test/ipsec: add performance cases

Add new test-case to measure performance of
IPsec data-path functions.

Signed-off-by: Savinay Dharmappa <savinay.dharmappa@intel.com>
Tested-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
This commit is contained in:
Savinay Dharmappa 2020-04-23 16:25:04 +01:00 committed by Akhil Goyal
parent 20731cd8cb
commit f7f3ac6dcb
4 changed files with 618 additions and 3 deletions

View File

@ -1261,10 +1261,9 @@ M: Konstantin Ananyev <konstantin.ananyev@intel.com>
T: git://dpdk.org/next/dpdk-next-crypto
F: lib/librte_ipsec/
M: Bernard Iremonger <bernard.iremonger@intel.com>
F: app/test/test_ipsec.c
F: app/test/test_ipsec*
F: doc/guides/prog_guide/ipsec_lib.rst
M: Vladimir Medvedkin <vladimir.medvedkin@intel.com>
F: app/test/test_ipsec_sad.c
F: app/test-sad/
Flow Classify - EXPERIMENTAL

View File

@ -247,7 +247,7 @@ SRCS-$(CONFIG_RTE_LIBRTE_RCU) += test_rcu_qsbr.c test_rcu_qsbr_perf.c
SRCS-$(CONFIG_RTE_LIBRTE_SECURITY) += test_security.c
SRCS-$(CONFIG_RTE_LIBRTE_IPSEC) += test_ipsec.c
SRCS-$(CONFIG_RTE_LIBRTE_IPSEC) += test_ipsec.c test_ipsec_perf.c
SRCS-$(CONFIG_RTE_LIBRTE_IPSEC) += test_ipsec_sad.c
ifeq ($(CONFIG_RTE_LIBRTE_IPSEC),y)
LDLIBS += -lrte_ipsec

View File

@ -63,6 +63,7 @@ test_sources = files('commands.c',
'test_ipfrag.c',
'test_ipsec.c',
'test_ipsec_sad.c',
'test_ipsec_perf.c',
'test_kni.c',
'test_kvargs.c',
'test_logs.c',
@ -291,6 +292,7 @@ perf_test_names = [
'hash_readwrite_perf_autotest',
'hash_readwrite_lf_perf_autotest',
'trace_perf_autotest',
'ipsec_perf_autotest',
]
driver_test_names = [

