compress/mlx5: add data-path functions

Add implementation for the next compress data-path functions:
	- dequeue_burst
	- enqueue_burst

Add the next operation for starting \ stopping data-path:
	- dev_stop
	- dev_close

Each compress API enqueued operation is translated to a WQE.
Once WQE is done, the HW sends CQE to the CQ, when SW see the CQE the
operation will be updated and dequeued.

Signed-off-by: Matan Azrad <matan@nvidia.com>
Acked-by: Viacheslav Ovsiienko <viacheslavo@nvidia.com>
This commit is contained in:
Matan Azrad 2021-01-20 11:29:32 +00:00 committed by Akhil Goyal
parent 0165bccdb4
commit f8c97babc9

View File

@ -348,10 +348,23 @@ mlx5_compress_xform_create(struct rte_compressdev *dev,
return -ENOTSUP;
}
static void
mlx5_compress_dev_stop(struct rte_compressdev *dev)
{
RTE_SET_USED(dev);
}
static int
mlx5_compress_dev_start(struct rte_compressdev *dev)
{
RTE_SET_USED(dev);
return 0;
}
static struct rte_compressdev_ops mlx5_compress_ops = {
.dev_configure = mlx5_compress_dev_configure,
.dev_start = NULL,
.dev_stop = NULL,
.dev_start = mlx5_compress_dev_start,
.dev_stop = mlx5_compress_dev_stop,
.dev_close = mlx5_compress_dev_close,
.dev_infos_get = mlx5_compress_dev_info_get,
.stats_get = NULL,
@ -364,6 +377,203 @@ static struct rte_compressdev_ops mlx5_compress_ops = {
.stream_free = NULL,
};
static __rte_always_inline uint32_t
mlx5_compress_dseg_set(struct mlx5_compress_qp *qp,
volatile struct mlx5_wqe_dseg *restrict dseg,
struct rte_mbuf *restrict mbuf,
uint32_t offset, uint32_t len)
{
uintptr_t addr = rte_pktmbuf_mtod_offset(mbuf, uintptr_t, offset);
dseg->bcount = rte_cpu_to_be_32(len);
dseg->lkey = mlx5_mr_addr2mr_bh(qp->priv->pd, 0, &qp->priv->mr_scache,
&qp->mr_ctrl, addr,
!!(mbuf->ol_flags & EXT_ATTACHED_MBUF));
dseg->pbuf = rte_cpu_to_be_64(addr);
return dseg->lkey;
}
static uint16_t
mlx5_compress_enqueue_burst(void *queue_pair, struct rte_comp_op **ops,
uint16_t nb_ops)
{
struct mlx5_compress_qp *qp = queue_pair;
volatile struct mlx5_gga_wqe *wqes = (volatile struct mlx5_gga_wqe *)
qp->sq.wqes, *wqe;
struct mlx5_compress_xform *xform;
struct rte_comp_op *op;
uint16_t mask = qp->entries_n - 1;
uint16_t remain = qp->entries_n - (qp->pi - qp->ci);
uint16_t idx;
bool invalid;
if (remain < nb_ops)
nb_ops = remain;
else
remain = nb_ops;
if (unlikely(remain == 0))
return 0;
do {
idx = qp->pi & mask;
wqe = &wqes[idx];
rte_prefetch0(&wqes[(qp->pi + 1) & mask]);
op = *ops++;
xform = op->private_xform;
/*
* Check operation arguments and error cases:
* - Operation type must be state-less.
* - Compress operation flush flag must be FULL or FINAL.
* - Source and destination buffers must be mapped internally.
*/
invalid = op->op_type != RTE_COMP_OP_STATELESS ||
(xform->type == RTE_COMP_COMPRESS &&
op->flush_flag < RTE_COMP_FLUSH_FULL);
if (unlikely(invalid ||
(mlx5_compress_dseg_set(qp, &wqe->gather,
op->m_src,
op->src.offset,
op->src.length) ==
UINT32_MAX) ||
(mlx5_compress_dseg_set(qp, &wqe->scatter,
op->m_dst,
op->dst.offset,
rte_pktmbuf_pkt_len(op->m_dst) -
op->dst.offset) ==
UINT32_MAX))) {
op->status = invalid ? RTE_COMP_OP_STATUS_INVALID_ARGS :
RTE_COMP_OP_STATUS_ERROR;
nb_ops -= remain;
if (unlikely(nb_ops == 0))
return 0;
break;
}
wqe->gga_ctrl1 = xform->gga_ctrl1;
wqe->opcode = rte_cpu_to_be_32(xform->opcode + (qp->pi << 8));
qp->ops[idx] = op;
qp->pi++;
} while (--remain);
rte_io_wmb();
qp->sq.db_rec[MLX5_SND_DBR] = rte_cpu_to_be_32(qp->pi);
rte_wmb();
*qp->uar_addr = *(volatile uint64_t *)wqe; /* Assume 64 bit ARCH.*/
rte_wmb();
return nb_ops;
}
static void
mlx5_compress_dump_err_objs(volatile uint32_t *cqe, volatile uint32_t *wqe,
volatile uint32_t *opaq)
