
printf("Core%u BLER %.1f %% - Iters %.1f - Tp %.1f Mbps %s\n",
|
||||
t_params[core_idx].lcore_id,
|
||||
t_params[core_idx].bler * 100,
|
||||
t_params[core_idx].iter_average,
|
||||
t_params[core_idx].mbps,
|
||||
get_vector_filename());
|
||||
total_mbps += t_params[core_idx].mbps;
|
||||
total_bler += t_params[core_idx].bler;
|
||||
total_iter += t_params[core_idx].iter_average;
|
||||
}
|
||||
total_bler /= used_cores;
|
||||
total_iter /= used_cores;
|
||||
|
||||
printf("SNR %.2f BLER %.1f %% - Iterations %.1f %d - Tp %.1f Mbps %s\n",
|
||||
snr, total_bler * 100, total_iter, get_iter_max(),
|
||||
total_mbps, get_vector_filename());
|
||||
}
|
||||
|
||||
/*
|
||||
* Test function that determines BLER wireless performance
|
||||
*/
|
||||
static int
|
||||
bler_test(struct active_device *ad,
|
||||
struct test_op_params *op_params)
|
||||
{
|
||||
int ret;
|
||||
unsigned int lcore_id, used_cores = 0;
|
||||
struct thread_params *t_params;
|
||||
struct rte_bbdev_info info;
|
||||
lcore_function_t *bler_function;
|
||||
uint16_t num_lcores;
|
||||
const char *op_type_str;
|
||||
|
||||
rte_bbdev_info_get(ad->dev_id, &info);
|
||||
|
||||
op_type_str = rte_bbdev_op_type_str(test_vector.op_type);
|
||||
TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u",
|
||||
test_vector.op_type);
|
||||
|
||||
printf("+ ------------------------------------------------------- +\n");
|
||||
printf("== test: bler\ndev: %s, nb_queues: %u, burst size: %u, num ops: %u, num_lcores: %u, op type: %s, itr mode: %s, GHz: %lg\n",
|
||||
info.dev_name, ad->nb_queues, op_params->burst_sz,
|
||||
op_params->num_to_process, op_params->num_lcores,
|
||||
op_type_str,
|
||||
intr_enabled ? "Interrupt mode" : "PMD mode",
|
||||
(double)rte_get_tsc_hz() / 1000000000.0);
|
||||
|
||||
/* Set number of lcores */
|
||||
num_lcores = (ad->nb_queues < (op_params->num_lcores))
|
||||
? ad->nb_queues
|
||||
: op_params->num_lcores;
|
||||
|
||||
/* Allocate memory for thread parameters structure */
|
||||
t_params = rte_zmalloc(NULL, num_lcores * sizeof(struct thread_params),
|
||||
RTE_CACHE_LINE_SIZE);
|
||||
TEST_ASSERT_NOT_NULL(t_params, "Failed to alloc %zuB for t_params",
|
||||
RTE_ALIGN(sizeof(struct thread_params) * num_lcores,
|
||||
RTE_CACHE_LINE_SIZE));
|
||||
|
||||
if (test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC)
|
||||
bler_function = bler_pmd_lcore_ldpc_dec;
|
||||
else
|
||||
return TEST_SKIPPED;
|
||||
|
||||
rte_atomic16_set(&op_params->sync, SYNC_WAIT);
|
||||
|
||||
/* Master core is set at first entry */
|
||||
t_params[0].dev_id = ad->dev_id;
|
||||
t_params[0].lcore_id = rte_lcore_id();
|
||||
t_params[0].op_params = op_params;
|
||||
t_params[0].queue_id = ad->queue_ids[used_cores++];
|
||||
t_params[0].iter_count = 0;
|
||||
|
||||
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
|
||||
if (used_cores >= num_lcores)
|
||||
break;
|
||||
|
||||
t_params[used_cores].dev_id = ad->dev_id;
|
||||
t_params[used_cores].lcore_id = lcore_id;
|
||||
t_params[used_cores].op_params = op_params;
|
||||
t_params[used_cores].queue_id = ad->queue_ids[used_cores];
|
||||
t_params[used_cores].iter_count = 0;
|
||||
|
||||
rte_eal_remote_launch(bler_function,
|
||||
&t_params[used_cores++], lcore_id);
|
||||
}
|
||||
|
||||
rte_atomic16_set(&op_params->sync, SYNC_START);
|
||||
ret = bler_function(&t_params[0]);
|
||||
|
||||
/* Master core is always used */
|
||||
for (used_cores = 1; used_cores < num_lcores; used_cores++)
|
||||
ret |= rte_eal_wait_lcore(t_params[used_cores].lcore_id);
|
||||
|
||||
print_dec_bler(t_params, num_lcores);
|
||||
|
||||
/* Return if test failed */
|
||||
if (ret) {
|
||||
rte_free(t_params);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Function to print something here*/
|
||||
rte_free(t_params);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Test function that determines how long an enqueue + dequeue of a burst
|
||||
* takes on available lcores.