614
app/test/test_ipsec_perf.c Normal file
View File

@ -0,0 +1,614 @@
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Intel Corporation
*/
#include <stdio.h>
#include <rte_ip.h>
#include <rte_malloc.h>
#include <rte_ring.h>
#include <rte_mbuf.h>
#include <rte_cycles.h>
#include <rte_ipsec.h>
#include <rte_random.h>
#include "test.h"
#include "test_cryptodev.h"
#define RING_SIZE 4096
#define BURST_SIZE 64
#define NUM_MBUF 4095
#define DEFAULT_SPI 7
struct ipsec_test_cfg {
uint32_t replay_win_sz;
uint32_t esn;
uint64_t flags;
enum rte_crypto_sym_xform_type type;
};
struct rte_mempool *mbuf_pool, *cop_pool;
struct stats_counter {
uint64_t nb_prepare_call;
uint64_t nb_prepare_pkt;
uint64_t nb_process_call;
uint64_t nb_process_pkt;
uint64_t prepare_ticks_elapsed;
uint64_t process_ticks_elapsed;
};
struct ipsec_sa {
struct rte_ipsec_session ss[2];
struct rte_ipsec_sa_prm sa_prm;
struct rte_security_ipsec_xform ipsec_xform;
struct rte_crypto_sym_xform cipher_xform;
struct rte_crypto_sym_xform auth_xform;
struct rte_crypto_sym_xform aead_xform;
struct rte_crypto_sym_xform *crypto_xforms;
struct rte_crypto_op *cop[BURST_SIZE];
enum rte_crypto_sym_xform_type type;
struct stats_counter cnt;
uint32_t replay_win_sz;
uint32_t sa_flags;
};
static const struct ipsec_test_cfg test_cfg[] = {
{0, 0, 0, RTE_CRYPTO_SYM_XFORM_AEAD},
{0, 0, 0, RTE_CRYPTO_SYM_XFORM_CIPHER},
{128, 1, 0, RTE_CRYPTO_SYM_XFORM_AEAD},
{128, 1, 0, RTE_CRYPTO_SYM_XFORM_CIPHER},
};
static struct rte_ipv4_hdr ipv4_outer = {
.version_ihl = IPVERSION << 4 |
sizeof(ipv4_outer) / RTE_IPV4_IHL_MULTIPLIER,
.time_to_live = IPDEFTTL,
.next_proto_id = IPPROTO_ESP,
.src_addr = RTE_IPV4(192, 168, 1, 100),
.dst_addr = RTE_IPV4(192, 168, 2, 100),
};
static struct rte_ring *ring_inb_prepare;
static struct rte_ring *ring_inb_process;
static struct rte_ring *ring_outb_prepare;
static struct rte_ring *ring_outb_process;
struct supported_cipher_algo {
const char *keyword;
enum rte_crypto_cipher_algorithm algo;
uint16_t iv_len;
uint16_t block_size;
uint16_t key_len;
};
struct supported_auth_algo {
const char *keyword;
enum rte_crypto_auth_algorithm algo;
uint16_t digest_len;
uint16_t key_len;
uint8_t key_not_req;
};
struct supported_aead_algo {
const char *keyword;
enum rte_crypto_aead_algorithm algo;
uint16_t iv_len;
uint16_t block_size;
uint16_t digest_len;
uint16_t key_len;
uint8_t aad_len;
};
const struct supported_cipher_algo cipher_algo[] = {
{
.keyword = "aes-128-cbc",
.algo = RTE_CRYPTO_CIPHER_AES_CBC,
.iv_len = 16,
.block_size = 16,
.key_len = 16
}
};
const struct supported_auth_algo auth_algo[] = {
{
.keyword = "sha1-hmac",
.algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.key_len = 20
}
};
const struct supported_aead_algo aead_algo[] = {
{
.keyword = "aes-128-gcm",
.algo = RTE_CRYPTO_AEAD_AES_GCM,
.iv_len = 8,
.block_size = 4,
.key_len = 20,
.digest_len = 16,
.aad_len = 8,
}
};
static struct rte_mbuf *generate_mbuf_data(struct rte_mempool *mpool)
{
struct rte_mbuf *mbuf = rte_pktmbuf_alloc(mpool);
if (mbuf) {
mbuf->data_len = 64;
mbuf->pkt_len = 64;
}
return mbuf;
}
static int
fill_ipsec_param(struct ipsec_sa *sa)
{
struct rte_ipsec_sa_prm *prm = &sa->sa_prm;
memset(prm, 0, sizeof(*prm));
prm->flags = sa->sa_flags;
/* setup ipsec xform */
prm->ipsec_xform = sa->ipsec_xform;
prm->ipsec_xform.salt = (uint32_t)rte_rand();
prm->ipsec_xform.replay_win_sz = sa->replay_win_sz;
/* setup tunnel related fields */
prm->tun.hdr_len = sizeof(ipv4_outer);
prm->tun.next_proto = IPPROTO_IPIP;
prm->tun.hdr = &ipv4_outer;