{
size_t i;
DRV_LOG(ERR, "Error cqe:");
for (i = 0; i < sizeof(struct mlx5_err_cqe) >> 2; i += 4)
DRV_LOG(ERR, "%08X %08X %08X %08X", cqe[i], cqe[i + 1],
cqe[i + 2], cqe[i + 3]);
DRV_LOG(ERR, "\nError wqe:");
for (i = 0; i < sizeof(struct mlx5_gga_wqe) >> 2; i += 4)
DRV_LOG(ERR, "%08X %08X %08X %08X", wqe[i], wqe[i + 1],
wqe[i + 2], wqe[i + 3]);
DRV_LOG(ERR, "\nError opaq:");
for (i = 0; i < sizeof(struct mlx5_gga_compress_opaque) >> 2; i += 4)
DRV_LOG(ERR, "%08X %08X %08X %08X", opaq[i], opaq[i + 1],
opaq[i + 2], opaq[i + 3]);
}
static void
mlx5_compress_cqe_err_handle(struct mlx5_compress_qp *qp,
struct rte_comp_op *op)
{
const uint32_t idx = qp->ci & (qp->entries_n - 1);
volatile struct mlx5_err_cqe *cqe = (volatile struct mlx5_err_cqe *)
&qp->cq.cqes[idx];
volatile struct mlx5_gga_wqe *wqes = (volatile struct mlx5_gga_wqe *)
qp->sq.wqes;
volatile struct mlx5_gga_compress_opaque *opaq = qp->opaque_mr.addr;
op->status = RTE_COMP_OP_STATUS_ERROR;
op->consumed = 0;
op->produced = 0;
op->output_chksum = 0;
op->debug_status = rte_be_to_cpu_32(opaq[idx].syndrom) |
((uint64_t)rte_be_to_cpu_32(cqe->syndrome) << 32);
mlx5_compress_dump_err_objs((volatile uint32_t *)cqe,
(volatile uint32_t *)&wqes[idx],
(volatile uint32_t *)&opaq[idx]);
}
static uint16_t
mlx5_compress_dequeue_burst(void *queue_pair, struct rte_comp_op **ops,
uint16_t nb_ops)
{
struct mlx5_compress_qp *qp = queue_pair;
volatile struct mlx5_compress_xform *restrict xform;
volatile struct mlx5_cqe *restrict cqe;
volatile struct mlx5_gga_compress_opaque *opaq = qp->opaque_mr.addr;
struct rte_comp_op *restrict op;
const unsigned int cq_size = qp->entries_n;
const unsigned int mask = cq_size - 1;
uint32_t idx;
uint32_t next_idx = qp->ci & mask;
const uint16_t max = RTE_MIN((uint16_t)(qp->pi - qp->ci), nb_ops);
uint16_t i = 0;
int ret;
if (unlikely(max == 0))
return 0;
do {
idx = next_idx;
next_idx = (qp->ci + 1) & mask;
rte_prefetch0(&qp->cq.cqes[next_idx]);
rte_prefetch0(qp->ops[next_idx]);
op = qp->ops[idx];
cqe = &qp->cq.cqes[idx];
ret = check_cqe(cqe, cq_size, qp->ci);
/*
* Be sure owner read is done before any other cookie field or
* opaque field.
*/
rte_io_rmb();
if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
if (likely(ret == MLX5_CQE_STATUS_HW_OWN))
break;
mlx5_compress_cqe_err_handle(qp, op);
} else {
xform = op->private_xform;
op->status = RTE_COMP_OP_STATUS_SUCCESS;
op->consumed = op->src.length;
op->produced = rte_be_to_cpu_32(cqe->byte_cnt);
MLX5_ASSERT(cqe->byte_cnt ==
qp->opaque_buf[idx].scattered_length);
switch (xform->csum_type) {
case RTE_COMP_CHECKSUM_CRC32:
op->output_chksum = (uint64_t)rte_be_to_cpu_32
(opaq[idx].crc32);
break;
case RTE_COMP_CHECKSUM_ADLER32:
op->output_chksum = (uint64_t)rte_be_to_cpu_32
(opaq[idx].adler32) << 32;
break;
case RTE_COMP_CHECKSUM_CRC32_ADLER32:
op->output_chksum = (uint64_t)rte_be_to_cpu_32
(opaq[idx].crc32) |
((uint64_t)rte_be_to_cpu_32
(opaq[idx].adler32) << 32);
break;
default:
break;
}
}
ops[i++] = op;
qp->ci++;
} while (i < max);
if (likely(i != 0)) {
rte_io_wmb();
qp->cq.db_rec[0] = rte_cpu_to_be_32(qp->ci);
}
return i;
}
static struct ibv_device *
mlx5_compress_get_ib_device_match(struct rte_pci_addr *addr)
{
@ -520,8 +730,8 @@ mlx5_compress_pci_probe(struct rte_pci_driver *pci_drv,
DRV_LOG(INFO,
"Compress device %s was created successfully.", ibv->name);
cdev->dev_ops = &mlx5_compress_ops;
cdev->dequeue_burst = NULL;
cdev->enqueue_burst = NULL;
cdev->dequeue_burst = mlx5_compress_dequeue_burst;
cdev->enqueue_burst = mlx5_compress_enqueue_burst;
cdev->feature_flags = RTE_COMPDEV_FF_HW_ACCELERATED;
priv = cdev->data->dev_private;
priv->ctx = ctx;