|
||||
@ -3119,7 +3704,7 @@ latency_test_ldpc_dec(struct rte_mempool *mempool,
|
||||
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE))
|
||||
ref_op->ldpc_dec.op_flags -=
|
||||
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE;
|
||||
ref_op->ldpc_dec.iter_max = 6;
|
||||
ref_op->ldpc_dec.iter_max = get_iter_max();
|
||||
ref_op->ldpc_dec.iter_count = ref_op->ldpc_dec.iter_max;
|
||||
|
||||
if (test_vector.op_type != RTE_BBDEV_OP_NONE)
|
||||
@ -3976,6 +4561,12 @@ offload_latency_empty_q_test(struct active_device *ad,
|
||||
#endif
|
||||
}
|
||||
|
||||
static int
|
||||
bler_tc(void)
|
||||
{
|
||||
return run_test_case(bler_test);
|
||||
}
|
||||
|
||||
static int
|
||||
throughput_tc(void)
|
||||
{
|
||||
@ -4006,6 +4597,16 @@ interrupt_tc(void)
|
||||
return run_test_case(throughput_test);
|
||||
}
|
||||
|
||||
static struct unit_test_suite bbdev_bler_testsuite = {
|
||||
.suite_name = "BBdev BLER Tests",
|
||||
.setup = testsuite_setup,
|
||||
.teardown = testsuite_teardown,
|
||||
.unit_test_cases = {
|
||||
TEST_CASE_ST(ut_setup, ut_teardown, bler_tc),
|
||||
TEST_CASES_END() /**< NULL terminate unit test array */
|
||||
}
|
||||
};
|
||||
|
||||
static struct unit_test_suite bbdev_throughput_testsuite = {
|
||||
.suite_name = "BBdev Throughput Tests",
|
||||
.setup = testsuite_setup,
|
||||
@ -4057,6 +4658,7 @@ static struct unit_test_suite bbdev_interrupt_testsuite = {
|
||||
}
|
||||
};
|
||||
|
||||
REGISTER_TEST_COMMAND(bler, bbdev_bler_testsuite);
|
||||
REGISTER_TEST_COMMAND(throughput, bbdev_throughput_testsuite);
|
||||
REGISTER_TEST_COMMAND(validation, bbdev_validation_testsuite);
|
||||
REGISTER_TEST_COMMAND(latency, bbdev_latency_testsuite);
|
||||
|
@ -47,6 +47,8 @@ The tool application has a number of command line options:
|
||||
[-c TEST_CASE [TEST_CASE ...]]
|
||||
[-v TEST_VECTOR [TEST_VECTOR...]] [-n NUM_OPS]
|
||||
[-b BURST_SIZE [BURST_SIZE ...]] [-l NUM_LCORES]
|
||||
[-t MAX_ITERS [MAX_ITERS ...]]
|
||||
[-s SNR [SNR ...]]
|
||||
|
||||
command-line Options
|
||||
~~~~~~~~~~~~~~~~~~~~
|
||||
@ -106,6 +108,14 @@ The following are the command-line options:
|
||||
Specifies operations enqueue/dequeue burst size. If not specified burst_size is
|
||||
set to 32. Maximum is 512.
|
||||
|
||||
``-t MAX_ITERS [MAX_ITERS ...], --iter_max MAX_ITERS [MAX_ITERS ...]``
|
||||
Specifies LDPC decoder operations maximum number of iterations for throughput
|
||||
and bler tests. If not specified iter_max is set to 6.
|
||||
|
||||
``-s SNR [SNR ...], --snr SNR [SNR ...]``
|
||||
Specifies for LDPC decoder operations the SNR in dB used when generating LLRs
|
||||
for bler tests. If not specified snr is set to 0 dB.
|
||||
|
||||
Test Cases
|
||||
~~~~~~~~~~
|
||||
|
||||
@ -149,6 +159,12 @@ There are 6 main test cases that can be executed using testbbdev tool:
|
||||
- Results are printed in million operations per second and million bits
|
||||
per second
|
||||
|
||||
* BLER measurement [-c bler]
|
||||
- Performs full operation of enqueue and dequeue
|
||||
- Measures the achieved throughput on a subset or all available CPU cores
|
||||
- Computed BLER (Block Error Rate, ratio of blocks not decoded at a given
|
||||
SNR) in % based on the total number of operations.
|
||||
|
||||
* Interrupt-mode Throughput [-c interrupt]
|
||||
- Similar to Throughput test case, but using interrupts. No polling.
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user