if (sa->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
sa->aead_xform.type = sa->type;
sa->aead_xform.aead.algo = aead_algo->algo;
sa->aead_xform.next = NULL;
sa->aead_xform.aead.digest_length = aead_algo->digest_len;
sa->aead_xform.aead.iv.offset = IV_OFFSET;
sa->aead_xform.aead.iv.length = 12;
if (sa->ipsec_xform.direction ==
RTE_SECURITY_IPSEC_SA_DIR_INGRESS) {
sa->aead_xform.aead.op = RTE_CRYPTO_AEAD_OP_DECRYPT;
} else {
sa->aead_xform.aead.op = RTE_CRYPTO_AEAD_OP_ENCRYPT;
}
sa->crypto_xforms = &sa->aead_xform;
} else {
sa->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
sa->cipher_xform.cipher.algo = cipher_algo->algo;
sa->cipher_xform.cipher.iv.offset = IV_OFFSET;
sa->cipher_xform.cipher.iv.length = 12;
sa->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH;
sa->auth_xform.auth.algo = auth_algo->algo;
sa->auth_xform.auth.digest_length = auth_algo->digest_len;
if (sa->ipsec_xform.direction ==
RTE_SECURITY_IPSEC_SA_DIR_INGRESS) {
sa->cipher_xform.cipher.op =
RTE_CRYPTO_CIPHER_OP_DECRYPT;
sa->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_VERIFY;
sa->cipher_xform.next = NULL;
sa->auth_xform.next = &sa->cipher_xform;
sa->crypto_xforms = &sa->auth_xform;
} else {
sa->cipher_xform.cipher.op =
RTE_CRYPTO_CIPHER_OP_ENCRYPT;
sa->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
sa->auth_xform.next = NULL;
sa->cipher_xform.next = &sa->auth_xform;
sa->crypto_xforms = &sa->cipher_xform;
}
}
prm->crypto_xform = sa->crypto_xforms;
return TEST_SUCCESS;
}
static int
create_sa(enum rte_security_session_action_type action_type,
struct ipsec_sa *sa)
{
static struct rte_cryptodev_sym_session dummy_ses;
size_t sz;
int rc;
memset(&sa->ss[0], 0, sizeof(sa->ss[0]));
rc = fill_ipsec_param(sa);
if (rc != 0) {
printf("failed to fill ipsec param\n");
return TEST_FAILED;
}
sz = rte_ipsec_sa_size(&sa->sa_prm);
TEST_ASSERT(sz > 0, "rte_ipsec_sa_size() failed\n");
sa->ss[0].sa = rte_zmalloc(NULL, sz, RTE_CACHE_LINE_SIZE);
TEST_ASSERT_NOT_NULL(sa->ss[0].sa,
"failed to allocate memory for rte_ipsec_sa\n");
sa->ss[0].type = action_type;
sa->ss[0].crypto.ses = &dummy_ses;
rc = rte_ipsec_sa_init(sa->ss[0].sa, &sa->sa_prm, sz);
rc = (rc > 0 && (uint32_t)rc <= sz) ? 0 : -EINVAL;
if (rc == 0)
rc = rte_ipsec_session_prepare(&sa->ss[0]);
else
return TEST_FAILED;
return TEST_SUCCESS;
}
static int
packet_prepare(struct rte_mbuf **buf, struct ipsec_sa *sa,
uint16_t num_pkts)
{
uint64_t time_stamp;
uint16_t k = 0, i;
for (i = 0; i < num_pkts; i++) {
sa->cop[i] = rte_crypto_op_alloc(cop_pool,
RTE_CRYPTO_OP_TYPE_SYMMETRIC);
if (sa->cop[i] == NULL) {
RTE_LOG(ERR, USER1,
"Failed to allocate symmetric crypto op\n");
return k;
}
}
time_stamp = rte_rdtsc_precise();
k = rte_ipsec_pkt_crypto_prepare(&sa->ss[0], buf,
sa->cop, num_pkts);
time_stamp = rte_rdtsc_precise() - time_stamp;
if (k != num_pkts) {
RTE_LOG(ERR, USER1, "rte_ipsec_pkt_crypto_prepare fail\n");
return k;
}
sa->cnt.prepare_ticks_elapsed += time_stamp;
sa->cnt.nb_prepare_call++;
sa->cnt.nb_prepare_pkt += k;
for (i = 0; i < num_pkts; i++)
rte_crypto_op_free(sa->cop[i]);
return k;
}
static int
packet_process(struct rte_mbuf **buf, struct ipsec_sa *sa,
uint16_t num_pkts)
{
uint64_t time_stamp;
uint16_t k = 0;
time_stamp = rte_rdtsc_precise();
k = rte_ipsec_pkt_process(&sa->ss[0], buf, num_pkts);
time_stamp = rte_rdtsc_precise() - time_stamp;
if (k != num_pkts) {
RTE_LOG(ERR, USER1, "rte_ipsec_pkt_process fail\n");
return k;
}
sa->cnt.process_ticks_elapsed += time_stamp;
sa->cnt.nb_process_call++;
sa->cnt.nb_process_pkt += k;
return k;
}
static int
create_traffic(struct ipsec_sa *sa, struct rte_ring *deq_ring,
struct rte_ring *enq_ring, struct rte_ring *ring)
{
struct rte_mbuf *mbuf[BURST_SIZE];
uint16_t num_pkts, n;
while (rte_ring_empty(deq_ring) == 0) {
num_pkts = rte_ring_sc_dequeue_burst(deq_ring, (void **)mbuf,
RTE_DIM(mbuf), NULL);
if (num_pkts == 0)
return TEST_FAILED;
n = packet_prepare(mbuf, sa, num_pkts);
if (n != num_pkts)
return TEST_FAILED;
num_pkts = rte_ring_sp_enqueue_burst(enq_ring, (void **)mbuf,
num_pkts, NULL);
if (num_pkts == 0)
return TEST_FAILED;
}
deq_ring = enq_ring;
enq_ring = ring;
while (rte_ring_empty(deq_ring) == 0) {
num_pkts = rte_ring_sc_dequeue_burst(deq_ring, (void **)mbuf,
RTE_DIM(mbuf), NULL);
if (num_pkts == 0)
return TEST_FAILED;
n = packet_process(mbuf, sa, num_pkts);
if (n != num_pkts)
return TEST_FAILED;
num_pkts = rte_ring_sp_enqueue_burst(enq_ring, (void **)mbuf,
num_pkts, NULL);
if (num_pkts == 0)
return TEST_FAILED;
}
return TEST_SUCCESS;
}
static void
fill_ipsec_sa_out(const struct ipsec_test_cfg *test_cfg,
struct ipsec_sa *sa)
{
sa->ipsec_xform.spi = DEFAULT_SPI;
sa->ipsec_xform.direction = RTE_SECURITY_IPSEC_SA_DIR_EGRESS;
sa->ipsec_xform.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP;
sa->ipsec_xform.mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL;
sa->ipsec_xform.tunnel.type = RTE_SECURITY_IPSEC_TUNNEL_IPV4;
sa->ipsec_xform.options.esn = test_cfg->esn;
sa->type = test_cfg->type;
sa->replay_win_sz = test_cfg->replay_win_sz;
sa->sa_flags = test_cfg->flags;
sa->cnt.nb_prepare_call = 0;
sa->cnt.nb_prepare_pkt = 0;
sa->cnt.nb_process_call = 0;
sa->cnt.nb_process_pkt = 0;
sa->cnt.process_ticks_elapsed = 0;
sa->cnt.prepare_ticks_elapsed = 0;
}
static void
fill_ipsec_sa_in(const struct ipsec_test_cfg *test_cfg,
struct ipsec_sa *sa)
{
sa->ipsec_xform.spi = DEFAULT_SPI;
sa->ipsec_xform.direction = RTE_SECURITY_IPSEC_SA_DIR_INGRESS;
sa->ipsec_xform.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP;
sa->ipsec_xform.mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL;
sa->ipsec_xform.tunnel.type = RTE_SECURITY_IPSEC_TUNNEL_IPV4;
sa->ipsec_xform.options.esn = test_cfg->esn;
sa->type = test_cfg->type;
sa->replay_win_sz = test_cfg->replay_win_sz;
sa->sa_flags = test_cfg->flags;
sa->cnt.nb_prepare_call = 0;
sa->cnt.nb_prepare_pkt = 0;
sa->cnt.nb_process_call = 0;
sa->cnt.nb_process_pkt = 0;
sa->cnt.process_ticks_elapsed = 0;
sa->cnt.prepare_ticks_elapsed = 0;
}
static int
init_sa_session(const struct ipsec_test_cfg *test_cfg,
struct ipsec_sa *sa_out, struct ipsec_sa *sa_in)
{
int rc;
fill_ipsec_sa_in(test_cfg, sa_in);
fill_ipsec_sa_out(test_cfg, sa_out);
rc = create_sa(RTE_SECURITY_ACTION_TYPE_NONE, sa_out);
if (rc != 0) {
RTE_LOG(ERR, USER1, "out bound create_sa failed, cfg\n");
return TEST_FAILED;
}
rc = create_sa(RTE_SECURITY_ACTION_TYPE_NONE, sa_in);
if (rc != 0) {
RTE_LOG(ERR, USER1, "out bound create_sa failed, cfg\n");
return TEST_FAILED;
}
return TEST_SUCCESS;
}
static int
testsuite_setup(void)
{
struct rte_mbuf *mbuf;
int i;
mbuf_pool = rte_pktmbuf_pool_create("IPSEC_PERF_MBUFPOOL",
NUM_MBUFS, MBUF_CACHE_SIZE, 0, MBUF_SIZE,
rte_socket_id());
if (mbuf_pool == NULL) {
RTE_LOG(ERR, USER1, "Can't create MBUFPOOL\n");
return TEST_FAILED;
}
cop_pool = rte_crypto_op_pool_create(
"MBUF_CRYPTO_SYM_OP_POOL",
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
NUM_MBUFS, MBUF_CACHE_SIZE,
DEFAULT_NUM_XFORMS *
sizeof(struct rte_crypto_sym_xform) +
MAXIMUM_IV_LENGTH,
rte_socket_id());
if (cop_pool == NULL) {
RTE_LOG(ERR, USER1, "Can't create CRYPTO_OP_POOL\n");
return TEST_FAILED;
}
ring_inb_prepare = rte_ring_create("ipsec_test_ring_inb_prepare",
RING_SIZE, SOCKET_ID_ANY, 0);
if (ring_inb_prepare == NULL)
return TEST_FAILED;
ring_inb_process = rte_ring_create("ipsec_test_ring_inb_process",
RING_SIZE, SOCKET_ID_ANY, 0);
if (ring_inb_process == NULL)
return TEST_FAILED;
ring_outb_prepare = rte_ring_create("ipsec_test_ring_outb_prepare",
RING_SIZE, SOCKET_ID_ANY, 0);
if (ring_outb_prepare == NULL)
return TEST_FAILED;
ring_outb_process = rte_ring_create("ipsec_test_ring_outb_process",
RING_SIZE, SOCKET_ID_ANY, 0);
if (ring_outb_process == NULL)
return TEST_FAILED;
for (i = 0; i < NUM_MBUF; i++) {
mbuf = generate_mbuf_data(mbuf_pool);
if (mbuf && rte_ring_sp_enqueue_bulk(ring_inb_prepare,
(void **)&mbuf, 1, NULL))
continue;
else
return TEST_FAILED;
}
return TEST_SUCCESS;
}
static int
measure_performance(struct ipsec_sa *sa_out, struct ipsec_sa *sa_in)
{
uint64_t time_diff = 0;
uint64_t begin = 0;
uint64_t hz = rte_get_timer_hz();
begin = rte_get_timer_cycles();
do {
if (create_traffic(sa_out, ring_inb_prepare, ring_inb_process,
ring_outb_prepare) < 0)
return TEST_FAILED;
if (create_traffic(sa_in, ring_outb_prepare, ring_outb_process,
ring_inb_prepare) < 0)
return TEST_FAILED;
time_diff = rte_get_timer_cycles() - begin;
} while (time_diff < (hz * 10));
return TEST_SUCCESS;
}
static void
print_metrics(const struct ipsec_test_cfg *test_cfg,
struct ipsec_sa *sa_out, struct ipsec_sa *sa_in)
{
printf("\nMetrics of libipsec prepare/process api:\n");
printf("replay window size = %u\n", test_cfg->replay_win_sz);
if (test_cfg->esn)
printf("replay esn is enabled\n");
else
printf("replay esn is disabled\n");
if (test_cfg->type == RTE_CRYPTO_SYM_XFORM_AEAD)
printf("AEAD algo is AES_GCM\n");
else
printf("CIPHER/AUTH algo is AES_CBC/SHA1\n");
printf("avg cycles for a pkt prepare in outbound is = %.2Lf\n",
(long double)sa_out->cnt.prepare_ticks_elapsed
/ sa_out->cnt.nb_prepare_pkt);
printf("avg cycles for a pkt process in outbound is = %.2Lf\n",
(long double)sa_out->cnt.process_ticks_elapsed
/ sa_out->cnt.nb_process_pkt);
printf("avg cycles for a pkt prepare in inbound is = %.2Lf\n",
(long double)sa_in->cnt.prepare_ticks_elapsed
/ sa_in->cnt.nb_prepare_pkt);
printf("avg cycles for a pkt process in inbound is = %.2Lf\n",
(long double)sa_in->cnt.process_ticks_elapsed
/ sa_in->cnt.nb_process_pkt);
}
static void
testsuite_teardown(void)
{
if (mbuf_pool != NULL) {
RTE_LOG(DEBUG, USER1, "MBUFPOOL count %u\n",
rte_mempool_avail_count(mbuf_pool));
rte_mempool_free(mbuf_pool);
mbuf_pool = NULL;
}
if (cop_pool != NULL) {
RTE_LOG(DEBUG, USER1, "CRYPTO_OP_POOL count %u\n",
rte_mempool_avail_count(cop_pool));
rte_mempool_free(cop_pool);
cop_pool = NULL;
}
rte_ring_free(ring_inb_prepare);
rte_ring_free(ring_inb_process);
rte_ring_free(ring_outb_prepare);
rte_ring_free(ring_outb_process);
ring_inb_prepare = NULL;
ring_inb_process = NULL;
ring_outb_prepare = NULL;
ring_outb_process = NULL;
}
static int
test_libipsec_perf(void)
{
struct ipsec_sa sa_out;
struct ipsec_sa sa_in;
uint32_t i;
int ret;
if (testsuite_setup() < 0) {
testsuite_teardown();
return TEST_FAILED;
}
for (i = 0; i < RTE_DIM(test_cfg) ; i++) {
ret = init_sa_session(&test_cfg[i], &sa_out, &sa_in);
if (ret != 0) {
testsuite_teardown();
return TEST_FAILED;
}
if (measure_performance(&sa_out, &sa_in) < 0) {
testsuite_teardown();
return TEST_FAILED;
}
print_metrics(&test_cfg[i], &sa_out, &sa_in);
}
testsuite_teardown();
return TEST_SUCCESS;
}
REGISTER_TEST_COMMAND(ipsec_perf_autotest, test_libipsec_perf);